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ABSTRACT 

Many Autonomous Underwater Vehicles (AUV) have high 
rates of false-alarms because their health management relies 
on user-generated rules. The false-alarm rate could be 
substantially smaller if fault-detection were based on actual 
actuator performance instead of heuristics. We collected 
performance data on a critical AUV actuator, a mass-shifter, 
and from the data developed an unsupervised fault detector. 
We found that a small number of features were sufficient to 
detect known and novel faults with a high probability of 
detection and a low false alarm rate. We also found that n-
point false-alarm reduction schemes performed poorly due to 
correlation during startup. 

1. INTRODUCTION 

Autonomous Underwater Vehicles (AUV) are regularly used 
by military, oil & gas, and science customers, yet despite 
wide operational adoption their reliability remains poor. 
Griffiths et al. (2003) analyzed 4 years of reliability of the 
Autosub AUV and found a mean time-to-failure of order 10h; 
Brito et al. (2014) examined user-generated reliability data on 
the Slocum gliders and found 40% failure rates; Brito (2015) 
examined the reliability of the Autosub-LR and found 20h 
mean time-to-failure. 

Available AUV reliability data does not discriminate 
between actual faults and false alarms. A recent unpublished 
report based on 10,000 hours of operational data on Tethys-
class AUVs (Bellingham, 2014) suggested that 95% of the 
faults were false alarms; of those, 60% originated with the 
actuators, 35% with the control software, and 5% with the 
sensors. This finding suggests that reliability could be 
improved by as much as 20X by reducing the rate of false 
alarms. 

One of the reasons for the high rate of false alarms is the near-
universal dependence on user-generated health-management 
rules. This approach is expedient but it is error-prone – as it 
relies on an incomplete picture of the vehicle's state and 
context. 

A second reason is the relative rarity of faults: testing at 1Hz 
for example when faults are expected to occur every 10 hours 
would require a detector capable of handling events with a 
3x10-5 probability of occurrence. Because faults are rare 
events, there usually is not enough data to train a classifier. 

An alternative to supervised learning is unsupervised 
learning, where data groupings are found from regularities in 
the data instead of user-generated labels. A common instance 
of unsupervised learning is an anomaly detector, where the 
detector is trained directly from the nominal data and its 
performance is adjusted using a small amount of fault data. 

Raanan et al. (2016, 2017) recently applied topic modelling, 
a mixed-membership Bayesian unsupervised learning 
technique, to the problem of vertical plane failures. Using no 
labels, the algorithm grouped the vehicle's dynamical data 
into clusters. These clusters were found to map one-to-one 
with the vehicle's dynamical states, including clusters that 
mapped to faults. 

Fagogenis et al. (2016) used a Bayesian model with a hidden 
switch variable to detect partial loss of AUV thrust. As with 
Raanan et al., training used the vehicle's dynamical sensors, 
this time to create models of the dynamics and an estimate of 
the switch variable. 

Raanan et al. and Fagogenis et al. both targeted fault 
detection based on changes in the vehicle's dynamics. Here 
we focus on detection based on changes in actuator 
performance. Specifically, we consider an AUV mass-shifter, 
the device that moves the vehicle's battery back and forth to 
adjust pitch, and create an anomaly detector from its input 
and output – current and velocity – under nominal and faulty 
conditions. 

The paper is organized as follows. Section 2 describes the 
mass-shifter, the data collection setup, the data processing, 
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and the fault-detection algorithm. Section 3 presents the 
experimental results and the detector's fault-detection 
performance. Section 4 discusses the results, and Section 5 
presents our conclusions. 

2. METHODS 

2.1. System Description 

The vehicle under consideration is a Tethys-class Long-
Range Autonomous Underwater Vehicle (LRAUV - see 
Bellingham et al., 2010). LRAUVs perform unmanned basin-
scale oceanographic measurements, and have an operational 
envelope of 21 days. 

LRAUVs have 6 actuators (Figure 1): a thruster, elevator and 
rudder combination for control of the vertical and horizontal 
planes, an internal mass-shifter for pitch control, a variable 
buoyancy system to adjust buoyancy, and a drop-weight for 
emergency recovery. The vehicle carries a standard suite of 
navigational sensors: depth, 9-axis inertial measurement unit, 
3-axis ground-referenced velocity, and a mast-mounted GPS 
for geo-referencing while at the surface. Communication 
with the vehicle is done over satellite through an Iridium 
modem. 

The LRAUV's health management system consists of a set of 
fault-detection and fault-recovery components spread across 
the individual subsystems, with a common escalation 
architecture (Kieft et al., 2011). Each component detects 
faults based on a certain set of threshold-based conditions, 
and fault-recovery is attempted if the threshold is crossed n 
consecutive times. If fault-recovery fails, the vehicle ascends 
to the surface and communicates with a remote operator who 
then determines whether to clear the fault or abort the 
mission. Based on 10,000 mission hours, it was found that 
95% of the faults are false-alarms and readily cleared by the 
operator (Bellingham et al., 2014). 

 
Figure 1: Cutaway of the Long-Range AUV. The mass-

shifter (yellow) sits in the vehicle housing. 

The focus of this paper is the mass-shifter. The mass-shifter 
is one of the vehicle's critical sub-systems: although it has a 
high record of reliability, its failures can cause vehicle loss.  

The mass-shifter consists of a DC brushed motor with a 
planetary gear connected to the battery through a lead screw 
(Figure 2). The mass-shifter's servo-controller runs in 
constant velocity mode using motor encoder counts for 
feedback. The known modes of failure of the mass-shifter are 

current overload, where the tray runs into its travel limit, and 
loosening of the screw securing the battery to the lead screw, 
which releases the battery from any constraints. 

 
Figure 2: Front view of the LRAUV's mass-shifter: The 

motor is in the foreground, and a lead screw connects the 
battery to the motor shaft. 

2.2. Data Collection 

We instrumented a mass-shifter using high-resolution 
sensors. We used a National Instruments shunt current sensor 
in-line with the motor (NI-DAQ 9227), a National 
Instruments voltage sensors across the motor terminals (NI-
DAQ 9229), an absolute battery tray position sensor (Tensor 
Solutions SP1-4 analog string potentiometer, powered by 
10V isolated supply, sampled by NI-DAQ 9229), and a pair 
of vibration accelerometers mounted on the battery tray 
(PCB-Piezotronics 622B01 and 333B40 ICP 1-axis piezo 
accelerometers, sampled by IEPE-enabled NI-DAQ 9234). 
Sensor data was passed through 100 dB anti-aliasing filters at 
the Nyquist frequency, and sampled at 24 bits. Time-
synchronization was maintained by a National Instruments 
Compact-DAQ 9174 chassis. 

We collected data in three cases:  

• Nominal operation: the mass-shifter was commanded to 
move in forward or in reverse between two positions. 

• Known faults: Limit fault, a current overload condition, 
was simulated by starting adjacent to a travel limit, and 
motion was commanded until the servo-controller 
detected a current overload and de-energized the 
actuator. Set-screw fault was simulated by loosening the 
screws connecting the lead screw to the battery tray. 

• Novel faults: new failure modes were created to assess 
the detector's response to novelty. We simulated two 
modes: Sensor fault, where the position sensor was 
disconnected, and Config fault, where an inadvertent 
configuration file parameter change was simulated, 
specifically setting the commanded velocity to 50% and 
150% of nominal. 
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Data was collected in the following order: nominal, limit 
fault, nominal, setscrew fault, nominal, sensor fault, nominal, 
speed configuration fault. Each set was repeated for 5 pitch 
values. The entire sequence was repeated twice. A total of 
5000 seconds of steady-state data was collected, equivalent 
to ~ 500 hours of at-sea operation. 

2.3. Data Processing 

Data was processed as follows: 

• Current: current was segmented into startup transient, 
steady-state, and stop transient. Transient data was 
discarded, and steady-state current was segmented into 
non-overlapping 100ms sections. The mean and standard 
deviation were computed over each segment. The effect 
of pitch was removed: 

 𝐼 = 𝐼#$%	'$(()'%)* − 𝐾𝜃         (1) 

where the coefficient K = 1.07mA/deg was calculated by 
linear regression of the nominal current versus pitch. A 
total of 50,000 data points were generated. 

• Position: position was processed similarly to current – 
except for pitch de-trending. 

• Velocity: mean velocity and standard deviation were 
calculated using centered differencing of the mean 
position. Analysis of error vs sampling period indicated 
that the measurement error was 0.5µm/s at 10Hz. 

• Voltage: voltage was processed identically to current. 
Since motor voltage is linearly dependent on current and 
velocity, voltage was not retained. 

• Vibration: time-domain data was used to generate 
spectrograms. Compared with the current spectrogram, 
the vibration spectral lines were diffuse and less 
numerous, and were not retained. 

2.4. Anomaly Detector 

There is a reasonable expectation that steady-state actuator 
data should be clustered and representable by a multi-variate 
Gaussian distribution. A multi-variate Gaussian model 
represents the data with a Gaussian probability density: 

𝑓 𝑋 = 0
*)% 123

𝑒𝑥𝑝 − 0
1
𝑋 − 𝑋 7Σ90 𝑋 − 𝑋        (2) 

where the mean 𝑋  and covariance Σ of the distribution are 
computed from a training set containing N nominal data 
points: 

𝑋 = 0
:

𝑋;:
;<0            (3) 

Σ =
1
𝑁

𝑋; − 𝑋
:

;<0

𝑋; − 𝑋 7 

Testing for normality can be done a number of ways (Mardia 
1980). We used an approach that compares the probability of 

occurrence outside regions of increasing Mahalanobis 
distance with the prediction for a 2D Gaussian. 

The decision whether a measurement is nominal or faulty is 
based on whether it falls inside or outside the decision 
boundary: 

𝑓 𝑋 = 	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .          (4) 

The decision boundary of a 2D Gaussian detector is an 
ellipse.  

To determine the threshold, we used a mixture of nominal 
and faulty data – the development set – and created a grid of 
threshold values. For each threshold, we computed the 
probability of detection 𝑃* (probability that a fault is detected 
as a fault i.e. that it falls outside the decision boundary), the 
probability of false-alarm 𝑃GH (probability that nominal data 
falls inside the decision boundary), and a score defined by: 

𝐹 = 1
J
KL
	7	 J

JMKNO

 ,          (5) 

and selected the threshold that optimized the score.  

Performance was measured by computing 𝑃GH  and 𝑃*  on a 
third set, the test set, consisting of a mixture of nominal and 
faulty data.  

Performance was also measured on a fourth set, the novelty 
set, consisting of faults not seen by the detector during 
training. Because all novelty data is faulty, the relevant 
performance metric is 𝑃*. 

To create the training, development, and test sets, data was 
randomized and split according to: 

• Training set: 60% of the nominal data, used to train the 
detector. 

• Development set: 20% of the nominal data + 50% of the 
faulty data, used to optimize parameters. 

• Test set:  remaining 20% of the nominal data + remaining 
50% of the faulty data, used to measure performance on 
new data. 

Randomization was done using independent random 
permutations of the data. This procedure is appropriate 
because, except for the data during startup, consecutive 
samples showed no correlations. The novelty set was not 
randomized. 

A common method to increasing the mean time-to-false-
alarm (TTFA) is to use n consecutive detections before 
calling an alarm:  

𝑇𝑇𝐹𝐴 = 0
RNO #

           (6) 

where 𝑃GH 𝑛  is the probability of encountering n 
consecutive false alarms. To measure 𝑃GH 𝑛 , we went file by 
file, counted the number of points part of a block of n or more 
false-alarms, and divided this by the total number of points. 
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Uncorrelated data provides an upper bound on the TTFA. 
When data is uncorrelated, the probability of occurrence of n 
consecutive false-alarms is: 

𝑃GH 𝑛 = 𝑃GH
#

  for uncorrelated data,        (7) 

i.e. the TTFA increases exponentially fast with n. 

We used a second anomaly detector to assess the performance 
of the Gaussian detector. We used a 1-class Support Vector 
Machine (Schölkopf et al., 2001), which maps data into a 
high-dimensional feature space via a kernel, and then 
iteratively finds the surface that maximizes the margin 
between nominal and faulty data. We used a Gaussian kernel 
because it produces more robust classification models than 
other functions such as polynomial or sigmoidal kernels 
(Bounsiar & Madden, 2014). 

The 1-class SVM has two hyper-parameters. To select values, 
we performed a grid search where for each parameter pair we 
computed the decision boundary using the training set, then 
computed the score described in Equation (5) using the 
development set, and finally kept the parameter pair that 
optimized the score. 

3. RESULTS 

Figure 3a shows the actuator current vs time before 
processing. Current started with a 500mA/250ms startup 
transient, followed by steady-state at 20mA, and ended with 
a 500mA/250ms decay transient. Velocity (Figure 3b) 
showed an undershoot during the initial rise, followed by 
steady-state at 0.7mm/s steady-state. The velocity overshoot 
was observed in the string-pot velocity but not in the motor 
encoder velocity, indicating differential motion between 
motor shaft and mass at startup possibly due to a temporary 
deformation of the mass-shifter wheels. The current 
spectrogram (Figure 3c) showed a series of spectral lines. 
Lines were observed at the fundamental, 1st harmonic, and 
7th harmonic of the motor revolution rate (67rps). Multiple 
lines were also observed at non-integer multiples, believed to 
originate with the motor gearhead. Spectral information, 
albeit useful for diagnostic, was not used for anomaly 
detection. 

Figure 4 shows the pitch-corrected current and velocity under 
nominal conditions at pitch = 0. The two clusters correspond 
to forward motion (upper quadrant) and reverse (lower 
quadrant). The first second of motion is shown with orange 
stars: as explained in the previous paragraph, the tail is due to 
string-pot velocity overshoot. 

Testing for normality of the data was done by comparing the 
fraction of nominal points outside the Mahalanobis distance 

𝐷 𝑋 = 𝑋 − 𝑋 7Σ90 𝑋 − 𝑋         (8) 

(a)  

(b)  

(c)  

Figure 3. a) Current versus time. The insert shows details of 
the startup transient. b) Velocity versus time. c) Current 
spectrogram. Red arrows correspond to harmonics of the 

motor rate. 
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Figure 4. Velocity and pitch-corrected current under 

nominal conditions at pitch=0. The first second of motion is 
shown with orange stars. Top right: forward motion. Bottom 

left: reverse motion. 

with the prediction for a 2D Gaussian 

𝑃 𝐷 𝑋 > 𝐴 = 𝑒𝑥𝑝 − 0
1
𝐴1 .         (9) 

The two curves diverged at A=2.5, indicating that 95% of the 
points were well-represented by a Gaussian. The remaining 
5% corresponded mostly to string-pot undershoot during 
startup. 

Figure 5a shows the complete set of nominal and faulty data 
under all pitch conditions in the forward direction, and the 
decision boundary – the reverse direction data is a mirror 
image and is not shown. We observed the following: 

• The nominal data was well-clustered. As explained 
above, it is well modeled by a 2D Gaussian except for 
the 5% of the data associated with string-pot startup 
undershoots.  

• The limit fault data spread from the nominal cluster 
toward high current/low velocity. This is as expected 
because the actuator is pressing against a hard stop. Most 
of the data fell well outside the decision boundary, 
indicating a high probability of detection. 

• Careful examination of the set-screw fault data indicated 
that separation did not occur when the actuator pushed 
against gravity. Since in this case the fault was not 
expressed, this data was discarded. The remaining data 
fell around the velocity = 0 line, well outside the decision 
boundary. 

• The speed fault data had two clusters, one at 50% of 
nominal velocity, one at 150% – as expected. Most of the 
data fell outside the decision boundary.  

• The sensor fault data had a single cluster at zero velocity, 
well outside the decision boundary. 

(a)  

(b)  

Figure 5. Distributions of features under nominal and faulty 
conditions. Color coding is detailed in the legend box. a) 

Gaussian decision boundary. b) 1-class SVM decision 
boundary.  

For comparison, Figure 5b shows the 1-class SVM decision 
boundary. The performance is comparable, except the SVM 
gives more importance to the 5% of points in the tail. As a 
result, the SVM has a slightly smaller rate of false-alarm but 
a smaller probability of detection. 

Figure 6 shows the ROC curve and the optimal threshold 
location for the Gaussian model and comparison with the 1-
class SVM. The optimal threshold was 6x10-3, corresponding 
to a Mahalanobis distance of 3. 

Table I shows that the single-point 𝑃GH  and 𝑃*  of the two 
detectors was comparable: 𝑃GH~2% and 𝑃* ~ 90% on the test 
set, and 𝑃* ~90% on the novelty set. 

We examined the impact of additional features and found a 
negligible effect. For electric motors, voltage is linearly 
related to current and velocity i.e. it adds little information. 
We found that the current and velocity standard deviations 
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were well-clustered during nominal operation, and that they 
changed on certain faults, however because the mean current 
and velocity already provided good separation between 
nominal and faulty data, the effect on 𝑃*  and 𝑃GH  was 
negligible. 

 
Figure 6. ROC curve for the Gaussian detector (red), and 

comparison with a 1-Class SVM (blue). Optimal 
performance occurred near Pd = 0.9. (red and blue circles). 

The insert shows a zoom around the optimal section. 

 

Table I: Detection algorithm performance. 

 Gaussian 1-class-SVM 
Pd Pfa Pd Pfa 

Dev Set 92% 2.6% 91% 1.7% 
Test Set 91% 2.2% 90% 1.8% 
Novelty Set 92% – 86% – 

 

Figure 7 shows the mean number of samples required to 
encounter n consecutive false-alarms versus n. The Gaussian 
model and 1-class SVM performed similarly, but neither 
achieved the growth predicted for uncorrelated data 
(Equation 7). 

4. DISCUSSION 

4.1. Summary 

We developed an anomaly detector for a mass-shifter using 
the mass-shifter's current (input) and velocity (output). To do 
so we collected current-velocity data under nominal, faulty, 
and novel conditions, and developed a Gaussian anomaly 
detector. The detector achieved a 90% probability of fault 
detection and a 2% false-alarm rate. We compared this to a 
1-class SVM and found comparable performance. We 
measured the mean time-to-false-alarm versus number of 

consecutive false alarms and found that the improvement fell 
short of the uncorrelated case. 

 
Figure 7. Mean number of samples versus detection latency 
for the Gaussian model (blue) and the 1-class SVM (red). 

The uncorrelated case is shown in black. 

4.2. Temporal Correlation 

We found that the mean time-to-false-alarm only increased 
20-fold as the criterion changed from 1 to 8 consecutive false-
alarms. The expected change assuming uncorrelated data is 
1011, indicating that the false-alarms were temporally 
correlated. 

As discussed in the results section, a velocity undershoot was 
observed during the startup transient. This overshoot lasted 
anywhere from 0.5 to 1.5 seconds depending on pitch and 
direction of motion, and sometimes was absent. During the 
overshoot, the feature vector moved outside the decision 
boundary, producing a sequence of 5 to 15 consecutive false 
alarms. 

Because the longest observed sequence was 15, one could 
argue that anything over n=15 should be sufficient to 
eliminate false-alarms. The difficulty with this argument is 
that in actual operation the duration of motion ranges 
anywhere from 1 to 30s, i.e. the strategy is not viable over the 
full operational range. 

Although the performance of the detector is encouraging, 
improvements to its short-duration performance are 
desirable. Such improvements could be achieved using time-
series forecasting algorithms such as auto-regressive models. 

4.3. Application to Other Actuators 

We are in the process of extending this approach to the 
LRAUV's other actuators. The methodology is expected to 
work unchanged on the thruster and on the variable buoyancy 
system, since both are driven by DC motors and operate in 
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highly structured environments around a small number of set 
points. 

The methodology however will require adaption in order to 
be applicable to the rudder and elevator. Like the mass-
shifter, rudder and elevator run off DC motors but because 
their set point is continuously updated, steady-state current 
and velocity cannot be used as features. Alternative features 
capable of capturing system dynamics with a small number 
of parameters will have to be devised instead. 

5. CONCLUSION 

We developed an unsupervised anomaly detector for a mass-
shifter using its input (current) and output (velocity). The 
detector achieved 90% probability of fault detection and 2% 
false-alarm rate. Despite the good single-point performance, 
we found that the n-point false-alarm rate scaled poorly with 
n due to correlation during actuator startup. Improvements to 
the short-duration performance could be achieved with time-
series forecasting. 
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