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ABSTRACT

Commercial systems for predicting remaining useful life 

(RUL) of serviceable parts like engine oil tend to use either 

generic regression models (practical, e.g., widely deployed in 

the automotive industry), or dynamic models for which 

software lags behind theory (impractical, e.g., ‘one-trick’ 

hardcodings). We describe an arguably more realistic 

framework using both generic and vehicle-specific dynamic 

models of time-series for simulation-based condition 

monitoring and RUL forecasting, suitable in situations 

where: (a) measured time-series are sparse or slowly 

sampled, and (b) health condition signals tend to follow 
relatively simple paths (low-degree polynomial stationary 

trends, unit-root stochastic trends, exponential growths, 

quasiperiodic oscillations). This combination unlocks 

affordability of PFsuper, a prognostics algorithm that 

implements online Bayesian learning with particle filters to 

jointly estimate hidden condition state and optionally a 

handful of unknown parameters, coupled with 

subsimulations characterizing failure progression and RUL 

probability density function. The overall method converts a 

generic static time-as-a-regressor model into a stochastic 

differential equation, then has PFsuper adapt the initially 

generic model into a vehicle-specific one as data 

measurements arrive. 

1. INTRODUCTION

The existing patented and commercialized systems for 

predicting oil remaining life, such as GM’s Oil-Life System, 

Daimler’s FSS, and others (Hitch, 2015; Di et al., 2013; 

Discenzo, 2009), monitor known correlates of oil degradation 

(without oil parameter sensors) including engine revolutions 

and temperature, to suggest time and distance to next oil 

change. These are reasonable regression models; however the 

input-output relationship is static (no dynamics equations), 

and is one-vehicle-group-fits-all (i.e., there is no knowledge 

of the specific oil specimen in a vehicle). Zhu et al. (2013) 

worked extensively on PF-based oil RUL prediction, which 

is dynamic, but implemented code deviating from their 

proposed methods. Specifically, their simulations were 

hardcoded to follow an exponential growth with no provision 

for online model adaptation, uncertainty management, 

nonuniform or under-sampled observations, and several other 

details needed for application in practice. 

Our developing technology for oil RUL prediction is 

summarized below in reference to Fig. 1: 

1. Precompute generic models. From historical oil sample 

databases, identify clusters/families for which oil 

degrades in a coarsely similar way. This could be a 

function of oil type, machine asset class, and application. 

For each identified group, precompute a generic, prior 

model, which is generally a static mapping with time-as-

the-regressor. These can obtained from standard curve 

fitting or symbolic regression packages. 

2. Convert regressions to stochastic dynamic models. 

Although the generic model incorporates time, it is still 

in a ‘frozen’ form with time-as-the-regressor. Dynamic 

state-space models are preferred as they encode not just 

behavior but rules of behavior. (For example, if data 

were samples of a sinusoid over a finite interval, a 

polynomial fit extrapolates incorrectly, whereas the 

differential equation x x� ���  allows prediction 

indefinitely.) From the generic training data, also use the 

aggregate regression residuals and vehicles’ mean 

sampling rates to estimate state and output noise levels 

in the stochastic differential equations. This conversion 

step remains largely manual, but can be automated in 

some polynomially-fit cases,
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Figure 1. Framework for advanced oil prognostics using PFsuper. 

by nonseasonal differencing to make the time profile 

stationary, accounted for by integrators (delays in discrete 

case) in Jordan-canonical form in the model. 

Alternatively, up to 2 neural networks can be trained to 

directly provide discrete-time state and output equations 

from delay-embedded pseudostates obtained from time-

series measurements in the training set. 

3. Perform PFsuper. Feed oil analysis data to our prognostic 

program called [P]article [F]ilter [S]tate & [U]nknown 

[P]arameter [E]stimation plus [R]UL, with the family-

appropriate generic model as initial guess. As new data 

measurements y arrive, PFsuper will: (a) track the 

expected value of unobserved state x, while 

simultaneously performing: (b) Bayesian recursive 

estimation of unknown parameters �  using parallel 

populations of PFs, (c) Monte Carlo simulation-based 

prognosis over a receding prediction horizon, (d) 

statistical characterization of RUL for given exceedance 

limits, including pdfs that account for the uncertainty of 

right-censored exceedance hitting times, and (e) 

optionally several visualizations: signals and parameter 

histories, parameter likelihood profiles, animated 

particles in state space, undersampled data yi arrivals, 

RUL distribution in relation to prognosed output, and 

RUL burndown chart. 

Thus, the overall strategy is to start prognosing oil health with 

the best we know about the oil-asset-application family prior 

to actual use (i.e., the selected generic model), then let 

PFsuper learn a more specific model from the oil samples as 

they arrive, with the evolving pdfs and concomitant 

propagated uncertainties handled under principled data 

science and rational Bayesian formalism. Since the models 

can just as well be time-varying, our RUL predictions can 

evolve based on, e.g., parameter drift, sudden change in 

operating conditions, or incipient failure. We are unaware of 

prior software implementations getting all these aspects 

together to actually work. For example, the simultaneous 

state filtering with parameter estimation is widely considered 

unsolved in the field due to mixing issues; it had been done 

in satisfactorily using the ‘state augmentation trick’ (adding 

parameter as a random-walk state), or nonrecursively 

(Conrad et al., 2017; Särkkä, 2013). Similarly the censored 

statistics treatment for RUL prediction horizon appears to be 

a new contribution in this context. 
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2. PFSUPER ALGORITHM DESCRIPTION

PFsuper implements a bootstrap particle filter enhanced by a 

stratified type of resampling that tracks unobserved states x

of a dynamic system with uncertainties, from causally 

observed measurements y, while simultaneously performing: 

� Bayesian recursive estimation of unknown parameters 

�  using parallel PFs (one population per �  grid point) 

� Monte Carlo simulation-based prognosis over a 

receding prediction horizon 

� Statistical characterization of remaining useful life for 

given exceedance limits 

� Optionally several visualizations: signals and parameter 

histories, parameter likelihood profiles, animated 

particles in state space, undersampled data arrivals, 

RUL distribution in relation to prognosed output, and 

RUL burndown chart. 

Use cases: 

� Given a ground-truth model (state x and output y

mappings and noises), generate a realization path for 

(x,y) and perform PFsuper on that. This “true” model 

could be from physics or domain knowledge. 

� Given a streaming time-series {ti,yi} observed at 

possibly nonuniform or undersampled times, a putative 

model (proxy for “true”) that could have generated that 

data, and an initial model that PF is allowed to use, 

stochastically interpolate to finer uniform times, 

recreate a realization for (x,y) passing thru {ti,yi}, and 

perform PFsuper on that. The putative model is only 

used for visualization and stopping; PF has no access to 

it other than measurements. The implementation is 

causal, so data {ti,yi} are presented gradually over time 

as if only when available. 

The general time-varying dynamic systems handled are 

stochastic differential equations converted to discrete-time 

state-space, possibly inhomogeneous, hidden Markov models 

of the form 

State model: 

1 1

0 0 0

( | , ) ( | ( , ), ),

( | ), ( )
k k k k k k k
p

p p

� �� �

� �

x x x x f x Q

x x

� �

� � �

�
 (1) 

Output model: 

( | , ) ( | ( , ), )k k k k k k kp� �y y x y h x R�� �
 (2) 

where f(�) is the deterministic part of the state transition map 

obtained after discretizing the vector field g(�) in the 

continuous-time equation of motion 

( , , )
d

t
dt

�x g x � . (3) 

The deterministic part of transition map becomes 

E
1 1 1( , ) ( , , )k k k k kt t� � �� � �f x x g x� �  (4) 

with simple forward Euler, or 

1 1

E
1 1

( , )

( , , ) ( , ( , , ), )

2

k k k

k k k k k
t t t

t

� �

� �

� �

�
�

f x x

g x g f x

�

� � �  (5) 

with Heun 2-stage trapezoidal rule, which reuses Euler as a 

sort of look-ahead for next state. We implemented Heun for 

its better stability at a given fixed step size �t=h. In software, 

this means that the next state is computed as 

1 1( , , ) ( , )
k k k k

t h� �� � �x x G x 0 Q� �
 (6) 

where G(�) is the improved Heun gradient, and covariance 

Qk=Q is constant1. This makes the state evolution a Brownian 

motion with possibly nonlinear drift G(�)h and diffusion rate 

controlled by Q. A noise-free Q=0 (along with R>0 below) 

yields a constant-trend stationary process, whereas Q>0 

yields a stochastic-trend/difference-stationary process. For 

example, in 1D, if q=�2/h then the solution xk for all k will be 
a random path with time-conditional mean G (the 

deterministic component) and standard deviation that grows 

as 
kt� , thus the forecast fan can look like a sideways 

snaking parabola. Similarly, the output equation is 

implemented as 

( , , ) ( , )k k kt� �y h x 0 R��
. (7) 

A wide class of models including ARIMA with seasonality 

are subsumed under this framework. Some multiplicative 

noise processes can still be modeled as above via log 

transformation that makes noise additive. We used Gaussian 

noise, but normality is not a strict requirement in the method. 

Uncertainties consist of process/state/disturbance noise, 

measurement/output/innovation noise, and unknown 

parameters. Unknown parameters are estimated at each k as 

the mean of the marginal posterior density 1:( | )kp y� , which 

is obtained by accumulating the negative log-likelihood 

(energy-like) function over a grid of parallel PF populations, 

each conditioned on specific �  tuples. The marginal 

likelihoods 1:( | )
k

p y �  come as a by-product from the 
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unnormalized weights assigned to the particles via the output 

model at each update. Whereas the particles come as samples 

from 1( | ( , ), )k k k�x f x Q� � , the weights come as samples 

from the corresponding ( | ( , ), )k k ky h x R�� . Our method 

is recursive for online implementation (though possibly 

slow), handles nonlinearity and time-variance of parameters, 

and resists local-minima entrapment frequently seen with 

gradient-based prediction error or MLE methods. Currently 

only up to 2 unknowns are supported (e.g., 2 physical 

parameters or quadratic trend coefficients)2. 

The core task for PF is to recursively estimate the filtering 

distribution 1:( | )k kp x y  with the data so far. With that in 

hand, any expected value of a function of xk can be easily 

estimated, e.g. the expected state �kx , or filtered output �ky . At 

time k, the main PF plugs the best estimate of �  so far into 

the next-state model 1( | , )k k kp �x x � , which is used as 

importance distribution to sample Np predicted particles Xk. 

Meanwhile, the measure yk is plugged into the output model 

( | , )k k kp y x �  to evaluate likelihoods of yk given each of 

those particles, yielding weights w={w(j)} for each, and thus 

an updated particle distribution. Continued iteration would 

quickly degenerate the weights (all but a few =0), so a 

resampling step is done where particle children X* are 

sampled anew from the updated parents {w,Xk}. This tends 

to make “good” particles become repeated while degenerates 

are weeded out, but introduces its own impoverishment issue 

(just a few clones representing the whole distribution). 

When data {ti,yi} are supplied, the updating and resampling 

steps above happen only at those times. In between data 

arrivals, our PF and parallel PFs continue iterating only the 

predictive step with whatever model they had so far. This 

implements a form of stochastic interpolation that we found 

to be superior to Brownian bridges (bursty), and thus 

provides “soft-sensing” in between real sensor readings. 

2.1.1. Monte Carlo Forecasting & Failure Prediction 

The prognosis routine generates a nested Monte Carlo 

subsimulation at each time, i.e., an ensemble of iterated 

prediction steps without updates (as future measurements are 

not available) over a receding prediction horizon of fixed 

duration TPH, starting with the last main PF population as 

initial conditions; see Fig. 2. The resulting shape of the paths 

is referred to as forecast fan. RUL analysis is currently 

applied by defining exceedance bounds to either the 1st

component of output, y1, or that of the state vector, x1. More 

complicated joint constraints representing “useful life” are 

possible and still an open research question. Each prognosed 

trajectory is tracked for exceedance and its hitting time (HT; 

a.k.a. first passage time) is recorded. For practical reasons, 

the prognosis is time-limited by TPH, so many trajectories 

within that window may have not crossed threshold yet (or 

never will), especially during early life, so HTs are 

statistically right-censored. On any hits, the empirical 

histogram is derived from the Kaplan-Meier CDF, which 

gives MLE estimates of survival accounting for censored 

values. It can be shown that when the drift is a linear trend, 

the Brownian hitting times will follow an inverse Gaussian 

(IG) distribution. Under a monotonicity test applied to the 

forecast fan trend, we perform an MLE fitting of IG to the 

censored HTs. That makes a big difference in the ability to 

predict RUL statistics of interest, namely the expected HT 

and the [5% 50% 95%] HT percentiles, especially when most 

HTs are still censored during the early portions of simulation. 

3. VERIFICATION WITH KNOWN CASES

To verify that the rich dynamic behaviors encapsulated by 

PFsuper are correct, we show 3 test cases where the “true” 

system is known by construction: nonlinear pendulum, 

sudden breakdown, and unstable ramping oscillation. 

3.1. Nonlinear Classic Pendulum 

The unforced pendulum has state equations 

1 2

f
2 1 2sin

x x

kg
x x x

l ml

�

� � �

�

�

 (8) 

where state x1=angle, m=mass, l=length, g=gravity 

acceleration constant, and kf=coefficient of viscous friction at 

pivot. We take unity length and mass, and define gravity 9.81 

and friction 0.25 as parameters to be identified recursively 

from measurements 

1sin (0,1)y x r� � �
 (9) 

where r=0.1. Note parameters are nonlinear with respect to 

output and this is where many other methods including 

recursive least squares get stuck in local minima. PFsuper 

resists such entrapment by sampling the target likelihood 

function over a grid using parallel PFs. A grid size of 40x40 

was found to be reasonable. A small ellipsoid state noise with 

covariance 3 2 23 2; 2h h h h� �� � 	
 �
Q  was set for both 

system and PF. Integration step size was h=.01. We impose 

no exceedance thresholds to let simulation run its full course 

over a time span of 10 seconds, with receding prediction 

horizon 10/3 seconds. Figs. 3-4 show that PFsuper can 

successfully solve this problem.

1Here, time variance is injected thru free scalar t (and possibly varying � ) 

in state and output mappings, not thru Qk,Rk which are constant matrices.
2Up to ~8 unknowns would be feasible but discouraged in PHM due to 
notoriously unreliable time-series forecasts (e.g., extrapolations from a 

high-degree polynomial). 
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Figure 2. At each time k, PFsuper MC-simulates N paths forward, conditional on the current particles as initial condition. RUL 

is inferred from empirical Kaplan-Meier cdf (or its censored hitting-times histogram as shown), plus the MLE fit of inverse 

Gaussian distribution as pdf whenever the mean of forecast fan is monotonic. Two additional time frames on the right show 

this pdf continuously revised as more and more data measurements arrive, until complete certainty at failure time. 

Figure 3. Output y, state x1, forecast fans, and estimated 

parameters at 6.67s into the nonlinear pendulum simulation. 

Figure 4. Particle population in state-space and likelihood 

profiles of the identified parameters at end of the simulation 

(10s; ground-truth values shown in gold). 
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Figure 5. At time t=3.33s, there is a sudden change (unbeknownst to PFsuper) in which gravity was cut by 1/3 (or equivalently, 

length parameter tripled). By around 5s, the algorithm has started to learn the new value. 

3.2. Nonlinear Pendulum with Sudden Breakdown 

Using the same pendulum above, we injected a sudden 

disturbance created by changing g abruptly to 1/3 of its value 

(3.27) at time 3.33s, or equivalently attaching something so 

that its length tripled, unbeknownst to PFsuper. This internal 

breakdown manifests in observed frequency being 3
slower. To more clearly separate the effects, we had PFsuper 

identify a single unknown parameter and ran system with 0 

state noise, small spherical state noise 2.01� �Q I for PF, 

and r=0.01 shared by both system and PF. Time span was 15s 

and prediction horizon 5s. Fig. 5 shows the end of the run. 

We see that PFsuper could adapt to the sudden malfunction 

within a couple of seconds. 

3.3. Unstable Ramping Oscillation 

A ramping sinusoid of the form sint at  can be the response 

of a linear system with transfer function 

2 2( ) 2 / ( )H s as s a� � , which has a repeated pair of 

poles at j a . Instead of zero-state response to an 

impulsive input, we use the zero-input response to some 

initial condition of the states. A controllable-canonical 

representation of the state dynamics with a=1 is 

1

2
0

3

4

0    -2     0    -1

1     0     0     0
, (0)

0     1     0     0

0     0     1     0

x

x

x

x

� � � �
� 	 � 	
� 	 � 	
� 	 � 	� � �� 	 � 	
� 	 � 	
� 	 � 	
� 	 � 	
 � 
 �

x Ax x x�  (10) 
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whose explicit solution is 0
teAx . We declared the 

coefficients �1 =–2, �� =–1 as unknown parameters for 

PFsuper to identify recursively, defined a spherical noise 

4.01� �Q I  in the state model used by both system and PF, 

and a measurement noise r=0.5 just for PF’s quasi-dummy 

identity output model, which has to be positive definite for 

evaluation of likelihoods using the normal pdf. We set 500 

particles, prediction horizon 20/3 seconds, and exceedance 

threshold 10 on state x1. We defined uniform priors on PF 

state and parameters, and let the system run from x0 = [1 1 1 

1]�. A bigger step size h=.1 was used to accelerate simulation 

but in other problems this can lead to integrator instability. 

Fig. 6 shows snapshot at end of simulation. 

Figure 6. Exceedance occurred on upper rail of x1 at 9.4s. 

4. VALIDATION ON REAL-WORLD TRUCK-FLEET DATA

To test whether our approach meets user needs and intended 

uses, we performed leave-one-out cross validation (LOOCV) 

by simulation of strictly causal usage of a military truck-fleet 

data collection. It had oil analyses of 12 trucks sampled 11 

times (not uniformly) over nearly a year. We picked TBN as 

degradation indicator for its clear pattern, but several of the 

other oil parameters correlated to it. 

The raw TBN data were preprocessed to obtain single oil-

drain cycle histories of individual vehicles, then the aggregate 

scatter plot and generic fit with time-as-the-regressor looked 

like Fig. 1, step-1 of the general scheme, except in this case 

it was a linear trend going down. The global fit had 

parameters �1 =slope; �� =intercept with values [–0.0013; 

5.9749]. During LOOCV, we do training using all vehicles 

minus one (simulating a new unseen case), while testing on 

the missing vehicle in each fold, therefore we will actually 

have 12 different generic “whole-fleet” fits. For each truck, 

the generic fit predicts that TBN will hit low threshold c=2.5 

at the offset mileage (c–�0)/ �1, which is a constant. In 
contrast, each truck monitored by PFsuper will have time-

dependent RUL statistics, which are highly variable in the 

beginning and tend to stabilize towards the end as more oil 

data samples accumulate. Thus, we will compare the mean 

absolute error (MAE) between the RUL prediction profile 

and the actual exceedance mileage for both methods. 

In this linear deterioration case, the conversion to stochastic 

dynamic model (scheme step-2) is as follows. A putative 

model that could have generated an individual truck’s data is 

1 0, (0)

(0,1)

x x

y x

� �

�

� �

� �

�

�
 (11) 

where the state model has constant-derivative equal to slope 

�1 plus 0 noise, and the output model has identity mapping 

plus normal noise with standard deviation �. The state is 

unobserved (hidden) and only discrete-time samples of the 

observations at possibly nonuniform times, i.e., data {ti,yi}, 

are available to PFsuper. A PF also always needs some 

nonzero “state noise” (as long as it is 0-mean, which 

preserves expectation) so that it can spread particles without 

instant degeneracy. Thus, the model that the PF is allowed to 

“see” is 

1

0 gen 0 gen

min max
1 1 1

� (0,1),

(0) ,

� (0)

(0,1)

x q

x y y

y x r

�

� �

� � �

� �

� � � � � � � �

� � � �

� �

� �

�

�

�

 (12) 

where 1
��  is PFsuper’s fluctuating estimate of the unknown 

slope �1, initially drawn from interval seen in the individual 

trucks’ slopes from the database. The prior p(x�) for the state 

particles is normal �  or uniform �  but preferably located 

around mean 1
0( )y

�h = y�, the maximum-likelihood estimate 

of the unknown intercept ��. 

We couple the magnitude of the output noise to the generic 

residual: r=�gen (also learnable online from the data yi), and 

that of the state noise to a diffusion-consistent scale: 

gen /q h� ��  (13) 

where h is the fixed integrator step size and � is mean 

intersample interval (1/average sampling rate) for data 

coming in. This quantity is justified in reference to prognosis: 

it says that on average, the size to which uncertainty is going 

to grow while waiting between data updates is of a scale 

comparable to the underlying � (recall the spread of 

Brownian motion grows with t ). 
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Figure 7. Typical PFsuper simulation run during cross validation (truck #7 shown). Abrupt jumps in estimated �1 and RUL 

burndown are due to the scarcity of data updates (red-orange circles in top panel). 

Qualitatively, we want the confidence intervals to grow with 

longer prediction periods, recognizing propagation of 

uncertainty into the future. Forecasts with stochastic trends 

are “safer” (Hyndman & Koehler, 2006) than point estimates. 

The simulation was carried out with only 50 particles in the 

interest of speed, but 500 or 5000 is more common and yields 

lower variance of the RUL quantiles. Prediction horizon was 

set at 1500 miles, and exceedance threshold was 2.5 applied 

to the output (particle-filtered output is used to know when to 

stop simulation). Fig. 7 shows one of the 12 runs (truck #7) 

at the end of a LOOCV fold. The truck-specific slope was 

correctly identified well ahead of the oil lifetime. The RUL 

burndown shows a typical pattern of unreliable estimates 

during the beginning until the arrival of at least the first data 

update. We defined a “break-in” period of 1000 miles across 

the fleet during which we ignore RUL predictions and 

exclude them from the MAE performance metric. 

Alternatively, the method could simply stick to the generic 

prediction during that initial period. 

Fig. 8 shows that in 10 out of 12 cases, dynamic RUL 

estimates from PFsuper had lower error than the static generic 

ones. The cross-validation estimate of expected error across 

the ensemble is 178.86 for PFsuper vs. 358.11 for generic, 

which suggests the procedure would meet a need in oil RUL 

prediction, at least with respect to the currently generic 

methods used in commercial systems. 

Figure 8. LOO cross-validated mean absolute error between 

the predicted expected value of RUL and the actual 

exceedance mileage for static generic fits vs. dynamic 

PFsuper learning from scarce data updates. 
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We note that although the approach to online parameter ID 

via a grid of parallel PF populations is not scalable, it was 

deemed sufficient in this low-dimensionality PHM 

application and well worth the cost of avoiding local minima. 

Additionally, our censored-statistics approach to RUL 

forecasting ‘squeezed out the last drop’ of prediction with the 

inverse Gaussian fit giving the best estimate of mean hitting 

time before complete data are even available to complete the 

histogram. 

5. CONCLUSION

We have formalized an online learning prognostics 

framework suitable when time-series data are sparse and 

health/damage signals tend to follow low-complexity 

dynamics, as is the case in oil PHM applications. The 

conversion of generic static models from a historical database 

into specific dynamic models unlocks the ability to track and 

adapt to changes in the field. PFsuper attempts to fill 

prognostic software gaps in online model adaptation, 

uncertainty management, sparse, nonuniform or under-

sampled time-series observations, and other areas needed for 

reduction to practice. Because the framework is brutally 

honest about uncertainty propagation, the lack of updates in 

the context of sparse/slow data makes for wide forecast fans. 

However, the generic-vs-PFsuper truck-fleet oil validation 

taught us that even with data samples as information-starved 

as 11 points per truck (only about once per month), PFsuper 

offers advantage. 
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