
1

PFsuper: Simulation-Based Prognostics to

Monitor and Predict Sparse Time Series

Javier Echauz1, Andrew Gardner2, Ryan R. Curtin3, Nikolaos Vasiloglou4, and George Vachtsevanos5

1-4Symantec Corporation, Atlanta, GA,30328, USA

{Javier_Echauz, Andrew_Gardner, Ryan_Curtin, Nikolaos_Vasiloglou}@symantec.com

5Georgia Institute of Technology, Atlanta, GA, 30332, USA

gjv@ece.gatech.edu

ABSTRACT

Commercial systems for predicting remaining useful life

(RUL) of serviceable parts like engine oil tend to use either

generic regression models (practical, e.g., widely deployed in

the automotive industry), or dynamic models for which

software lags behind theory (impractical, e.g., ‘one-trick’

hardcodings). We describe an arguably more realistic

framework using both generic and vehicle-specific dynamic

models of time-series for simulation-based condition

monitoring and RUL forecasting, suitable in situations

where: (a) measured time-series are sparse or slowly

sampled, and (b) health condition signals tend to follow
relatively simple paths (low-degree polynomial stationary

trends, unit-root stochastic trends, exponential growths,

quasiperiodic oscillations). This combination unlocks

affordability of PFsuper, a prognostics algorithm that

implements online Bayesian learning with particle filters to

jointly estimate hidden condition state and optionally a

handful of unknown parameters, coupled with

subsimulations characterizing failure progression and RUL

probability density function. The overall method converts a

generic static time-as-a-regressor model into a stochastic

differential equation, then has PFsuper adapt the initially

generic model into a vehicle-specific one as data

measurements arrive.

1. INTRODUCTION

The existing patented and commercialized systems for

predicting oil remaining life, such as GM’s Oil-Life System,

Daimler’s FSS, and others (Hitch, 2015; Di et al., 2013;

Discenzo, 2009), monitor known correlates of oil degradation

(without oil parameter sensors) including engine revolutions

and temperature, to suggest time and distance to next oil

change. These are reasonable regression models; however the

input-output relationship is static (no dynamics equations),

and is one-vehicle-group-fits-all (i.e., there is no knowledge

of the specific oil specimen in a vehicle). Zhu et al. (2013)

worked extensively on PF-based oil RUL prediction, which

is dynamic, but implemented code deviating from their

proposed methods. Specifically, their simulations were

hardcoded to follow an exponential growth with no provision

for online model adaptation, uncertainty management,

nonuniform or under-sampled observations, and several other

details needed for application in practice.

Our developing technology for oil RUL prediction is

summarized below in reference to Fig. 1:

1. Precompute generic models. From historical oil sample

databases, identify clusters/families for which oil

degrades in a coarsely similar way. This could be a

function of oil type, machine asset class, and application.

For each identified group, precompute a generic, prior

model, which is generally a static mapping with time-as-

the-regressor. These can obtained from standard curve

fitting or symbolic regression packages.

2. Convert regressions to stochastic dynamic models.

Although the generic model incorporates time, it is still

in a ‘frozen’ form with time-as-the-regressor. Dynamic

state-space models are preferred as they encode not just

behavior but rules of behavior. (For example, if data

were samples of a sinusoid over a finite interval, a

polynomial fit extrapolates incorrectly, whereas the

differential equation x x� ��� allows prediction

indefinitely.) From the generic training data, also use the

aggregate regression residuals and vehicles’ mean

sampling rates to estimate state and output noise levels

in the stochastic differential equations. This conversion

step remains largely manual, but can be automated in

some polynomially-fit cases,

Javier Echauz et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,

which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

2

Figure 1. Framework for advanced oil prognostics using PFsuper.

by nonseasonal differencing to make the time profile

stationary, accounted for by integrators (delays in discrete

case) in Jordan-canonical form in the model.

Alternatively, up to 2 neural networks can be trained to

directly provide discrete-time state and output equations

from delay-embedded pseudostates obtained from time-

series measurements in the training set.

3. Perform PFsuper. Feed oil analysis data to our prognostic

program called [P]article [F]ilter [S]tate & [U]nknown

[P]arameter [E]stimation plus [R]UL, with the family-

appropriate generic model as initial guess. As new data

measurements y arrive, PFsuper will: (a) track the

expected value of unobserved state x, while

simultaneously performing: (b) Bayesian recursive

estimation of unknown parameters � using parallel

populations of PFs, (c) Monte Carlo simulation-based

prognosis over a receding prediction horizon, (d)

statistical characterization of RUL for given exceedance

limits, including pdfs that account for the uncertainty of

right-censored exceedance hitting times, and (e)

optionally several visualizations: signals and parameter

histories, parameter likelihood profiles, animated

particles in state space, undersampled data yi arrivals,

RUL distribution in relation to prognosed output, and

RUL burndown chart.

Thus, the overall strategy is to start prognosing oil health with

the best we know about the oil-asset-application family prior

to actual use (i.e., the selected generic model), then let

PFsuper learn a more specific model from the oil samples as

they arrive, with the evolving pdfs and concomitant

propagated uncertainties handled under principled data

science and rational Bayesian formalism. Since the models

can just as well be time-varying, our RUL predictions can

evolve based on, e.g., parameter drift, sudden change in

operating conditions, or incipient failure. We are unaware of

prior software implementations getting all these aspects

together to actually work. For example, the simultaneous

state filtering with parameter estimation is widely considered

unsolved in the field due to mixing issues; it had been done

in satisfactorily using the ‘state augmentation trick’ (adding

parameter as a random-walk state), or nonrecursively

(Conrad et al., 2017; Särkkä, 2013). Similarly the censored

statistics treatment for RUL prediction horizon appears to be

a new contribution in this context.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

3

2. PFSUPER ALGORITHM DESCRIPTION

PFsuper implements a bootstrap particle filter enhanced by a

stratified type of resampling that tracks unobserved states x

of a dynamic system with uncertainties, from causally

observed measurements y, while simultaneously performing:

� Bayesian recursive estimation of unknown parameters

� using parallel PFs (one population per � grid point)

� Monte Carlo simulation-based prognosis over a

receding prediction horizon

� Statistical characterization of remaining useful life for

given exceedance limits

� Optionally several visualizations: signals and parameter

histories, parameter likelihood profiles, animated

particles in state space, undersampled data arrivals,

RUL distribution in relation to prognosed output, and

RUL burndown chart.

Use cases:

� Given a ground-truth model (state x and output y

mappings and noises), generate a realization path for

(x,y) and perform PFsuper on that. This “true” model

could be from physics or domain knowledge.

� Given a streaming time-series {ti,yi} observed at

possibly nonuniform or undersampled times, a putative

model (proxy for “true”) that could have generated that

data, and an initial model that PF is allowed to use,

stochastically interpolate to finer uniform times,

recreate a realization for (x,y) passing thru {ti,yi}, and

perform PFsuper on that. The putative model is only

used for visualization and stopping; PF has no access to

it other than measurements. The implementation is

causal, so data {ti,yi} are presented gradually over time

as if only when available.

The general time-varying dynamic systems handled are

stochastic differential equations converted to discrete-time

state-space, possibly inhomogeneous, hidden Markov models

of the form

State model:

1 1

0 0 0

(| ,) (| (,),),

(|), ()
k k k k k k k
p

p p

� �� �

� �

x x x x f x Q

x x

� �

� � �

�
 (1)

Output model:

(| ,) (| (,),)k k k k k k kp� �y y x y h x R�� �
 (2)

where f(�) is the deterministic part of the state transition map

obtained after discretizing the vector field g(�) in the

continuous-time equation of motion

(, ,)
d

t
dt

�x g x � . (3)

The deterministic part of transition map becomes

E
1 1 1(,) (, ,)k k k k kt t� � �� � �f x x g x� � (4)

with simple forward Euler, or

1 1

E
1 1

(,)

(, ,) (, (, ,),)

2

k k k

k k k k k
t t t

t

� �

� �

� �

�
�

f x x

g x g f x

�

� � � (5)

with Heun 2-stage trapezoidal rule, which reuses Euler as a

sort of look-ahead for next state. We implemented Heun for

its better stability at a given fixed step size �t=h. In software,

this means that the next state is computed as

1 1(, ,) (,)
k k k k

t h� �� � �x x G x 0 Q� �
 (6)

where G(�) is the improved Heun gradient, and covariance

Qk=Q is constant1. This makes the state evolution a Brownian

motion with possibly nonlinear drift G(�)h and diffusion rate

controlled by Q. A noise-free Q=0 (along with R>0 below)

yields a constant-trend stationary process, whereas Q>0

yields a stochastic-trend/difference-stationary process. For

example, in 1D, if q=�2/h then the solution xk for all k will be
a random path with time-conditional mean G (the

deterministic component) and standard deviation that grows

as
kt� , thus the forecast fan can look like a sideways

snaking parabola. Similarly, the output equation is

implemented as

(, ,) (,)k k kt� �y h x 0 R��
. (7)

A wide class of models including ARIMA with seasonality

are subsumed under this framework. Some multiplicative

noise processes can still be modeled as above via log

transformation that makes noise additive. We used Gaussian

noise, but normality is not a strict requirement in the method.

Uncertainties consist of process/state/disturbance noise,

measurement/output/innovation noise, and unknown

parameters. Unknown parameters are estimated at each k as

the mean of the marginal posterior density 1:(|)kp y� , which

is obtained by accumulating the negative log-likelihood

(energy-like) function over a grid of parallel PF populations,

each conditioned on specific � tuples. The marginal

likelihoods 1:(|)
k

p y � come as a by-product from the

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

4

unnormalized weights assigned to the particles via the output

model at each update. Whereas the particles come as samples

from 1(| (,),)k k k�x f x Q� � , the weights come as samples

from the corresponding (| (,),)k k ky h x R�� . Our method

is recursive for online implementation (though possibly

slow), handles nonlinearity and time-variance of parameters,

and resists local-minima entrapment frequently seen with

gradient-based prediction error or MLE methods. Currently

only up to 2 unknowns are supported (e.g., 2 physical

parameters or quadratic trend coefficients)2.

The core task for PF is to recursively estimate the filtering

distribution 1:(|)k kp x y with the data so far. With that in

hand, any expected value of a function of xk can be easily

estimated, e.g. the expected state �kx , or filtered output �ky . At

time k, the main PF plugs the best estimate of � so far into

the next-state model 1(| ,)k k kp �x x � , which is used as

importance distribution to sample Np predicted particles Xk.

Meanwhile, the measure yk is plugged into the output model

(| ,)k k kp y x � to evaluate likelihoods of yk given each of

those particles, yielding weights w={w(j)} for each, and thus

an updated particle distribution. Continued iteration would

quickly degenerate the weights (all but a few =0), so a

resampling step is done where particle children X* are

sampled anew from the updated parents {w,Xk}. This tends

to make “good” particles become repeated while degenerates

are weeded out, but introduces its own impoverishment issue

(just a few clones representing the whole distribution).

When data {ti,yi} are supplied, the updating and resampling

steps above happen only at those times. In between data

arrivals, our PF and parallel PFs continue iterating only the

predictive step with whatever model they had so far. This

implements a form of stochastic interpolation that we found

to be superior to Brownian bridges (bursty), and thus

provides “soft-sensing” in between real sensor readings.

2.1.1. Monte Carlo Forecasting & Failure Prediction

The prognosis routine generates a nested Monte Carlo

subsimulation at each time, i.e., an ensemble of iterated

prediction steps without updates (as future measurements are

not available) over a receding prediction horizon of fixed

duration TPH, starting with the last main PF population as

initial conditions; see Fig. 2. The resulting shape of the paths

is referred to as forecast fan. RUL analysis is currently

applied by defining exceedance bounds to either the 1st

component of output, y1, or that of the state vector, x1. More

complicated joint constraints representing “useful life” are

possible and still an open research question. Each prognosed

trajectory is tracked for exceedance and its hitting time (HT;

a.k.a. first passage time) is recorded. For practical reasons,

the prognosis is time-limited by TPH, so many trajectories

within that window may have not crossed threshold yet (or

never will), especially during early life, so HTs are

statistically right-censored. On any hits, the empirical

histogram is derived from the Kaplan-Meier CDF, which

gives MLE estimates of survival accounting for censored

values. It can be shown that when the drift is a linear trend,

the Brownian hitting times will follow an inverse Gaussian

(IG) distribution. Under a monotonicity test applied to the

forecast fan trend, we perform an MLE fitting of IG to the

censored HTs. That makes a big difference in the ability to

predict RUL statistics of interest, namely the expected HT

and the [5% 50% 95%] HT percentiles, especially when most

HTs are still censored during the early portions of simulation.

3. VERIFICATION WITH KNOWN CASES

To verify that the rich dynamic behaviors encapsulated by

PFsuper are correct, we show 3 test cases where the “true”

system is known by construction: nonlinear pendulum,

sudden breakdown, and unstable ramping oscillation.

3.1. Nonlinear Classic Pendulum

The unforced pendulum has state equations

1 2

f
2 1 2sin

x x

kg
x x x

l ml

�

� � �

�

�

 (8)

where state x1=angle, m=mass, l=length, g=gravity

acceleration constant, and kf=coefficient of viscous friction at

pivot. We take unity length and mass, and define gravity 9.81

and friction 0.25 as parameters to be identified recursively

from measurements

1sin (0,1)y x r� � �
 (9)

where r=0.1. Note parameters are nonlinear with respect to

output and this is where many other methods including

recursive least squares get stuck in local minima. PFsuper

resists such entrapment by sampling the target likelihood

function over a grid using parallel PFs. A grid size of 40x40

was found to be reasonable. A small ellipsoid state noise with

covariance 3 2 23 2; 2h h h h� �� � 	
 �
Q was set for both

system and PF. Integration step size was h=.01. We impose

no exceedance thresholds to let simulation run its full course

over a time span of 10 seconds, with receding prediction

horizon 10/3 seconds. Figs. 3-4 show that PFsuper can

successfully solve this problem.

1Here, time variance is injected thru free scalar t (and possibly varying �)

in state and output mappings, not thru Qk,Rk which are constant matrices.
2Up to ~8 unknowns would be feasible but discouraged in PHM due to
notoriously unreliable time-series forecasts (e.g., extrapolations from a

high-degree polynomial).

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

5

Figure 2. At each time k, PFsuper MC-simulates N paths forward, conditional on the current particles as initial condition. RUL

is inferred from empirical Kaplan-Meier cdf (or its censored hitting-times histogram as shown), plus the MLE fit of inverse

Gaussian distribution as pdf whenever the mean of forecast fan is monotonic. Two additional time frames on the right show

this pdf continuously revised as more and more data measurements arrive, until complete certainty at failure time.

Figure 3. Output y, state x1, forecast fans, and estimated

parameters at 6.67s into the nonlinear pendulum simulation.

Figure 4. Particle population in state-space and likelihood

profiles of the identified parameters at end of the simulation

(10s; ground-truth values shown in gold).

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

6

Figure 5. At time t=3.33s, there is a sudden change (unbeknownst to PFsuper) in which gravity was cut by 1/3 (or equivalently,

length parameter tripled). By around 5s, the algorithm has started to learn the new value.

3.2. Nonlinear Pendulum with Sudden Breakdown

Using the same pendulum above, we injected a sudden

disturbance created by changing g abruptly to 1/3 of its value

(3.27) at time 3.33s, or equivalently attaching something so

that its length tripled, unbeknownst to PFsuper. This internal

breakdown manifests in observed frequency being 3
slower. To more clearly separate the effects, we had PFsuper

identify a single unknown parameter and ran system with 0

state noise, small spherical state noise 2.01� �Q I for PF,

and r=0.01 shared by both system and PF. Time span was 15s

and prediction horizon 5s. Fig. 5 shows the end of the run.

We see that PFsuper could adapt to the sudden malfunction

within a couple of seconds.

3.3. Unstable Ramping Oscillation

A ramping sinusoid of the form sint at can be the response

of a linear system with transfer function

2 2() 2 / ()H s as s a� � , which has a repeated pair of

poles at j a . Instead of zero-state response to an

impulsive input, we use the zero-input response to some

initial condition of the states. A controllable-canonical

representation of the state dynamics with a=1 is

1

2
0

3

4

0 -2 0 -1

1 0 0 0
, (0)

0 1 0 0

0 0 1 0

x

x

x

x

� � � �
� 	 � 	
� 	 � 	
� 	 � 	� � �� 	 � 	
� 	 � 	
� 	 � 	
� 	 � 	
 �
 �

x Ax x x� (10)

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

7

whose explicit solution is 0
teAx . We declared the

coefficients �1 =–2, �� =–1 as unknown parameters for

PFsuper to identify recursively, defined a spherical noise

4.01� �Q I in the state model used by both system and PF,

and a measurement noise r=0.5 just for PF’s quasi-dummy

identity output model, which has to be positive definite for

evaluation of likelihoods using the normal pdf. We set 500

particles, prediction horizon 20/3 seconds, and exceedance

threshold 10 on state x1. We defined uniform priors on PF

state and parameters, and let the system run from x0 = [1 1 1

1]�. A bigger step size h=.1 was used to accelerate simulation

but in other problems this can lead to integrator instability.

Fig. 6 shows snapshot at end of simulation.

Figure 6. Exceedance occurred on upper rail of x1 at 9.4s.

4. VALIDATION ON REAL-WORLD TRUCK-FLEET DATA

To test whether our approach meets user needs and intended

uses, we performed leave-one-out cross validation (LOOCV)

by simulation of strictly causal usage of a military truck-fleet

data collection. It had oil analyses of 12 trucks sampled 11

times (not uniformly) over nearly a year. We picked TBN as

degradation indicator for its clear pattern, but several of the

other oil parameters correlated to it.

The raw TBN data were preprocessed to obtain single oil-

drain cycle histories of individual vehicles, then the aggregate

scatter plot and generic fit with time-as-the-regressor looked

like Fig. 1, step-1 of the general scheme, except in this case

it was a linear trend going down. The global fit had

parameters �1 =slope; �� =intercept with values [–0.0013;

5.9749]. During LOOCV, we do training using all vehicles

minus one (simulating a new unseen case), while testing on

the missing vehicle in each fold, therefore we will actually

have 12 different generic “whole-fleet” fits. For each truck,

the generic fit predicts that TBN will hit low threshold c=2.5

at the offset mileage (c–�0)/ �1, which is a constant. In
contrast, each truck monitored by PFsuper will have time-

dependent RUL statistics, which are highly variable in the

beginning and tend to stabilize towards the end as more oil

data samples accumulate. Thus, we will compare the mean

absolute error (MAE) between the RUL prediction profile

and the actual exceedance mileage for both methods.

In this linear deterioration case, the conversion to stochastic

dynamic model (scheme step-2) is as follows. A putative

model that could have generated an individual truck’s data is

1 0, (0)

(0,1)

x x

y x

� �

�

� �

� �

�

�
 (11)

where the state model has constant-derivative equal to slope

�1 plus 0 noise, and the output model has identity mapping

plus normal noise with standard deviation �. The state is

unobserved (hidden) and only discrete-time samples of the

observations at possibly nonuniform times, i.e., data {ti,yi},

are available to PFsuper. A PF also always needs some

nonzero “state noise” (as long as it is 0-mean, which

preserves expectation) so that it can spread particles without

instant degeneracy. Thus, the model that the PF is allowed to

“see” is

1

0 gen 0 gen

min max
1 1 1

� (0,1),

(0) ,

� (0)

(0,1)

x q

x y y

y x r

�

� �

� � �

� �

� � � � � � � �

� � � �

� �

� �

�

�

�

 (12)

where 1
�� is PFsuper’s fluctuating estimate of the unknown

slope �1, initially drawn from interval seen in the individual

trucks’ slopes from the database. The prior p(x�) for the state

particles is normal � or uniform � but preferably located

around mean 1
0()y

�h = y�, the maximum-likelihood estimate

of the unknown intercept ��.

We couple the magnitude of the output noise to the generic

residual: r=�gen (also learnable online from the data yi), and

that of the state noise to a diffusion-consistent scale:

gen /q h� �� (13)

where h is the fixed integrator step size and � is mean

intersample interval (1/average sampling rate) for data

coming in. This quantity is justified in reference to prognosis:

it says that on average, the size to which uncertainty is going

to grow while waiting between data updates is of a scale

comparable to the underlying � (recall the spread of

Brownian motion grows with t).

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

8

Figure 7. Typical PFsuper simulation run during cross validation (truck #7 shown). Abrupt jumps in estimated �1 and RUL

burndown are due to the scarcity of data updates (red-orange circles in top panel).

Qualitatively, we want the confidence intervals to grow with

longer prediction periods, recognizing propagation of

uncertainty into the future. Forecasts with stochastic trends

are “safer” (Hyndman & Koehler, 2006) than point estimates.

The simulation was carried out with only 50 particles in the

interest of speed, but 500 or 5000 is more common and yields

lower variance of the RUL quantiles. Prediction horizon was

set at 1500 miles, and exceedance threshold was 2.5 applied

to the output (particle-filtered output is used to know when to

stop simulation). Fig. 7 shows one of the 12 runs (truck #7)

at the end of a LOOCV fold. The truck-specific slope was

correctly identified well ahead of the oil lifetime. The RUL

burndown shows a typical pattern of unreliable estimates

during the beginning until the arrival of at least the first data

update. We defined a “break-in” period of 1000 miles across

the fleet during which we ignore RUL predictions and

exclude them from the MAE performance metric.

Alternatively, the method could simply stick to the generic

prediction during that initial period.

Fig. 8 shows that in 10 out of 12 cases, dynamic RUL

estimates from PFsuper had lower error than the static generic

ones. The cross-validation estimate of expected error across

the ensemble is 178.86 for PFsuper vs. 358.11 for generic,

which suggests the procedure would meet a need in oil RUL

prediction, at least with respect to the currently generic

methods used in commercial systems.

Figure 8. LOO cross-validated mean absolute error between

the predicted expected value of RUL and the actual

exceedance mileage for static generic fits vs. dynamic

PFsuper learning from scarce data updates.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

9

We note that although the approach to online parameter ID

via a grid of parallel PF populations is not scalable, it was

deemed sufficient in this low-dimensionality PHM

application and well worth the cost of avoiding local minima.

Additionally, our censored-statistics approach to RUL

forecasting ‘squeezed out the last drop’ of prediction with the

inverse Gaussian fit giving the best estimate of mean hitting

time before complete data are even available to complete the

histogram.

5. CONCLUSION

We have formalized an online learning prognostics

framework suitable when time-series data are sparse and

health/damage signals tend to follow low-complexity

dynamics, as is the case in oil PHM applications. The

conversion of generic static models from a historical database

into specific dynamic models unlocks the ability to track and

adapt to changes in the field. PFsuper attempts to fill

prognostic software gaps in online model adaptation,

uncertainty management, sparse, nonuniform or under-

sampled time-series observations, and other areas needed for

reduction to practice. Because the framework is brutally

honest about uncertainty propagation, the lack of updates in

the context of sparse/slow data makes for wide forecast fans.

However, the generic-vs-PFsuper truck-fleet oil validation

taught us that even with data samples as information-starved

as 11 points per truck (only about once per month), PFsuper

offers advantage.

ACKNOWLEDGMENT

We gratefully acknowledge the collaboration of Patrick

Henning, CTO at Spectro Scientific, who provided guidance

and the truck-fleet validation data.

REFERENCES

Conrad, P., Girolami, M., Särkkä, S., Stuart, A., Zygalakis,

K. (2017). Statistical analysis of differential equations:

introducing probability measures on numerical

solutions. Statistics and Computing, vol. 27, no. 4, pp.

1065–1082. doi:10.1007/s11222-016-9671-0.

Di, S., Haijun, W., & Haifeng, L. (2013). Recent Patents on

Oil Analysis Technologies of Mechanical Equipment.

Recent Patents on Mechanical Engineering, vol. 6, no.

1, pp. 11-25.

Discenzo, F.M., Chung, D., Kendig, M.W., Loparo, K.A.

(2009). Intelligent fluid sensor for machinery

diagnostics, prognostics, and control. US7581434.

Hitch, J. (2015) Determining Proper Oil and Filter Change

Intervals: Can Onboard Automotive Sensors Help?

Machinery Lubrication. Noria publications.

Hyndman, R. J. & Koehler, A. B. (2006). Another look at

measures of forecast accuracy. International Journal of

Forecasting, vol. 22, pp. 679-688.

doi:10.1016/j.ijforecast.2006.03.001

Särkkä, S. (2013). Bayesian Filtering and Smoothing.

Cambridge University Press.

Zhu, J., Yoon, J., He, D., Qu, Y., & Bechhoefer, E. (2013).

Lubrication Oil Condition Monitoring and Remaining

Useful Life Prediction with Particle Filtering.

International Journal of Prognostics and Health

Management, ISSN 2153-2648, 020.

BIOGRAPHIES

Javier Echauz is a Technical Director at

Symantec Corporation. He obtained a PhD

in ECE/BioEng from the Georgia Institute of

Technology.

Andrew B. Gardner is a Senior Technical

Director at Symantec Corporation. He

obtained a PhD in ECE from the Georgia

Institute of Technology.

Ryan R. Curtin is a Principal Research

Scientist at Symantec Corporation. He

wanted to be an astronaut, but instead

obtained a PhD in ECE from the Georgia

Institute of Technology.

Nikolaos Vasiloglou is a Technical Director
at Symantec Corporation. He obtained a PhD

in ECE from the Georgia Institute of

Technology.

George Vachtsevanos is Professor Emeritus

of Electrical and Computer Engineering at

the Georgia Institute of Technology.

