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ABSTRACT

Marine and hydrokinetic energy is of growing interest across
the globe because it has the potential to provide a large source
of renewable energy from the world’s oceans and rivers.
These marine and hydrokinetic devices, such as wave energy
converters, must operate remotely in all weather conditions,
including severe storms. Thus, these devices can suffer from
structural damage affecting their performance and lifespan.
Therefore, there is interest in developing structural health
monitoring systems that can identify new damage, estimate
its severity, and then make a decision to provide crews with
a maintenance or control recommendation. In this study, we
investigate using the electromechanical impedance response
of piezoelectric transducers to actively monitor the structural
health of composite materials similar to those used in several
marine and hydrokinetic devices. Recurring impact damage
experiments were completed on five plates using a test drop
stand, consisting of five consecutive impacts at the same lo-
cation for each plate. Classification and regression methods
were evaluated in an attempt to predict impact damage on a
new plate. Machine learning algorithms were used on data
collected over a frequency range of 10 kHz to 100 kHz for
two types of piezoelectric transducers.

1. INTRODUCTION

Marine and hydrokinetic (MHK) devices are one of the
newest and fastest growing renewable energy technologies
(Yuce & Muratoglu, 2015). The Department of Energy
(DOE) estimates that MHK devices could theoretically pro-
vide the United States with up to 42% of its electricity (DOE,
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2016). A subset of these devices that promise to provide
the largest proportion of energy is the wave energy con-
verter (WEC). WECs generate electricity from the movement
of ocean surface waves. A full review of WEC technol-
ogy can be found in (Antonio, 2010). A major obstacle to
widespread implementation of WECs is their economic fea-
sibility (Lehmann, Karimpour, Goudey, Jacobson, & Alam,
2017).

To decrease energy production costs and to increase energy
harvesting efficiency, researchers are currently optimizing
WEC designs and operations. The DOE’s recent Wave En-
ergy Prize (EERE, 2017), which awarded 6.5 million dol-
lars to top design teams, has demonstrated the acceleration of
WEC technology. Four teams surpassed the DOE’s “state of
the art” technology goal, with the winning team demonstrat-
ing a five-fold improvement in WEC technology. The DOE’s
goal metric accounts to WECs having a high energy harvest-
ing efficiency and a low cost of production, which would lead
to a reduced levelized cost of electricity (LCOE).

Early sea trials of WEC devices have also found them to be
damaged by their environmental conditions, resulting from
exposure to unforeseen loadings. Therefore, in order to pro-
duce WECs of low cost and that survive the harsh sea en-
vironments, current WEC manufacturers are experimenting
with using structural health monitoring (SHM). SHM could
be used to optimize operating decisions, including mainte-
nance and repair activities and control decisions, leading to a
lower LCOE.

WEC structures are generally manufactured using fiber rein-
forced plastic (FRP) composites because of their low cost,
high strength, and resistance to corrosion. FRPs are of grow-
ing interest in aerospace, renewable energy, and many other
fields because of these properties. All structures are sus-
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ceptible to damage and due to the emerging trend of using
FRPs, it is of great interest to be able to monitor the health
of these composite structures. This structural health monitor-
ing would potentially extend the life of these devices by pro-
viding efficient maintenance decisions and optimized control
decisions. These decisions would lead to an increased system
resilience and savings in time and money.

FRP structures can fail from fiber breakage, matrix cracking,
and delamination. Piezoelectric transducers can be used to
collect impedance response signals on the FRP structure of
WECs. The goal of our research is to design machine learn-
ing algorithms for estimating the structural health of WEC
composite structures. The work presented in this study is a
continuation of the work presented in (Farinholt et al., 2016),
in particular, the discrete damage plate experiments.

In the previous study, an FRP plate was damaged by cutting
and drilling into the material. It was demonstrated that the
impedance measurements from the piezoelectric transducers
could be used in conjunction with machine learning algo-
rithms to estimate the discrete damage case. However, the
experiments in (Farinholt et al., 2016) are limited to a single
plate. In the presented study, five plates are damaged in order
to characterize cross-plate variation. Further, the experimen-
tal setup is refined by using a drop stand to impact realistic
damage to each composite plate.

Our initial assumption was that the drop stand would damage
each plate in a similar fashion and that each impact would
represent a separate damage class. However, we discovered
a large amount of variation across plates in both the damage
delivered by the drop stand and the corresponding change in
response collected by the piezoelectric transducers. From this
observation, we conclude that the task at hand is a regression
problem with a continuous dependent variable as opposed to
a classification problem with nominal classes. We perform
several sets of numerical experiments to justify this conclu-
sion. Further, we demonstrate that predictive models are not
transferable across plates, i.e. a model trained on one plate
would not necessarily be able to predict damage on another
plate, because the changes in the frequency responses due to
damage are not consistent across plates.

This paper is organized in the following manner: Section
2 provides background information in the field of SHM for
composites. Section 3 describes the experimental setup and
collected data. Section 4 describes the classification analysis,
with multi-class and binary class classification problems ex-
plored and evaluated using two types of validation methods.
Section 5 describes the creation of a regression problem and
the results. Section 6 provides our conclusion with a discus-
sion of sources of error and plans for future work.

2. BACKGROUND

This research focuses on using the electromechanical
impedance (EMI) technique for structural health monitoring
(SHM). The EMI technique is presented in (Park & Inman,
2007), which also includes an applied example to concrete
SHM. The EMI technique is a vibration based method which
relies on damage changing a materials mechanical proper-
ties, which are then detected by changes in the electrical
impedance of a bonded transducer. The EMI technique has
been recently used for the SHM of concrete in (Xie, Xu, Guo,
Sha, & Huang, 2016; Xu, Banerjee, Wang, Huang, & Cheng,
2015; Dumoulin, Karaiskos, Sener, & Deraemaeker, 2014)
and the SHM of wind turbines in (Taylor et al., 2014; Yoon,
He, & Van Hecke, 2015), as well as many other fields. In our
experiments, the EMI technique is used with lead zirconate
titanate (PZT) piezoelectric transducers for the SHM of WEC
composites.

Many other groups have recently studied SHM of compos-
ites that focused on impact damage. Three carbon-fiber re-
inforced plastic (CFRP) plates were impacted and detected
using two piezoelectric transducers, one that actuates and one
that detects in (Nardi, Lampani, Pasquali, & Gaudenzi, 2016).
Auto-regressive (AR) models were used to predict the pres-
ence of a new impact damage, with higher order AR models
predicting the damage case 100% of the time. A fiber Bragg
grating (FBG) transducer network was used to locate impacts
in (Frieden, Cugnoni, Botsis, & Gmür, 2012b) and then to
predict impact damage size in (Frieden, Cugnoni, Botsis, &
Gmür, 2012a). Their iterative optimization algorithm, which
relies on knowing the impact location, estimates damage size
to within 30%. An extensive impact damage study which in-
cluded 48 CFRP plates was conducted using vibration-based
methods in (Pérez, Gil, & Oller, 2014). This paper relates the
damage identification to the plates reduction in strength, with
the earliest detection of damage at 27% reduction in strength.

3. EXPERIMENTAL SETUP

A series of experiments were conducted using five Garolite
G-10 test panels that are fabricated from an epoxy resin in-
fused within a fiberglass reinforcement fabric. Each panel
was mounted to an aluminum reinforcement frame using six-
teen 1

4

′′-20 machine screws that were tightened to 4 Nm of
torque prior to each experiment, as shown in Fig. (1). The
laminate plates were instrumented with a single 9.55 mm x 1
mm piezoelectric disk transducer manufactured by APC In-
ternational, Ltd from their 850 type piezoceramic material,
as well as a 25 mm x 3 mm P1 type Macro Fiber Compos-
ite (MFC) transducer from Smart Material Corp. Transducers
were mounted using Loctite’s model 234790 cyanoacrylate
gel adhesive, with constant pressure applied for 30 seconds
during the bonding process. Baseline impedance measure-
ments were collected using a Hioki IM3533-01 impedance,
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Figure 1. The experimental setup including the mounted plate
with transducers and the impact test stand.

current, resistance (LCR) meter. Data was collected over a
frequency range of 10 kHz to 100 kHz for the real and imagi-
nary components of the transducer’s electrical impedance. A
total of 10 data points were collected at each frequency and
averaged, with a step in frequency of 50 Hz. Once baseline
conditions were measured, the test panels were inserted in a
drop test stand, shown in Fig. (1), and subject to impact events
using a tapered impactor positioned 101.6 mm from one cor-
ner of the G-10 panels. Each plate was subject to five sequen-
tial impacts using a 3.6 kg mass dropped from a height of
0.381 m. Five impedance scans were collected after each im-
pact event. The five recurring impact events represent the five
different damage severities used to train the machine learning
models.

In addition to collecting the impedance scans, optical images
of the impact damages were collected while the plate was il-
luminated using a high intensity LED lighting fixture. Fig. (2)
shows these images for plate 4 and illustrates the increasing
level of damage observed after each strike to the plate.

3.1. Data

Five recurring impacts were completed on five plates.
For each plate’s baseline and plate’s impact number, five
impedance scans were collected from both transducers. This
resulted in 150 observations per transducer (5 plates * (1
baseline + 5 impacts) * 5 scans), however, one impact ob-
servation from the MFC transducer was left out because the
LCR meter failed to collect across the full frequency range.

The data collected from plate 4 using both APC and MFC
transducers is shown in Fig. (3). This figure shows each
damage class plotted as a different color and shows the dif-

ferences between the APC and MFC transducer responses.
The APC transducer results in more dynamic content across
the frequency band, with peaks of a larger proportional height
to the full response. The data collected from plates 2 and 4
are shown in Fig. (4). This figure shows the regions of high-
est activity, between 10 and 20 kHz for both transducers. The
APC transducer plot shows the distinct differences in the re-
sponses between the plates.

The machine learning features for each observation included
various functions on an array that consisted of a sum of differ-
ences between the observations response and the observation
plate’s baseline responses at each frequency. This array of a
sum of differences was calculated for the real and imaginary
response data using Eq. (1) at each frequency,

5∑
baseline=1

rbaseline − robs (1)

where r is the real or imaginary response at each frequency.
The following features were extracted from this array of
summed differences for each observation for both the real
and imaginary impedance measurements: mean, standard de-
viation, variance, skewness, kurtosis, minimum, maximum,
range, 1-norm, 2-norm, 3-norm, and infinity-norm.

4. CLASSIFICATION ANALYSIS

In this section, we describe the numerical experiments involv-
ing classification algorithms. The classification problem con-
sists of six classes: baseline, impact 1, impact 2, impact 3,
impact 4, and impact 5. We conducted two types of validation
experiments, a leave-one-out cross validation (LOOCV) and
a leave-one-plate-out cross validation (LOPOCV). LOPOCV
is a testing methodology where all data from a single plate is
reserved for testing, and the classifier is trained on the data
from the four remaining plates. This cross validation tech-
nique was created to simulate damage prediction on a new
and unseen plate. Based on our previous work in (Farinholt
et al., 2016), we evaluate the classification tree (Bishop,
2006) and random forest algorithms (Breiman, 2001) for both
LOOCV and LOPOCV.

4.1. Leave-One-Out Cross Validation

LOOCV using a classification tree results in 69% and 51%
accuracy for the APC and MFC transducer data, respectively.
A LOOCV using random forest with 500 trees resulted in
78% and 63% accuracy for the APC and MFC transducer
data, respectively.

The confusion matrices for the LOOCV results using a clas-
sification tree and random forest with 500 trees are shown in
Tab. (1) and Tab. (2), respectively. There are several con-
clusions that can be made from this initial set of numeri-
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Figure 2. Backlit images of impact damage introduced to G-10 plate 4 using a drop test stand.

Figure 3. Real impedance responses from plate 4 using both
APC and MFC transducers.

Figure 4. Real impedance responses from plates 2 and 4 using
both APC and MFC transducers.
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cal experiments. First, we have confirmed the result from
(Farinholt et al., 2016) that random forest yields a high pre-
diction accuracy. Second, these experiments demonstrate that
given enough relevant data, machine learning algorithms can
estimate the structural health class of a FRP plate with data
collected from a piezoelectric transducer. However, this ex-
perimental design assumes that data from all plates and dam-
age classes are available during training. Third, the data from
APC transducer yields better results than the data from the
MFC transducer.

Table 1. Confusion matrix for LOOCV using a classification
tree with APC transducer data.

Predicted Class
B I1 I2 I3 I4 I5

Baseline 23 2 0 0 0 0
Impact 1 0 19 3 2 1 0
Impact 2 1 6 10 6 2 0
Impact 3 0 2 7 15 1 0
Impact 4 0 1 1 1 18 4
Impact 5 0 0 0 0 7 18

Table 2. Confusion matrix for LOOCV using random forest
with APC transducer data.

Predicted Class
B I1 I2 I3 I4 I5

Baseline 24 1 0 0 0 0
Impact 1 0 20 3 1 1 0
Impact 2 0 6 13 5 1 0
Impact 3 0 1 3 19 2 0
Impact 4 0 1 0 2 18 4
Impact 5 0 0 0 0 2 23

4.2. Leave One Plate Out Cross Validation

LOPOCV using a classification tree resulted in 43% and 40%
accuracy for the APC and MFC transducer data, respectively.
These results are shown in Fig. (5). LOPOCV with ran-
dom forest with 500 grown trees resulted in 42% and 33%
accuracy for the predicted left out plate observations for the
APC and MFC transducer data, respectively. These results
are shown in Fig. (6). These figures show the accuracy of
predicting the left out plate’s classes for each plate and each
transducer type.

The confusion matrix for the LOPOCV results using classifi-
cation tree with the APC data is shown in Tab. (3). The con-
fusion matrix for the LOPOCV results using random forest
with 500 trees is shown in Tab. (4). Clearly, these classifiers
are not transferable across plates.

4.3. Frequency Importance

In an effort to improve the performance of the classifiers, we
attempted to select a relevant frequency range for use with the

Figure 5. LOPOCV results using classification trees.

Table 3. Confusion matrix for LOPOCV using classification
trees with APC transducer data.

Predicted Class
B I1 I2 I3 I4 I5

Baseline 23 1 1 0 0 0
Impact 1 0 10 7 7 1 0
Impact 2 0 15 1 7 2 0
Impact 3 0 7 8 6 4 0
Impact 4 0 7 0 5 5 8
Impact 5 0 1 0 0 4 20

classification algorithms. Variable importance was produced
using a random forest classifier using the full real response
array of summed differences from Eq. (1) for all observations
for each plate and each transducer type.

This variable importance metric is calculated for each fre-
quency or feature by removing the feature across all trees and
then calculating the change in the out-of-bag error rate. MAT-
LAB returns this change in error divided by the standard de-
viation. Removal of important features will cause the error
to increase more than less important features.The resulting
frequency importance was normalized and is shown for the
entire frequency range in Fig. (7). This figure shows that the
lower frequency range, from 10 kHz to 30 kHz may be the
most important for classification.

This frequency importance metric was recalculated using a
random forest model that excluded responses for frequencies
above 30 kHz, in order to focus on this more important fre-
quency range. The frequency importance is shown in Fig (8).
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Figure 6. LOPOCV results using random forest with 500
trees.

Table 4. Confusion matrix for LOPOCV using random forest
with APC transducer data.

Predicted Class
B I1 I2 I3 I4 I5

Baseline 24 0 1 0 0 0
Impact 1 1 8 7 9 0 0
Impact 2 0 10 0 10 5 0
Impact 3 0 5 4 8 8 0
Impact 4 0 2 0 6 8 9
Impact 5 0 0 0 0 10 15

These figures, however, show that overall, there are not fre-
quencies or frequency ranges that are consistently important
for classification for each plate. This would mean that it is
very difficult to predict impact damage on an unseen plate
using the full frequency response.

The LOPOCV analysis was evaluated using the array features
for this low frequency range, with 41% and 23% accuracy for
the classification tree for the APC and MFC transducer data,
respectively, and 41% and 33% accuracy using the random
forest model with 500 trees for the APC and MFC transducer
data, respectively. This frequency range selection resulted in
a slightly worse prediction accuracy, compared to using the
full frequency range.

4.4. Binary Classification Problem

Given the previous results, we conclude that data for each
plate must be incorporated into the training process. We re-

Figure 7. Frequency importance for each plate using random
forest with 500 trees.

formulate the problem to binary classification, where we dis-
tinguish between a baseline and a damaged plate. We further
change the problem by limiting the training procedure to only
the baseline and constructing a separate model for each plate.
Only plates with all five damage impacts are used in this eval-
uation.

We use a one class Naive Bayes model where each frequency
is modeled as an independent Gaussian distribution. The log-
likelihood of the impedance measurement can be calculated
by

LL =

L∑
l=1

log[N (xl|µl, σl)], (2)

where xl is the impedance measurement at the lth frequency
for l = 1...L, µl is the mean of the Gaussian distribution,
and σl is the standard deviation of the lth frequency. The
mean and standard deviations are calculated from the baseline
measurements for each plate. A threshold t is selected. The
current measurement is classified as a baseline if LL ≥ t
and as damaged if LL < t. The difficulty with this problem
formulation is selecting the value of t. For this example, we
select t = −104.
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Figure 8. Frequency importance for each plate using random
forest with 500 trees for low frequency range.

Using this problem formulation, the prediction accuracy us-
ing the APC data is 92%. It should be noted that the training
data is included in this testing procedure because the baseline
is required for estimating the model.

5. REGRESSION ANALYSIS

In this section, we present another formulation of the problem
where instead of attempting to predict the discrete damage
class, we attempt to predict the area of damage as a continu-
ous variable. We believe this will improve performance be-
cause the discrete damage class might not represent the actual
plate damage that occurred during testing, or not all impact
events or resulting damages will be the same.

The image processing step is discussed in the next section
but essentially, this damage metric was calculated for each
plate impact by retrieving an amount of damage area from
the image pixels or by the counting the pixels in the darker or
damaged region.

5.1. Image Processing

Images were taken of the front and back of each plate before
and after each impact. The images were taken at a constant
height above each plate, with constant camera settings, in-
cluding zoom and focus. Plate 1 was not used in the regres-
sion analysis because of inconsistencies in imaging.

Table 5. Impact damage area based on imaging.

Impact Damage (mm2)
Plate I1 I2 I3 I4 I5

1 N/A N/A N/A N/A N/A
2 11.0 20.9 33.8 47.6 73.2
3 7.0 15.3 31.2 41.7 60.7
4 12.7 18.9 34.2 49.3 55.7
5 10.0 19.5 34.7 43.7 57.7

The images from plates 2 through 5 were processed using
MATLABs image processing toolbox following Alg.(1). The
RGB images were first gray-scaled and then the gray color
was inverted. This made the regions corresponding to damage
lighter in color than the other non-damaged regions. The area
of the damage region was captured using a threshold, which
created a binary image. This threshold was created separately
for each image using the average pixel value from the gray-
scaled image. To ensure that the amount of plate damage in
each image didn’t alter this threshold, causing a bias based on
the amount of plate damage, a box of white pixels was placed
consistently over all regions of plate damage. Each plate’s
threshold was calculated based on the gray-scaled image that
included this white box. This threshold was also tuned iter-
atively with the addition of a constant across all plate’s by
comparing the binary image to the original image for each
plate and damage class until the captured region in the binary
image well represented the actual damage.

The resulting binary images were further processed by fill-
ing in the regions that were fully enclosed by damage or ac-
tive pixels using MATLABs “imfill” function. Noise was also
cleaned using the “bwareaope” function, which deletes active
groups of connected pixels with less than a threshold of pix-
els. This threshold was determined iteratively to ensure that
actual damage regions weren’t deleted. The resulting damage
or white pixels were counted for each plate and damage class
image and then converted to mm2 using a determined pixel to
mm conversion. This final metric represents the actual dam-
age area for each plate and impact damage. The resulting
impact damage areas are shown in Tab. (5). This table shows
that each impact results in a different damage area across the
plates.

Note, the image specific threshold mentioned in this sec-
tion was used because of inconsistencies in the plate images
brightness, due to changes in ambient lighting.

5.2. Regression Results

The root-mean-square error (RMSE) between the predicted
damage area and the actual damage area was calculated for
each regression model. Three regression models using the
same array function features from the full frequency range
were evaluated, including a random forest regression model
with 500 trees, a regression trees model, and a linear regres-
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Figure 9. This figure shows the actual and binary images for each plate 4 impact, including the top and bottom plate images.

for each plate do
for each damage class do

for each plate orientation image (top and bottom) do
convert RGB image to grayscale
complement grayscale
compute threshold value by taking mean pixel
value of undamaged areas
convert grayscale to binary image using image
threshold value
fill in enclosed regions using morphology
“imfill” command
filter the image to reduce noise using
“bwareopen” command
sum the damage pixels and convert to SI units

end
end

end
Algorithm 1: Image Processing

sion model. The RMSE results are shown in Tab. (6). The
random forest regression model resulted in the lowest RMSE
of 11.9 mm2, using the APC transducer data. This translates
to 16.3% of the maximum damage area of 73.2 mm2. The re-
gression trees model performs the second best, with a RMSE
of 16.2 mm2, 22.1% of the maximum damage area, for the
APC transducer data, and the linear regression model per-
forms the worst with an RMSE of 27.0 mm2, 36.9% of the
maximum damage area, for MFC transducer data.

6. DISCUSSION AND CONCLUSION

This multi-plate analysis tested the repeatability of machine
learning algorithms to predict impact damage on a left-out or
unknown plate. This study concludes that classification mod-

Table 6. Root mean square error for regression results.

RMSE (mm2)
APC MFC

Random forest 11.9 19.2
Regression Trees 16.2 24.0

Linear model 27.0 36.3

els tested with a LOOCV method can produce high prediction
accuracies of up to 78% with a random forest model. How-
ever, it is shown that these same classification models cannot
accurately predict impact damage on a new plate, with the
LOPOCV analysis resulting in only 43% accuracy using a
classification tree.

These low multi-class results lead us to attempt a binary clas-
sification problem, in which the classes are baseline or im-
pact. Using a Naive Bayes model, we achieved 92% accu-
racy.

The low accuracy in the multi-class results lead us to think
of this as a regression problem, with the damage area of each
impact as the response variable. The damage areas were cal-
culated based on an imaging algorithm and show us that each
impact results in a different amount of damage for each plate,
further demonstrating that a regression analysis is needed.
The regression analysis using the same features as the classi-
fication problem resulted in a RMSE of 11.9 mm2, or 16.3%
of the maximum impact damage area, using a random for-
est regression model. The regression models may be better
suited to damage predictions in which there is a continuous
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amount of damage that can occur, rather than different types
of damage predictions such as impact or fatigue damage.

6.1. Sources of Error

There are many sources of error during this multi-plate anal-
ysis. Each plate and transducer is slightly different because
of manufacturing tolerances. This could account to differ-
ent plate thickness, length, layering, and material quality and
different transducer responses. There are also sources of er-
ror that result from our experimental setup such as transducer
mounting, plate mounting to the aluminum frame, and incon-
sistencies during the drop tests. These errors could be caused
by differences in plate drilled-hole locations, bolt torques,
and impact damage locations. There are also environmen-
tal effects that could lead to errors such as the movement or
vibrations near the plate while taking the impedance scans,
changes in ambient temperature and humidity that may al-
ter plate material mechanics, and changes in ambient lighting
that could result in differences during imaging of impact dam-
ages. Follow-on studies will consider methods for limiting
or quantifying these sources of error, and whether any can be
compensated for, or ultimately removed from the experiment.

6.2. Future Work

In future work, we will complete further regression analysis
on plate damage experiments, including both impact and fa-
tigue damage experiments. Future experiments will involve
research into the effects of plate geometry and curvature, the
effect of the distance from the damaged area to the transducer,
the effects of performing maintenance on composite plates,
and the effects of exposing plates to sea water on predict-
ing damage. We plan to predict more damage characteristics
including shape and location metrics in a multivariate regres-
sion model.

Our future work will also investigate using other models to in-
crease model accuracy and transferability across plates. The
discovery of how different plates react to impact damage and
their corresponding changes in their impedance response may
require models that use transfer learning. Transfer learning
is the ability of a system to use information gathered from
learning one task and applying it to learning another novel
task (Pan & Yang, 2010). In our case, the information gath-
ered from learning how one plate’s response changes due to
damage could be used to create a model for predicting how
another plate’s response may change. In other ways, transfer
learning could also be used to predict fatigue damage using
the information gathered from predicting impact damage or
vice versa.
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