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ABSTRACT

This paper presents a model-based prognosis method for hy-
brid systems i.e. that have both discrete and continuous be-
haviors. The current state of the hybrid system is estimated
by a diagnosis process and the prognosis process uses this
state estimation to predict the future states and to determine
the end of life (EOL) or the remaining useful life (RUL) of
the system. The Hybrid Particle Petri Nets (HPPN) formal-
ism is used to model the hybrid system behavior and degra-
dation. A HPPN-based diagnoser has already been defined to
provide a current state estimation that takes uncertainty about
the system model and observations into account. We propose
to generate a prognoser from the HPPN model of the system.
This prognoser is initialized and updated with the result of the
HPPN-based diagnoser. It computes a distribution of beliefs
over the future mode trajectories of the system and predicts
the system RUL/EOL. The prognosis methodology is demon-
strated on a three tanks example.

1. INTRODUCTION

Recent industrial systems have become so complex that ex-
plaining their behaviors is often intractable for humans, es-
pecially when they are exposed to failures. Prognostics and
Health Management (PHM) aims at developing tools that can
support maintenance or repair tasks by reducing the global
costs due to unavailability and repair actions, but it can also
optimize the mission reward by replanning or reconfiguring
the system. An efficient health monitoring technique is re-
quired to detect, isolate (diagnosis) and predict faults (prog-
nosis) leading to failures. Prognosis is the prediction of the
system future states and of the times of the occurrences of the
faults that lead to these states. Most of the time, it is related to
the determination of the system’s End Of Life (EOL), which
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is the time when the system is not operational anymore, and of
the Remaining Useful Life (RUL) that is the remaining period
before it reaches its end of life (Engel, Gilmartin, Bongort, &
Hess, 2000).

A system is considered as hybrid if it exhibits both discrete
and continuous dynamics. Hybrid systems are usually de-
scribed as a system of multiple modes that represents its
continuous evolutions (continuous dynamics) under different
operational conditions (Bayoudh, Travé-Massuyes, & Olive,
2008). This mode representation is convenient to model sys-
tems that have specific continuous dynamics for each mode,
but it cannot model dynamics depending not only on both the
discrete state and the continuous state, but also on the set of
events that occurred on the system. Such dynamics are used
to model particular phenomena, like system degradation. In
most industrial systems, for example, if the degradation is not
observable, it is estimated as fault occurrence probabilities.
The degradation thus depends on the stress level associated
with the current mode but, in some cases, also relies on the
analysis of the set of events that occurred on the system. The
failure probability of a component could depend on the time
spent in the different modes, particularly when the compo-
nent is used for critical actions. Then the system degradation
has to be considered as a characteristic that depends on both
the discrete and continuous dynamics of the hybrid system.
The evolution of this characteristic is defined by what we call
the degradation dynamics. The system degradation state is
the current value of this degradation dynamics. In order to
clarify the model of the system, we extend the multi-mode
representation by associating underlying degradation dynam-
ics with each mode. The definition of a mode is thus enriched
and is a combination of a discrete state of the Discrete Event
System (DES) with continuous dynamics and degradation dy-
namics (Gaudel, Chanthery, & Ribot, 2014). The state of the
hybrid system is defined as the combination of its discrete,
continuous and degradation states. Finally, as we work on
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real complex systems, we consider that all the variables are
subject to uncertainty.

Our previous works introduced a modeling framework called
Hybrid Particle Petri Nets (HPPN). In (Gaudel et al., 2014),
we proposed to use HPPN to model a hybrid system, and we
tracked its current state under uncertainty by generating a di-
agnoser. A diagnoser is defined with the HPPN framework
and uses the observations (system inputs and outputs) on the
system to compute a diagnosis. The system diagnosis is a dis-
tribution of beliefs over its past mode trajectories that include
its possible current states and the fault occurrences. It also
includes the system degradation estimation, which is a signif-
icant advantage to perform prognosis. In (Gaudel, Chanth-
ery, & Ribot, 2015), this diagnosis approach was applied on
a simulated three-tank system.

The contribution of this paper compared to previous works is
the introduction of a prognoser. The health monitoring ap-
proach is enriched with a prognoser that aims at computing
the prognosis of the system under uncertainty, based on the
current diagnosis and future inputs. Like the diagnoser, the
prognoser is a HPPN generated from the system HPPN-based
model. The system prognosis is a distribution of beliefs over
its future mode trajectories and its RUL/EOL.

This paper is organized as follows. Section 2 gives some
related work. Section 3 recalls the HPPN framework and
the methodology to model the hybrid system behavior and
degradation by using HPPN. Section 4 details the progno-
sis method. Section 5 provides simulation results obtained
by testing the proposed method on the three-tank case study.
Conclusions and future works are discussed in the final sec-
tion.

2. RELATED WORK

Hybrid systems are the core interests of numerous researches
in many areas, such as modeling, verification, control, and
monitoring. In system modeling, different structures have
been introduced to represent hybrid dynamics: hybrid au-
tomata (HA), hybrid bond graphs (HBG), hybrid Petri nets
(HPN), Partially Observed Petri Nets (POPN), etc. Such
models have largely been used or extended for hybrid system
diagnosis. Some works particularly focus on hybrid system
diagnosis with the intent to use it for prognosis purposes, and
then generally consider degradation monitoring. However,
most of these models do not take into account uncertainties
about the model (errors in model parameter estimation for ex-
ample) or observations (sensor errors for example). Table 1
presents some references to these works and sums up the re-
lated work for the prognosis task.

In (Vianna & Yoneyama, 2015), the diagnosis monitors the
system behavior and its degradation in order to have a better
estimate as a start for the prognosis process via the Interactive

Multiple-Model (IMM) algorithm, but the approach is limited
to continuous systems. With the same purpose, (Gaudel et al.,
2014) uses HPPN to monitor the hybrid system degradation
in addition to its behavior, considering many sources of un-
certainty.

In (Chanthery & Ribot, 2013), hybrid automata are used to
model the system and to generate a prognoser that determines
the system RUL, whenever a new diagnosis is available. The
method is demonstrated on a simulated study case in (Zabi et
al., 2013). The behavior and the degradation are monitored,
but future actions are not considered in the prognosis process,
making the approach limited.

The authors of (Yu et al., 2014) develop a model-based se-
quential failure prognosis for hybrid systems where some
faults are not detectable immediately. Dynamic fault isola-
tion is performed with Hybrid Bond graph. A mode depen-
dent fault signature matrix is proposed and a waiting time is
used to allow all faults to exhibit their symptoms on residuals,
especially faults that are only detected with continuous sig-
nals. No detail is given concerning the duration of the waiting
time. The degradation behavior of each component is mode
dependent and estimated by a hybrid differential evolution
algorithm. The RUL of the component is computed by the
estimation of the degradation and a threshold. A sequential
prognosis algorithm, including a standard prognosis module
and auxiliary module, is proposed. The standard prognosis
module is activated once one inconsistency is detected and is
based on the set of suspected faults through fault isolation,
whereas the auxiliary module is triggered when a new mode
change occurs during the standard prognosis and is based on
the ”true” faults, predicted by the standard prognosis. These
works do not take into account uncertainty about the observa-
tion and the model.

The work of (Daigle et al., 2015) extend the model-based
prognostics paradigm to hybrid systems. It relies on previ-
ously established methods for hybrid state estimation, and
provides an approach to predict RUL/EOL given a hybrid
model, a state estimate, and a specification of future input

Table 1. Related Work on Prognosis of Hybrid Systems.

Modeling References

HA (Chanthery & Ribot, 2013;
Zabi, Ribot, & Chanthery,
2013)

HBG and ARR (Yu, Wang, & Luo, 2014)
Conflict and Monte-Carlo (Daigle, Roychoudhury, &

Bregon, 2015)
Generic caracterization (Ribot, Pencolé, & Comba-

cau, 2013)
POPN (no RUL) (Basile, Chiacchio, & Tom-

masi, 2009)
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uncertainty. It describes how the resulting probability dis-
tribution for RUL/EOL may be multi-modal due to mode-
switching in the predicted future behavior. Petri nets-based
approaches often deal with the prediction of event occur-
rences from a predictability perspective, i.e. the system mon-
itoring indicates either a fault can still occur, or not.

In (Basile et al., 2009), a generalized marking is used to con-
sider unobservable event occurrences while minimizing the
state space explosion, whilst the problem is approached with
Partially Observed Petri Nets (POPN) in (Lefebvre, 2014).
These works do not however provide any quantitative infor-
mation about RUL estimations.

In conclusion, the best way to evaluate the state of hybrid sys-
tems under uncertainties seems to use Petri Nets. The Hybrid
Particle Petri Nets (HPPN) have the particularity to add the
hybrid point of view and to deal with various types of un-
certainty. The main contribution of the paper is to propose a
complete methodology for prognosis of hybrid systems under
uncertainty, illustrated by a case-study.

3. SYSTEM HEALTH MODELING WITH HPPN

The Hybrid Particle Petri Nets (HPPN) are an extension of
Petri nets. They have been introduced in (Gaudel et al., 2014).
We recall here the main concepts so as they can be understood
without reading the earlier publications.

Hybrid systems are usually described with a mode represen-
tation. In this work, we define a mode by the combination of
one continuous dynamic, one operational condition and one
degradation dynamic, which are represented with three kinds
of places in a HPPN. Symbolic places represent the different
discrete health states of the system. Continuous (resp. degra-
dation) dynamics are associated with numerical (resp. degra-
dation) places. One place can thereby be part of several mode
representations. Two different modes, however, cannot share
the same two symbolic and numerical places.

A Hybrid Particle Petri Net is defined as a tuple
〈P ,T ,A,A,E,X, D, C,D, Ω,M0〉 where:

• P is the set of places, partitioned into numerical places
PN , symbolic places PS and degradation places PD,

• T is the set of transitions,

• A ⊂ P × T ∪ T × P is the set of arcs,

• A is the set of arc annotations,

• E is the set of event labels,

• X ⊂ RnN is the state space of the continuous state vec-
tor, with nN ∈ N+ the number of continuous state vari-
ables,

• D ⊂ RnD is the state space of the degradation state vec-
tor, with nD ∈ N+ the number of degradation state vari-
ables,

pS1

pS2

pN1

pN2

pD1

pD2

t Ωt

δ0 π0 d0

v

Figure 1. Example of a simple HPPN at time k = 0.

• C is the set of dynamic equation sets associated with nu-
merical places, representing continuous dynamics,

• D is the set of dynamic equation sets associated with
degradation places, representing degradation dynamics,

• Ω is the set of conditions associated with transitions,

• M0 is the initial marking of the HPPN, it represents the
system initial conditions.

An example of a simple HPPN is illustrated in Figure 1. Sym-
bolic places are represented by plain circles, numerical and
degradation places are represented by discontinuous and dot-
ted circles. Transitions are represented by black lines. Arcs
connecting transition and symbolic places (resp. numerical
and degradation places) are represented by plain arrows (resp.
discontinuous and dotted arrows).

Symbolic places model the discrete states of the system and
are marked by configurations. A configuration δk ∈ MS

k is a
symbolic token at time k, whose value is the set bk of events
that occurred on the system until time k:

bk = {(v,κ)|κ ≤ k}. (1)

The set of event labels E = Eo ∪ Euo is partitioned into ob-
servable (Eo) and unobservable (Euo) event labels. An event
is defined as a couple e = (v, k) where v ∈ E is an event
label and k the time of occurrence of e. An anticipated fault
is represented by an unobservable event label f ∈ Euo.

A numerical place pN ∈ PN is associated with a set of equa-
tions C ∈ C modeling system continuous dynamics and its
corresponding model noise and measurement noise:

C :

{
xk = f(k,xk−1,uk) + v(k,xk−1,uk)
yk = h(k,xk,uk) + w(k,xk,uk)

, (2)

where xk ∈ X is the continuous state vector, uk ∈ Rnu is
a vector of nu continuous input variables, f is the noiseless
continuous state equation, v is the continuous process noise
equation, yk ∈ Rny is a vector of ny continuous output vari-
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ables, h is the noiseless continuous output equation, and w is
the continuous output noise equation. Numerical places are
marked with particles. A particle πk ∈ MN

k is a numerical
token at time k whose value is a possible continuous state
xk ∈ X of the system at time k. The notion of particle is
central in the HPPN structure as it represents an imprecise
knowledge on the continuous states of the system. For exam-
ple, for the diagnoser object, particles represents the results
of a particle filter method.

A degradation place pD ∈ PD is associated with a set of
equations D ∈ D modeling system degradation dynamics:

D :

{
dk = g(k, dk−1, bk−1,xk−1,uk) +

u(k, dk−1, bk−1,xk−1,uk)
, (3)

where dk ∈ D is the degradation state vector, g is the noiseless
degradation state equation and u is the degradation process
noise equation. Degradation places are marked with degrada-
tion tokens. A degradation token dk ∈ MD

k links a configu-
ration δk and a particle πk, and its value is a possible degra-
dation state dk ∈ D of the system at time k.

The marking Mk of a HPPN at the discrete time k is com-
posed of tokens distributed in symbolic, numerical or degra-
dation places: Mk = MS

k ∪MN
k ∪MD

k .

A hypothesis on the system is a set of tokens linked together
that represent the system state and mode trajectory. A hy-
pothesis contains only one configuration but it can contain
many particles and degradation tokens representing an im-
precise knowledge on the continuous and degradation states,
e.g. {δ1

k,π1
k, ...,πnk

k , d1
k, ..., dnk

k }, where nk ∈ N+ represents
the precision of the hypothesis at time k, and where the nk
degradation tokens link the nk particles to δ1

k. The links be-
tween tokens are used to represent the possible modes of the
system; they are specific to HPPN. In case of ambiguity, the
initial marking could contain several hypotheses: for exam-
ple, M0 = {δ1

0 ,π1
0 , d1

0} ∪ {δ2
0 ,π2

0 , d2
0}, where d1

0 links δ1
0 and

π1
0 , and d2

0 links δ2
0 and π2

k.

Transitions model changes of modes and their conditions de-
scribe the circumstances of the changes. It means that any
transition t ∈ T must have three places (one of each type)
in its sets of input places and three places in its set of out-
put places. A set of three conditions Ωt = {ωS ,ωN ,ωD}
is associated to any transition t. A condition ω : Mk → B,
with B = {>,⊥} (the set of the logical values TRUE and
FALSE), can be either a test on a token value, always sat-
isfied (>), or never satisfied (⊥). A symbolic condition ωS

can thus either be > or ⊥, or it can test the occurrence of an
event labeled with v ∈ E (observable or unobservable event;
fault, mission or command event). In that last case, it takes
the form ωS(δk) = occ(bk, v), to test if the event set bk of
δk contains the event (v, k). A numerical condition ωN (resp.
degradation condition ωD) can be > or ⊥ or be a constraint
on the continuous state (degradation state). In the last case,

ωN (πk) = c(xk) is a test on the continuous state vector xk
of πk.

If ωS and ωN are conditions that should be satisfied at
the same time, ωD is an alternative condition of the mode
change. In a general way, the system changes of mode if
(ωS ∧ωN )∨ωD is satisfied. Degradation dynamics are used
to model the system degradation and degradation conditions
are used to let the degradation state affect the system behav-
ior. For example, if the degradation is modeled by a fault
occurrence probability, a degradation condition could be a
boolean function satisfied if the probability is higher than a
predefined threshold selected by the user.

A transition t ∈ T may be fired if there is at least one token in
any of its input places and with respect to its associated con-
ditions Ωt ∈ Ω. If a transition t is fired, the tokens satisfying
conditions Ωt are not consumed like in classical Petri nets,
but moved and so their links are preserved.

An arc a ∈ A that connects a transition t to a symbolic place
pS , may be annotated with an event label v ∈ E. In such a
case, a configuration δ that is moved to pS after the firing of
t at time k, sees its event set b updated with the event (v, k).
Consequently, annotationsA change the configuration values
during transition firing.

4. HYBRID SYSTEM PROGNOSIS

4.1. Overview of the Health Monitoring Method

Prognosis aims at predicting the system future states and its
RUL/EOL, by using the current diagnosis and future inputs
available from a mission scenario for example. Particularly,
the goal is to determine if and when the system will enter a
failure mode and will not be operational during an arbitrary
prediction horizon τp.

The HPPN framework is used to define three different ob-
jects: a model of the hybrid system, a diagnoser and a prog-
noser. An overview of the health monitoring method is given
in Algorithm 1 and illustrated in Figure 2.

Algorithm 1 HPPN-based monitoring methodology

1: HPPNΦ ← CreateHPPNModel()
2: HPPN∆ ← GenerateHPPNDiagnoser(HPPNΦ)
3: HPPNΠ ← GenerateHPPNPrognoser(HPPNΦ)
4: for all k do
5: Ok ← (USk ,uNk ,Y Sk , yNk )
6: ∆k ← Update(HPPN∆, k,Ok)
7: Πk ← Prognose(HPPNΠ, ∆k,U+

k )
8: end for

The first offline step is the modeling of the hybrid system
in the HPPN framework. The system model HPPNΦ can
be directly built from a multimode description or created
from expert knowledge. The second offline step (line 2) is
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Figure 2. Overview of the health monitoring method.

the generation of a HPPN-based diagnoser HPPN∆ from
the system model. These two previous steps were devel-
oped in (Gaudel et al., 2014) to perform diagnosis of hy-
brid systems under uncertainty. The HPPN-based diagnoser
uses the discrete and continuous observations (system inputs
and outputs) to compute a diagnosis ∆k. The diagnosis ∆k is
given by the marking of the HPPN-based diagnoserHPPN∆

that represents a distribution of beliefs obtained by parti-
cle filtering. This marking contains all diagnosis hypothe-
ses. A diagnosis hypothesis is a set of tokens linked together
through degradation tokens, which represent possible current
states of the system and past mode trajectory at time k, e.g.
{δ1
k,π1

k, ...,πnk

k , d1
k, ..., dnk

k }, where nk ∈ N+ represents the
precision of the diagnosis hypothesis at time k, and where the
nk degradation tokens link the nk particles to δ1

k.

The last offline step (line 3) of the health monitoring method
is the generation of a HPPN-based prognoser HPPNΠ from
the system model. Then the online process (line 4-8) uses the
system consecutive observations Ok (discrete and continuous
inputs and outputs) first to update the diagnoser marking and
compute the diagnosis ∆k. Finally, the system prognosis Πk

at time k is computed (line 7) from diagnosis ∆k and discrete
and/or continuous future inputs U+

k .

All these steps of the health monitoring method and the cre-
ated objects (model, diagnoser and prognoser) are illustrated
in Figure 2.

4.2. Prognoser Generation

Let us consider a system model HPPNΦ =

〈PΦ,TΦ,AΦ,AΦ,EΦ,XΦ, DΦ, CΦ,DΦ, ΩΦ,M0Φ〉. (4)

The prognoser of HPPNΦ is defined by HPPNΠ =

〈PΠ,TΠ,AΠ,AΠ,EΠ,XΠ,DΠ, CΠ,HΠ, ΩΠ,M0Π〉 (5)

and is generated with the following steps.

1. The prognoser has to simulate the health evolution of the
system in the future. Its places, event label set, and state
spaces are the same as those of the HPPN model: PΠ =
PΦ, EΠ = EΦ, XΠ = XΦ, DΠ = DΦ.

2. Model varying parameters (unknown parameters) are
considered as state variables and are estimated during
the diagnoser process. Even if the model parameters do
not constitute the only source of uncertainty of a model-
based prognosis, we consider that state process noise
during the prognosis process can be neglected. CΦ and
DΦ modeling continuous and degradation dynamics are
thus defined as follows:

CΠ :

{
xk = fΦ(k,xk−1,uk)
yk = hΦ(k,xk,uk)

, (6)

where fΦ and hΦ are the continuous state and output
equations of CΦ.

DΠ :
{

dk = gΦ(k, dk−1, bk−1,xk−1,uk) , (7)

where gΦ is the degradation state equation of DΦ.
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3. Finally, the prognosis process uses conditioned firing,
but conditions on the occurrences of unobservable or
measured events cannot be satisfiable by simulation in
the future. The prognoser works with only input vari-
ables or events. Consequently, if a symbolic condition
ωS tests the occurrence of an event that is not a discrete
input, it becomes >, in this way the prediction process
is not blocked. If both ωS and ωN are >, they become
⊥, so ωS ∧ ωN can never be satisfied. The conditions
on the degradation state can be used, however, to simu-
late the future occurrences of events, such as fault events,
so they are not changed. This means it is possible to
compute the system prognosis even if the future actions
are not known, as long as time affects the system state.
At this step, the arc annotations are conserved to record
the set of simulated events in configurations event sets:
AΠ = AΦ.

4. If all conditions in Ωt are⊥, i.e. it is no significant infor-
mation for the prediction, the transition t is useless and
removed of the net. The set of transitions TΠ is defined
as:

TΠ = TΦ \ {t/Ωt = {⊥,⊥,⊥}} (8)

The sets of conditions ΩΠ, arc annotations AΠ, and the
set of arcs AΠ are thus reduced accordingly.

4.3. Prognosis Process

The prognosis process steps are given in Algorithm 2 and de-
tailed in the section.

Algorithm 2 Prognose

Input: HPPNΠ, ∆k,U+
k

Output: M̂kEOP|k
1: Initialize(HPPNΠ, ∆k)
2: for all Uκ ∈ U+

k do
3: if OneHypothesisInNonFailureMode(HPPNΠ)

then
4: M̂κ|k ← Update(HPPNΠ,κ,Uκ)
5: else
6: break for loop
7: end if
8: end for
9: kEOP ← κ

The function Prognose takes as input the prognoser
HPPNΠ generated from the system model HPPNΦ, the
current diagnosis ∆k and a set of available future discrete and
continuous inputs U+

k = {Uκ|κ ∈ {k+1, ..., k+τp}}, where
τp is the prediction horizon. The output of the Prognose
function is the marking of the prognoser M̂kEOP|k at the End
of Prediction (EOP), where kEOP ≤ k + τp.

To keep diagnosis uncertainty, the initial marking of
the prognoser HPPNΠ is based on the current diag-

nosis ∆k given by the marking of the HPPN-diagnoser
HPPN∆ at time k (line 1). Any diagnosis hypothesis
{δk,π1

k, ...,πnk , d1
k, ..., dnk} ⊂ ∆k, where the n degradation

tokens link the n particles to the configuration δk, is repro-
duced in the prognoser initial marking and takes the form
of an equivalent distribution {δ1

k,π1
k, d1

k, ..., δmk ,πmk , dmk }, in
which, for any i ∈ {1, ...,m}, dik links δik and πik, and any δik
has the same value bk as δk.

For prognosis purpose, we redefine the notion of hypothe-
sis on the system future states. A prognosis hypothesis in
the HPPN-prognoser HPPNΠ at time κ ≥ k is represented
by a set of triplets (a configuration, a particle and a degra-
dation token) {δ1

κ,π1
κ, d1

κ, ..., δmκ ,πmκ , dmκ } in which, for any
i ∈ {1, ...,m}, diκ links δiκ and πiκ. The number of triplets
m ∈ N+ for a prognosis hypothesis is determined with a
stochastic scaling algorithm that is a solution to balance pre-
cision and computational performance during the algorithm.
The stochastic scaling algorithm determines the precisions to
give to all the prognosis hypotheses, based on their belief de-
grees computed by the diagnosis process using particle fil-
tering, and by using three scale parameters ρminΠ , ρmaxΠ and
ρtotΠ . Parameters ρminΠ and ρmaxΠ are respectively the mini-
mum number and the maximum number of tokens of each
type to represent a prognosis hypothesis. Parameter ρtotΠ is
the total number of tokens of each type, available to represent
all the prognosis hypotheses. Once initialized with ∆k, the
HPPN-based prognoserHPPNΠ has as many configurations
as particles and degradation tokens: |MS

k | = |MN
k | = |MD

k |.

Without performance constraints, a diagnosis hypothesis is
obviously completely reproduced, i.e. m = n: any particle
πk or degradation token hk in ∆k is duplicated. To improve
computational performance of the prognosis process, how-
ever, the diagnosis hypotheses in ∆k are partially reproduced.

Once the HPPN-based prognoser HPNNΠ is initialized, its
marking evolves according to the future inputs U+

k (lines 2-
8). For each future input pair Uκ = (USκ ,uNκ ) and if the
system is not predicted to be in a failure mode (line 3), the
marking M̂κ−1|k is updated to M̂κ|k (line 4) in three steps:

1. Configuration value update. If the discrete input set USκ
contains an input label uS that is observable, all the con-
figuration event sets are updated with the event (uS ,κ):

∀δ ∈MS , b← b ∪ {(uS ,κ)}. (9)

2. Transition firing. All enabled transitions are fired. When
a transition t is fired, all the tokens of the prognosis hy-
potheses in its input places which satisfy conditions Ωt
are moved to the output places of t. Configuration values
are updated with the arc annotations AΠ.

3. Particle and degradation token value update. After the
transition firing, a particle value x is updated with the
continuous state equation f associated to the numerical
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Figure 3. Water tank system.

place the particle belongs, using the continuous input
vector uNκ . In the same way, a degradation token value
d is updated with the degradation state equation g asso-
ciated to the degradation place the token belongs, using
the continuous input vector uNκ and b and x, the values
of the configuration and the particle it links.

At the end of the function Prognose (line 9), κ represents
the last time where the system may enter a failure mode. It
then represents the End Of Pediction (EOP).

The prognosis Πk takes the form of the marking of the HPPN-
prognoser HPPNΠ at the end of the process:

Πk = M̂kEOP|k. (10)

This marking gives a distribution of beliefs over the system
future mode trajectories until time kEOP. The times when
the system will possibly enter a failure mode are determined
from these future trajectories and are represented as a belief
distribution over the system EOL.

5. CASE STUDY

The studied system, illustrated in Figure 3 and described in
detail in (Gaudel et al., 2015), is composed of three tanks
connected in series. Pump1 delivers a constant water flow q1

in Tank1. Tank2 empties with an output flow q20. The main
function of the system is to maintain a water level l2 in Tank2

superior to l2min. The valves are controlled by discrete and
observable input signals: openv13 , closev13 , openv32 and
closev32 .

Six faults, considered as non observable discrete events, may
occur on the system: f1, f2 and f3, represent leaks in each
tank, f4 and f5, represent v13 and v32 stuck in closed po-
sition, and f0 corresponds to a water level l2 below l2min
leading to the system failure. This last fault is supposed to
occur only after another fault occurrence. Leak occurrence is
strongly related to the tank wear or degradation. This degra-
dation is not observable but it is caused by the water pressure.
Three qualitative stress levels have been identified: low stress
for an operation with a possible water outflow, medium stress

for an operation with an impossible water inflow and outflow
and high stress for an operation with a possible water inflow
but an impossible water outflow. Valve degradation leading
to faults f4 and f5 is related to the number of valve openings
and closings. From this degradation knowledge, it is possi-
ble to determine some degradation laws (or aging laws) for
the system components that can be represented by probabil-
ity laws of fault occurrences.The evolution of fault probabili-
ties depends on both the continuous dynamic and the discrete
events that occurred on the system. For the leak faults f1, f2

and f3, this evolution depends on the tank stress level. For the
valve faults f4 and f5, it depends on the number of switches
(openings and closings).

In order to simplify the study and the result analysis, only the
events associated to the valve v13 and the faults f1, f4 and
f0 are considered in the following. A multimode description
of the health evolution of the water tank system is presented
in Figure 4. Ten behavioral modes are identified. For ex-
ample, in the initial mode Nom1, both valves are open and
let the water transfer from one tank to another (continuous
dynamic C1). In this mode, the stress level for tanks is low
(degradation dynamic D1). When the discrete control event
closev13 occurs, the system goes into mode Nom2, where the
valve v13 is closed (continuous dynamic C2). In this mode,
the stress level for Tank2 and Tank3 is low but the stress
level for Tank1 is high (degradation dynamic D2). From any
degraded mode, the system goes into a failure mode when l2
is inferior to l2min (indicator of fault occurrence f0).

5.1. HPPN model

The HPPN model of the system is available on the web1. The
10 modes have been decomposed into 19 places and 14 tran-
sitions represent the 14 mode changes. As explained in sec-
tion 3, one place can be part of several mode representations.
Four noise-free equations of continuous dynamics C1, C2,
C3 and C4 are defined. The noise is the same for each water
level and is represented by a gaussian noise with a constant
standard deviation of 0.002. The sampling time is 15 sec.

The degradation state is composed of 5 continuous variables
which represent the probabilities of fault occurrences. The
probability distribution of fault occurrence fi, ∀i ∈ {1, ..., 5},
is a 2-parameter Weibull model. By fixing the shape parame-
ter βi to 1, the Weibull model is similar to an exponential law
by describing random fault process. The scale parameter ηi
is representative of the remaining useful life before the fault
occurrence fi. The evolution of the occurrence probability
pi = po(fi) of a fault fi at time k is given by:

pik = Wb(k, ηi) =

∫ k

0

1

η
e

(
− k

η

)
dk, (11)

1https://homepages.laas.fr/echanthe/hymu/water tanks
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Figure 4. Multimode description of the health evolution of the water tank system.

where Wb is the Weibull cumulative function with β = 1.

From Equation 11 is derived the generic degradation evolu-
tion function for each fault fi, i ∈ {1, ..., 5}:

pik+1 = pik − e

−1

ηik
(−ηik ln (1− pik) + k)

+ e

−1

ηik
− ηik ln (1− pik)

. (12)

The fault occurrence probabilities of valves p4 and p5 in-
crease rapidly with the number of openings and closings. At
each time k, the scale parameter η4 of the Weibull model
which represents the degradation of the valve v13 (resp. η5

for the valve v32) depends on the coefficient α13 (resp. α32)
that stands for the number of event occurrences openv13 and
closev13 (resp. openv32 and closev32 ) until time k:

η4k =
η0

13

α13k

, η5k =
η0

32

α32k

, (13)

where η0
13 (resp. η0

32) is representative of the remaining life
before the valve v13 (resp. v32) gets stuck in the closed posi-
tion. By considering η0

13 = η0
32 = η0 and η0 = 3.107, this

remaining useful life is about four years.

The parameters η1, η2 and η3 of leak occurrence probabilities
p1, p2 and p3, are constant in time but different depending
on the stress level of tanks in each mode. Three values of
the scale parameter η have been determined to represent the
stress levels of tanks: ηa = 105 for low stress, ηb = 8.104 for
medium stress and ηc = 6.104 for high stress. For example,
in mode Nom1, the parameters η1, η2 and η3 of leaks are
instantiated with ηa for low stress. The predefined threshold
selected by the user for deciding that a fault occurred knowing
its degradation modeled by a fault occurrence probability is
0.9.

5.2. HPPN-based prognoser

The HPPN-based prognoser, available on the web2, is gener-
ated from the HPPN model. It contains the same number of
places and transitions as the HPPN model. All mode changes
are predictable and no transition is removed during the prog-
noser generation.

The scale parameters of the HPPN-based prognoser are
ρminΠ = 1, ρmaxΠ = 3, ρtotΠ = 50 so that the evolution of 16
to 50 prognosis hypotheses will be simulated with a precision
m between 1 and 3.

Three scenarios are tested. The initial system mode is al-
ways Nom1. The valves v13 and v32 are open and have
never been used (b0 = ∅), the continuous state x0 =
[l10, l20, l30] = [0.60, 0.55, 0.58], the degradation state d0 =
[p10, p20, p30, p40, p50] = [0, 0, 0.001, 0, 0]. The water flow
delivered in Tank1 is constant. After 310 minutes of opera-
tion, v13 is closed every hour during 20 min in order to per-
form a water treatment in Tank1. Fault f1 occurs at 201840s
and f0 occurs at 206040s. The HPPN-prognoser computes a
prognostic result every 30 minutes with a prediction horizon
τp = 6.105s.

In Scenario 1, the future continuous and discrete inputs are
supposed to be accurately known: q1 is constant and v13 is
closed every hour during 20 minutes after 310 minutes of op-
eration. The EOL estimations computed by the prognoser are
expected to be close to the EOL of the simulated system that
is 206040s. Figure 5 shows the RUL estimations of the sys-
tem. The RUL of the prognosis hypotheses are drawned in
different shades of grey: those with higher belief degrees are
black, while those with low belief degrees are in light gray.
The EOL of the simulated system is represented by a dis-
continuous line. The EOL with the higher belief degrees is
about 10800 seconds before the EOL of the simulated system.
These results are the expected ones. The diagnoser correctly

2https://homepages.laas.fr/echanthe/hymu/water tanks/
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Figure 5. Scenario 1: RUL estimations.
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Figure 6. Scenario 1: Belief distribution on past and future
trajectories of the system.

estimates the system mode and the prognoser uses this infor-
mation to compute the RUL with a fault probability threshold
fixed at 0.9. It explains the constant gap between the pre-
dicted RUL of hypotheses with the higher belief degrees and
the real RUL. Because of the ambiguity in the diagnosis re-
sult, the prognoser estimates a shorter RUL between 460s and
4300s for some hypotheses with low belief degrees that con-
sider the system is in a degraded mode. Figure 6 shows the
belief distribution on the past and future trajectories of the
system at 162060s by combining diagnosis and prognosis hy-
potheses. This result can be more informative for health man-
agement purpose.

In Scenario 2, the future inputs are now unknown. The prog-
noser takes as input current flow q1 but it cannot simulate the
system mode changes associated to the occurrence of discrete
events. Then it cannot simulate that the system enters mode
Nom2 with a high stress level. The EOL estimations are then
overestimated (Figure 7). Until the valve v13 is closed, the
EOL of the hypothesis with the higher belief degree is ap-
proximately 235000s, that is to says 28960 seconds after the
EOL of the simulated system. After 18600s, the EOL with
the higher belief degree is sooner because the diagnoser esti-
mates the system stays more longer in the mode Nom2 where
it is more stressed than in the mode Nom1. These results were
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Figure 7. Scenario 2: RUL estimations.
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Figure 8. Scenario 3: Belief distribution on the system mode.

expected, they illustrate that the diagnoser correctly estimates
the degradation state and the prognoser uses this estimation to
propagate this state in the future. Figure 7 shows the conver-
gence of the predicted RUL towards the real RUL.

In scenario 3, the future inputs are supposed to be known. The
objective is to illustrate the impact of diagnostic results on
prognostic results. The fault f1 is injected at 209700s when
the system enters in the mode Nom2 and the fault f0 occurs at
213360s. The EOL of the simulated system is 213360s. Fig-
ure 8 shows the belief distributions on the system mode. Con-
tinuous observations were simulated with four times greater
noise than the specifications. The diagnoser cannot identify
the continuous dynamics from observations, so no mode pre-
dominates the others in the results.

Figure 9 shows the RUL estimations of the system which
are similar to results obtained for Scenario 1 (see Figure 5).
However some hypotheses that consider a shorter RUL have
a more higher belief degree than in Scenario 1. These results
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Figure 9. Scenario 3: RUL estimations.

Table 2. Computational performance of the HPPN-based
health monitoring method applied on the water tank system.

Scale parameters Execution
time

∆k (s)

Execution
time

Πk (s)

RAM
max. (MB)

(40, 80, 1500)∆

(1, 5, 100)Π

min. 0.12 0.08
max. 3.96 201.73
av. 1.22 44.29 102.56

were predictible because the diagnostic results are more un-
certain than for Scenario 1.

The three scenarios illustrate how the prognoser uses infor-
mation contained in the current diagnosis and the knowledge
on future inputs of the system and how the prognoser prop-
agates the related uncertainty in the future. Table 2 exposes
computational performance of diagnosis and prognosis pro-
cesses for the chosen scale parameters . The complexity of a
HPPM model is difficult to evaluate, the number of places and
transitions, the computational complexity of continuous and
degradation dynamics, the number of state variables are pa-
rameters involved in general performance of the monitoring
method. Computational performance can still be controlled
by choosing suited scale parameters. By reducing scale pa-
rameters, the execution times and maximum RAM are re-
duced but it also affect the monitoring efficiency because the
number of diagnosis and prognosis hypotheses is reduced.

6. CONCLUSION

This work proposes an approach of prognosis of hybrid sys-
tems based on Hybrid Particle Petri Nets, and its application
on a three-tank case study.

Future works will focus on the HPPN model, diagnoser and
prognoser verifications. We also aim at investigating how
the HPPN-based prognosis results may influence the HPPN-

based diagnoser monitoring (and vice versa). The prognoser
could, for example, increase the precision for the monitoring
of a diagnosis hypothesis on the system, whose predicted fu-
ture trajectory is particularly critical. The main application
perspective is the application of the methodology on a real
rover. The stochastic scaling algorithm will provide a com-
promise between performance and available computational
resources, through the setting of scale parameters and so man-
age the complexity of real complex systems.
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