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ABSTRACT

This paper presents the application of recurrence plots (RPs)
and recurrence quantification analysis (RQA) in model-based
diagnostics of nonlinear systems. A detailed nonlinear math-
ematical model of a servo electro-hydraulic system has been
used to demonstrate the procedure. Two faults have been
considered associated with the servo valve including the in-
creased friction between spool and sleeve and the degradation
of the permanent magnet of the valve armature. The faults
have been simulated in the system by the variation of the cor-
responding parameters in the model and the effect of these
faults on the RPs and RQA parameters has been investigated.
A regression-based artificial neural network has been finally
developed and trained using the RQA parameters to estimate
the original values of the faulty parameters and identify the
severity of the faults in the system.

1. INTRODUCTION

Servo valves are complex electro-hydraulic systems which
consist of very precise and sensitive components. A small
change in the dimensions, metallurgical characteristics, or
other parameters of these components can produce instabil-
ity, error or even failure in the performance of the system.
Hence, it is important to utilize effective algorithms and tech-
niques to constantly monitor the performance of such systems
and identify faults that can appear in them along with location
and severity of the faults. Due to highly nonlinear character-
istics of servo valves, it is essential to use techniques that can
perform effectively in different domains of the nonlinear re-
sponse.

In this paper, we introduce the application of recurrence plots
(RPs) and recurrence quantification analysis (RQA) in model-
based diagnostics of servo valves. The approach is general
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though and can be applied to any complex nonlinear system.
Model-based fault detection approaches can be classified into
three main categories of parity relation (Chow & Willsky,
1984; Gertler, 1997; Gertler & Singer, 1990), observer/filter-
based (Frank & Ding, 1997; Patton, Frank, & Clarke, 1989)
and parameter estimation (Isermann, 1982, 1984) methods.
In parameter estimation method which is the main scope of
this research, the parameters of the defective system are es-
timated and compared with the original parameters of the
healthy system. The changes in parameter values are in many
cases directly related to the defects. Therefore, this knowl-
edge facilitates the fault diagnostics task. The parameter esti-
mation technique has been used by many researchers for the
detection of the faults in complex systems such as jet engines,
rolling element bearings, DC motors, etc. (Baskiotis, Ray-
mond, & Rault, 1979; Kappaganthu & Nataraj, 2011a; Liu,
Zhang, Liu, & Yang, 2000). More information about param-
eter estimation based fault detection can be found in (Frank,
Ding, & Koppen-Seliger, 2000; Isermann, 1997, 2005a, 2005b).

In general, nonlinear dynamic systems can exhibit diverse
phenomena including multi-periodic, quasi-periodic and chaotic
responses, as well as bifurcation and limit cycles. Many stud-
ies have reported the emergence of these complex nonlin-
ear phenomena in industrial machinery originating from de-
fects or due to their nonlinear nature (Sankaravelu, Noah,
& Burger, 1994; Mevel & Guyader, 1993; Kappaganthu &
Nataraj, 2011b). The prevailing parameter estimation meth-
ods are based on system identification techniques which are
mostly suitable for linear systems and are not effective when
the system response includes complex nonlinear phenomena.
Moreover, the available methods require a pre-specified range
for the initial guess of the parameter values which might not
always be available in practice.

This paper presents the initial investigation of a new approach
for parameter estimation-based diagnostics of nonlinear sys-
tems, based on the extracted information from the nonlin-
ear response. Our main thesis is that the nonlinear dynamic
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response of practical systems contains valuable information
about the system including knowledge that could be used to
develop an effective diagnostics framework. In an earlier
work (Samadani, Kwuimy, & Nataraj, 2014, 2013) we pre-
sented an approach to extract information and features from
the phase plane plot of the response in the periodic domain.
The present paper extends that approach to systems with even
more complex nonlinearities including quasi-periodicity us-
ing more advanced nonlinear dynamic analysis tools. The
analysis in this paper is based on the recurrence properties
of the system output in its reconstructed state space. In many
cases, the phase space has dimensions higher than three which
can only be visualized by projection into the two or three-
dimensional sub-spaces. However, recurrence plots enable us
to visualize and investigate certain aspects of the phase space
trajectory in a two dimensional representation. The method
of recurrence plots is a strong and effective tool for analy-
sis of complex systems which has already been used for fault
identification and diagnostics of nonlinear systems (Kwuimy,
Samadani, Kappaganthu, & Nataraj, 2015). However, this is
the first effort to use this method in a model-based approach
to estimate the parameters of the system for fault diagnostics.

A detailed nonlinear mathematical model has been used to
simulate the performance of the electro-hydraulic system. The
analyses have been performed on the output flow of the servo
valve. Three different electrical current signals including a
periodic, a bi-periodic and a quasi-periodic signal have been
input to the servo valve to investigate the performance of the
algorithm in various nonlinear domains. RQA parameters
have been obtained from the reconstructed phase space and
used as the response features to identify dynamical changes
in the system. Finally, an artificial neural network has been
trained for mapping of the feature space to the parameter
space.

The remaining parts of this paper are organized as follows.
In section 2, a detailed mathematical model of the electro-
hydraulic valve has been derived. In section 3, the definition
of recurrence plots and RQA parameters have been provided.
Section 4 describes the diagnostics algorithm along with the
analyses and subsequent discussions. The conclusion is made
in section 5.

2. MODELING OF THE ELECTRO-HYDRAULIC SERVO
SYSTEM

A detailed dynamical model of a two-stage servo valve with a
mechanical feedback has been used in the analyses. This sys-
tem is shown in Fig. 1. Only the final equations are presented
here. The detailed explanation of formulae can be found in
(Samadani, Behbahani, & Nataraj, 2013; Rabie, 2009; Gordić,
Babić, & Jovičić, 2004). The definition of system states and
parameters along with the nominal values of the parameters
have been presented in the nomenclature.

Neglecting the effect of the magnetic hysteresis, the net torque
on the armature is given by the following expression.

Figure 1. Functional schematic of the electro-hydraulic
servo system [18]

T = Kiie (1)

where the coefficient Ki can be calculated by:

Ki =
NλpµoAL

2x2
o

(2)

The motion of the armature and the elements attached to it is
described by the following equations:

T = J
d2θ

dt2
+ fθ

dθ

dt
+KT θ + TL + TP + TF (3)

TP =
π

4
d2f (P2 − P1)Lf (4)

The feedback torque depends on the displacement of the spool
and the angle of the flapper and can be given by:

TF = FSLS = KS(LSθ + x)LS (5)

The rotational displacement of the flapper is limited mechan-
ically by the jet nozzles. When the flapper reaches any of the
side jet nozzles, a counter torque TL is applied on it which
can be calculated by the following equation:
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TL =

{
0, |xf | < xi

Rs
dθ
dt − (|xf | − xi)KLfLf sign(xf ), |xf | > xi

(6)

The flow rates through the flapper valve restrictions are given
by the following equations:

Q1 = CDAo

√
2

ρ
(Ps − P1) = C12

√
(Ps − P1) (7)

Q2 = CDAo

√
2

ρ
(Ps − P2) = C12

√
(Ps − P2) (8)

Q3 = Cdπdf (xi + xf )
√

2
ρ (P1 − P3)

= C34(xi + xf )
√
(P1 − P3)

(9)

Q4 = Cdπdf (xi − xf )
√

2
ρ (P2 − P3)

= C34(xi − xf )
√
(P2 − P3)

(10)

xf = Lfθ (11)

Q5 = CdAs

√
2

ρ
(P3 − PT ) = C5

√
(P3 − PT ) (12)

By using the continuity equation for the chambers of the flap-
per valve, the following expressions can be deduced:

Q1 −Q3 +As
dx

dt
=

Vo −Asx

B

dP1

dt
(13)

Q2 −Q4 −As
dx

dt
=

Vo +Asx

B

dP2

dt
(14)

Q3 +Q4 −Q5 =
V3

B

dP3

dt
(15)

The motion of the spool is governed by the following equa-
tions.

As(P2 − P1) = ms
d2x

dt2
+ fs

dx

dt
+ Fj + Fs (16)

Fj =


(

ρQ2
b

CcAb
+

ρQ2
d

CcAd

)
sign(x) for x > 0

(
ρQ2

a

CcAa
+

ρQ2
c

CcAc

)
sign(x) for x < 0

(17)

Ignoring the effect of transmission lines between the valve
and the symmetrical hydraulic cylinder, the flow rates through
the valve restriction areas are given by:

Qa = CdAa(x)

√
2

ρ
(PA − PT ) (18)

Qb = CdAb(x)

√
2

ρ
(Ps − PA) (19)

Qc = CdAc(x)

√
2

ρ
(Ps − PB) (20)

Qd = CdAd(x)

√
2

ρ
(PB − PT ) (21)

The area of the valve restrictions are given by:

{ Aa = Ac = ωc
for x ≥ 0

Ab = Ad = ω
√
(x2 + c2)

(22)

{
Aa = Ac = ω

√
(x2 + c2)

for x ≤ 0
Ab = Ad = ωc

(23)

Considering the internal leakage and neglecting the external
leakage, the following equations can be obtained by applying
the continuity equation to the cylinder chambers.

Qb −Qa −AP
dy

dt
− (PA − PB)

Ri
=

(Vc +Apy)

B

dPA

dt
(24)

Qc−Qad+AP
dy

dt
− (PA − PB)

Ri
=

(Vc −Apy)

B

dPB

dt
(25)

Finally, the equation of motion for the cylinder piston is given
by:

AP (PA − PB) = mp
d2y

dt2
+ fP

dy

dt
+Kby (26)

2.1. Servo Valve Faults

Various faults leading to parameter changes can appear in a
servo valve. Three of the common defects in servo valves are:

• Change of magneto-motive force of the permanent mag-
net λp over time, which leads to the change of Ki

• Change of spool friction coefficient fs, due to clearance
variations or contamination
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• Decrease in the diameter of nozzles df due to contami-
nation or residuals

Sensitivity analyses show that the change of df does not sig-
nificantly affect the dynamics of the system and hence, cannot
be captured by dynamical analysis, unless the contamination
blocks the nozzles completely. In this research, we assume
the first two faults and use the response of the system in order
to identify changes in those parameters. We suppose that one
can measure the position of cylinder and the output flow of
the valve.

3. RECURRENCE PLOTS AND RECURRENCE QUANTIFI-
CATION ANALYSIS

The recurrence plots analysis for time series is based on the
analysis of a matrix R whose elements are defined as:

Rij =

{
1, Φi ≈ Φj ,

0, Φi ̸= Φj ,
, i, j = 1...N, (27)

where Φi = (ϕ1i, ϕ2i, ..., ϕmi) is a state vector the dimension
of m, N is the length of the time series, i and j are related
respectively to the row and column of the matrix, and Φi ≈
Φj means equality up to an error ϵ.

If only a time series is available, the state vector Φ can be
reconstructed by using delay embedding theorem (Takens,
1981; Abarbanel, 1996; Fontaine, Dia, & Renner, 2011; Kwuimy,
Samadani, & Nataraj, 2014). In this paper, the state vector has
been reconstructed from the output flow of the valve. This
is done in two steps: The first step consists of estimating the
prescribed time lag T and the second step would be the evalu-
ation of the embedded dimension m. In practice, if u(i) is the
available time series, the value of T corresponds to the first
minimum of the average mutual information between the val-
ues of u(i) and u(i+T ), and the embedding dimension can be
deduced from the method of false nearness neighbor (Takens,
1981; Abarbanel, 1996; Kantz & Schreiber, 2004; Kwuimy
et al., 2014). Once the values of T and m are obtained, the
state vector Φ can be reconstructed by:

Φ = (u(i), u(i+ T ), . . . , u(i+ T (m− 1)) (28)

The elements of the matrix R are thus obtained by compar-
ing the state of the system at time i and j with a threshold
precision ϵ. Thus, formally, one has:

Rij = θ(ϵ− ||Φi −Φj ||), (29)

with ||.|| been the Euclidian norm (L2-norm) and θ(y) is the
heaviside function defined as:

θ(y) = 1 for y > 0 and θ(y) = 0 for y < 0

Once we have the R matrix, the RP graph is obtained by plot-
ting the Rij points in the i and j plane with different colors.
By definition, RP graphs are always symmetric (Rij = Rji)
and always have a central diagonal.

In order to go beyond the qualitative impression given by
RPs, complexity measures have been developed that quantify
the structures of RPs and are called recurrence quantification
analysis (RQA) (Zbilut, Thomasson, & Webber, 2002). In
this paper, we use the following RQA parameters to quantify
the RP of the system under various fault conditions.

• Recurrence rate (RR)

The recurrence rate is the simplest RQA parameter which
measures the density of recurrence points in a recurrence
plot.

RR =
1

N2

N∑
i,j=1

Ri,j(ϵ) (30)

• Determinism (DET )

The determinism is the percentage of recurrence points
which form diagonal lines in the recurrence plot of min-
imal length ℓmin.

DET =

∑N
ℓ=ℓmin

ℓP (ℓ)∑N
ℓ=1 ℓP (ℓ)

(31)

where P (ℓ) is the frequency distribution of the lengths ℓ
of the diagonal lines.

• Laminarity (LAM )

In the same way, the amount of recurrence points form-
ing vertical lines can be quantified by laminarity.

LAM =

∑N
v=vmin

vP (v)∑N
v=1 vP (v)

(32)

where P (v) is the frequency distribution of the lengths v
of the vertical lines, which have at least a length of vmin.

• Average length of the diagonal lines (L)

L is related with the predictability time of the dynami-
cal system.

L =

∑N
ℓ=ℓmin

ℓP (ℓ)∑N
ℓ=ℓmin

P (ℓ)
(33)

• Trapping Time (TT )

The trapping time measures the average length of the ver-
tical lines.
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TT =

∑N
v=vmin

vP (v)∑N
v=vmin

P (v)
(34)

• Entropy (ENTR)

The probability that a diagonal line has exactly length
ℓ can be estimated with p(ℓ) = P (ℓ)∑N

ℓ=ℓmin
P (ℓ)

. ENTR

is the Shannon entropy of this probability which reflects
the complexity of the RP in respect of the diagonal lines.

ENTR = −
N∑

ℓ=ℓmin

p(ℓ) ln p(ℓ) (35)

4. FAULT DIAGNOSTICS AND SEVERITY ANALYSIS

A standard procedure to identify faults and dynamical changes
in systems is to input a pre-specified signal to the system, ob-
tain the response and compare the signatures of the response
with the ones of the system response in healthy conditions.
Here we have input an electrical current signal to the servo
valve, and measured the output flow of the valve. The state
space of the system has then been reconstructed from the out-
put flow signal and the effect of the parameter changes on
the response has been evaluated using the defined recurrence
quantification parameters.

In order to investigate the effectiveness of the approach in var-
ious domains of the nonlinear response, three different signals
have been input to the servo valve including:

• Periodic input signal

i = 0.01 sin 50t

• Bi-periodic input signal

i = 0.01 sin 50t+ 0.005 sin 75t

• Quasi-periodic input signal

i = 0.01 sin 50t+ 0.005 sin 50πt

To better understand the effect of dynamical changes in re-
currence point of view, the performance of the system is first
analyzed and presented under three sample fault cases includ-
ing:

• Healthy system

• Fault 1: Ki decreased by %50

• Fault 2: fs increased by %500

Figure 2 shows the output flow of the valve versus time, cor-
responding to the three input cases, for the three sample fault
scenarios.
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Figure 2. Time response of the system for (a): periodic, (b):
bi-periodic and (c):quai-periodic inputs to the servo valve for

three fault cases

In order to obtain the recurrence matrix and plots, we need to
reconstruct the state space from the output flow time series.
As discussed earlier, the appropriate time lag for the recon-
struction of the state space corresponds to the first minimum
in the average mutual information of the signal. Using this
method, the time lag was determined to be T=50. By applica-
tion of the method of false nearest neighbors, we found that
the minimum embedding dimension for the system is d=2.

Figure 3 shows the recurrence plots of the reconstructed state
space, for the three inputs and the three sample fault scenar-
ios.

As can be seen, the plots consist of complicated patterns which
are hard to interpret. In addition, there is little difference
between them for the three fault cases, which is not easily
detectable. Hence, we need quantitative measures to extract
information from these plots.

Table 1 shows the computed RQA parameters for all nine
cases. In this table p, bp, and qp correspond to the response
of the system to the periodic, bi-periodic and quasi-periodic
input signals, respectively. As can be seen, even though the
difference of the recurrence plots for the three fault cases is
hardly detectable by eye, RQA parameters can easily distin-
guish the differences and detect the alternations in the signal.
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(a)

(b)

(c)

Figure 3. From left to right: Recurrence plots for periodic, bi-periodic and quasi-periodic inputs to the valve (a): Healthy
system (b): Fault 1 (c): Fault 2

Table 1. RQA parameters for three defect cases

Defect-free Defect 1 Defect 2

RQA Parameter p bp qp p bp qp p bp qp

RR 0.0269 0.0160 0.0071 0.0269 0.0159 0.0070 0.0266 0.0160 0.0081
DET 0.9997 0.9994 0.9589 0.9997 0.9996 0.9589 0.9994 0.9996 0.9772
LAM 0.9999 0.9993 0.9548 0.9999 0.9993 0.9530 0.9997 0.9992 0.9790
L 107.1795 102.6667 5.6023 87.2343 95.2610 5.5580 103.0904 104.3878 6.7376
TT 7.4741 7.7383 4.4261 7.4741 7.7383 4.4261 7.4678 7.7575 4.9349

ENTR 3.7933 3.9199 1.9403 3.7933 3.9199 1.9403 3.8093 3.9572 2.2226
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4.1. Mapping of Features to Parameters

So far we have illustrated how the response of the system
is affected with the change of parameters and how it can be
detected by using the RQA parameters. We were able to mea-
sure and represent these influences by quantitative criteria. In
contrast to this, the diagnostics problem is the inverse prob-
lem, where we would like to predict the system parameters
given its nonlinear response. In order to do that, machine
learning techniques can be used which have been proved to
be effective for diagnostics of machinery (Kankar, Sharma,
& Harsha, 2011) and biomedical diagnostics (Jalali et al.,
2014). In this paper, an artificial neural network (ANN) has
been used. For this purpose, a two-layer feed-forward net-
work with ten sigmoid hidden neurons and linear output neu-
rons was developed. The inputs used for the training of the
neural network were vectors of RQA parameters and the out-
puts were vectors of Ki and fs. The data was obtained by
random selection of the values of Ki and fs in the intervals
[0.1,0.6] and [1,100], respectively, simulation of the system
and computation of the response features, i.e. RQA parame-
ters, each time. A total number of 100 samples was used for
training, validation and test of the network.

Figures 4, 5, and 6 show the regression plots of the network
outputs with respect to targets for training, validation and test
sets along the Regression (R) values for each case. For a per-
fect fit, the (R) value should be close to 1 and the data in the
regression plot should fall along a 45 degree line, where the
network outputs are equal to the targets. As can be seen, in
this case, all the points have fallen along the 45 degree line
and the R values are equal to 1, which are representatives of
an accurate mapping of the features space to the parameters
space.

Table 2 shows some samples of the performance of the pa-
rameter estimation systems developed with periodic, bi-periodic
and quasi-periodic inputs. K∗

i and f∗
s represent the estimated

values of Ki and fs. This table shows that the proposed
method has a very good ability to predict the original param-
eters of the system using the defined features, especially with
the periodic input signal.

Table 2. Some examples of the performance of the parameter
estimation system

Periodic Bi-periodic Quasi-periodic

Ki fs K∗
i f∗

s K∗
i f∗

s K∗
i f∗

s

0.1 5 0.098 5.879 0.096 6.087 0.123 6.088
0.3 50 0.289 50.623 0.275 51.025 0.356 51.610
0.6 100 0.591 101.511 0.592 98.410 0.633 102.214
0.2 25 0.207 24.234 0.206 25.324 0.227 26.665
0.4 2 0.390 2.012 0.384 2.622 0.383 3.001
0.5 10 0.512 9.824 0.488 9.357 0.520 9.512
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Figure 4. Outputs of the artificial neural network with
respect to target values for the periodic input signal

5. CONCLUSION

We used recurrence plots and recurrence quantification anal-
ysis for model-based fault detection and diagnostics of an
electro-hydraulic system. It was shown that the nonlinear
response of the system contains valuable information about
the system that can be used for this purpose. The analy-
ses were performed with the assumption that only the out-
put response of the system (here output flow of the valve) is
available; and the other states were reconstructed using the
method of time delays. The recurrence plots were produced
and the corresponding recurrence analyses were performed
on the reconstructed state space of the system. It was shown
that even though the recurrence plots for the system with dif-
ferent faults can be similar, the dynamical changes can be
detected by RQA parameters. An artificial neural network
was trained using the RQA parameters to estimate the faulty
parameters of the system. It was shown that RQA parame-
ters can be used as effective features for characterizing the
nonlinear response of the system even in the multi-periodic
or quasi-periodic domain with complex nonlinearities.

In this study, the proposed method was only applied to numer-
ical data obtained from the mathematical model of the sys-
tem. Although the results were promising, there is no guar-
antee that we can obtain the same prediction accuracy for real
experimental data. Hence, it is of importance to confirm the
effectiveness of the approach with experimental analysis. In
addition, only two parametric defects (defects due to change
of parameter values) were considered in this paper, whereas
in real world applications we might have multiple paramet-
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Figure 5. Outputs of the artificial neural network with
respect to target values for the bi-periodic input signal

ric defects in the system or even defects of the type that can
change the structure of the mathematical model of the sys-
tem. The present method can be extended with using more
dynamical and statistical features in order to be able to char-
acterize the system response and diagnose the faults in such
conditions, which is currently the focus of our research.

ACKNOWLEDGMENT

This work is supported by the US Office of Naval Research
under the grant ONR N00014-13-1-0485. We deeply appre-
ciate this support. Thanks are due to Mr Anthony Seman III
of ONR.

NOMENCLATURE
a Width of spool edges m 4e-03
A Area of air gap m2

A5 Drain orifice area m2

AL
Area of the flow between spool
and sleeve edges m2

Ao Orifice area m2

Aa′ , Ab′ ,
Ac′ , and
Ad′

Spool valve restrictions areas m2

AP Piston area m2 7e-04
As Spool cross-sectional area m2

b Width of sleeve slots m 4e-03
B Bulk modulus of oil Pa 1.5e09
c Spool radial clearance m 2e-06
Cc Contraction coefficient
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Figure 6. Outputs of the artificial neural network with
respect to target values for the quasi-periodic input signal

Cd and CD Discharge coefficients 0.661
df Flapper nozzle diameter m 5e-04
d5 Diameter of return orifice m 6e-04
ds Spool diameter m 4.6e-03
fθ Armature damping coefficient Nms/rad 0.002
Fj Hydraulic momentum force N
fp Piston friction coefficient Ns/m 1000
fs Spool friction coefficient Ns/m 3.05

Fs
Force acting at the extremity of
the feedback spring N

H
Magneto-motive force per unit
length A/m

ib Feedback current A
ic Control current A
ie Torque motor input current A

J
Moment of inertia of rotating
part Nms2 5e-07

Kb Load coefficient N/m 0
KFB Feedback gain A/m 1
KLf Equivalent flapper seat stiffness N/m 1e6
Ki Current-torque gain Nm/A 0.559
Ks Stiffness of the feedback spring N/m 900
KT Stiffness of flexure tube Nm/rad 10.68

K Rotational angle-torque gain Nm/rad 9.45e-4
L Armature length m 0.029
Lf Flapper length m 0.009

Ls
Length of the feedback spring
and flapper

m 0.03
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Lsp Length of spool land m 1.5e-02
mp Piston mass kg 5
ms Spool mass kg 0.2

P1
Pressure in the left side of the
flapper valve Pa

P2
Pressure in the right side of the
flapper valve Pa

P3
Pressure in the flapper valve
return chamber Pa

PA and PB Hydraulic cylinder pressures Pa
Ps Supply pressure Pa 1.2e7
PT Return line pressure Pa 0
Q Flow rate m3/s
Q1 Flow rate in the left orifice m3/s
Q2 Flow rate in the right orifice m3/s
Q3 Left flapper nozzle flow rate m3/s
Q4 Right flapper nozzle flow rate m3/s
Q5 Flapper valve drain flow rate m3/s
Qa, Qb,
Qc, and Qd

Flow rates through the spool
valve restrictions m3/s

Ri Resistance to internal leakage Ns/m5 1e20

Rs
Flapper seat damping
coefficient Nms/rad 5000

T
Torque of electromagnetic
torque motor Nm

TF Feedback torque Nm

TL
Torque due to flapper
displacement limiter Nm

TP
Torque due to the pressure
forces Nm

V3
Volume of the flapper valve
return chamber m3 5e-06

Vc
Half of the volume of oil filling
the cylinder m3 1e-04

Vo
Initial volume of oil in the
spool side chamber m3 2e-06

x Spool displacement m

xa
Displacement of the armature
end

m

xf
Flapper displacement on the
level of the jet nozzles

m

xi Flapper displacement limit m 3e-05

xo
Length of the air gap in the
neutral position of armature

m 3e-04

λ Magneto-motive force A

λp
Magneto-motive force of the
permanent magnet A 66.75

µ Permeability Vs/Am
µo Permeability of the air Vs/Am 4e-07
µr Relative permeability
ρ Oil density kg/m3 867

ω Width of ports on the valve
sleeve

m 0.014

θ Armature rotation angle rad
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