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ABSTRACT

This paper investigates propsective architectures for decision-
making in unmanned aerial systems. When these unmanned
vehicles operate in urban environments, there are several
sources of uncertainty that affect their behavior, and decision-
making algorithms need to be robust to account for these dif-
ferent sources of uncertainty. It is important to account for
several risk-factors that affect the flight of these unmanned
systems, and facilitate decision-making by taking into con-
sideration these various risk-factors. In addition, there are
several technical challenges related to autonomous flight of
unmanned aerial systems; these challenges include sensing,
obstacle detection, path planning and navigation, trajectory
generation and selection, etc. Many of these activities re-
quire significant computational power and in many situations,
all of these activities need to be performed in real-time. In
order to efficiently integrate these activities, it is important
to develop a systematic architecture that can facilitate real-
time decision-making. Four prospective architectures are dis-
cussed in this paper; on one end of the spectrum, the first
architecture considers all activities/computations being per-
formed onboard the vehicle whereas on the other end of the
spectrum, the fourth and final architecture considers all activ-
ities/computations being performed in the cloud, using a new
service known as “Prognostics as a Service” that is being de-
veloped at NASA Ames Research Center. The four different
architectures are compared, their advantages and disadvan-
tages are explained and conclusions are presented.

1. INTRODUCTION

The importance of unmanned aerial vehicles and systems
has steadily increased in the past ten to fifteen years. Both
the Federal Aviation Administration (FAA) and the National
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Aeronautics and Space Administration (NASA) have shown
significant interest in the development of technologies for
unmanned aerial vehicles and unmanned traffic management
systems.

It is expected that there will be a significant increase in un-
manned aerial traffic and therefore, the overall safety of the
United States National Airspace System needs to analyzed
carefully. An Unmanned Aerial System (UAS) will have ac-
cess to civilian air space only when the safety of the airspace,
property, and the vehicle itself can be guVaranteed. Further,
traffic management becomes increasingly complicated in ur-
ban environments where low altitude flight control and safety
is of critical importance.

Several researchers have been focusing the development
of various technologies that would ultimately enable
the systematic inclusion of unmanned systems into the
airspace (McAree & Chen, 2013). These technologies in-
clude sensing and data logging (Berni, Zarco-Tejada, Suárez,
& Fereres, 2009; Corke et al., 2004; Everaerts et al., 2008;
Sharp, Shakernia, & Sastry, 2001; Shakernia, Vidal, Sharp,
Ma, & Sastry, 2002), fault tolerant flight control (Coombes,
McAree, Chen, & Render, 2012; Ducard, 2009; B. S. Kim
& Calise, 1997; H. J. Kim, Shim, & Sastry, 2002; Stepa-
nyan & Krishnakumar, 2017), simultaneous localization
and mapping (SLAM) (Hening, Ippolito, Krishnakumar,
Stepanyan, & Teodorescu, 2017; Caballero, Merino, Fer-
ruz, & Ollero, 2009; Wang et al., 2008; Gupte, Mohandas,
& Conrad, 2012; J.-H. Kim & Sukkarieh, 2003), obsta-
cle detection and avoidance (Sinopoli, Micheli, Donato, &
Koo, 2001; Shim, Chung, & Sastry, 2006), optimal power
management (K. Kim, Kim, Lee, & Kwon, 2011; Marsh et
al., 2001; Saha et al., 2011), path planning and trajectory
design (D’Souza, 2017; Yang & Kapila, 2002; Jun & DAn-
drea, 2003; Rysdyk, 2006; Sigurd & How, 2003), searching
and tracking (Chakrabarty, Morris, Bouyssounouse, & Hunt,
2017), autonomous decision-making (Ollero & Maza, 2007;
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Ruff, Narayanan, & Draper, 2002), unmanned traffic man-
agement (Jang, Ippolito, Sankararaman, & Stepanyan, 2017),
etc. In addition, it is also important to study the overall de-
sign (Cai, Feng, Chen, & Lee, 2008) that can systematically
integrate the aforementioned technologies.

According to Koperdaker (Kopardekar, 2014), the near-term
goal (1-5 years) is to safely enable low-altitude airspace and
UAS operations while the long-term goal (10-15 years) is to
safely enable massive increases in airspace density and UAS
operations. These goals are particularly challenging because
there is a significant amount of uncertainty and numerous fac-
tors that are constantly and dynamically evolving in urban
environments (Krishnakumar et al., 2017). As a result, devel-
oping a methodology for safe, autonomous decision-making
is a challenging problem.

Sankararaman and Kalmanje (Sankararaman & Kalmanje,
2017) presented a probabalistic framework for decision-
making under uncertainty in order to aid autonomous oper-
ation of sUAS. This framework focuses on the identification,
assessment, and prediction of various risk-factors (such as ob-
stacle collision, untimely battery drain, etc.) that affect the
operation of sUAS. Then, it uses probabilistic methods for
estimating the likelihood of occurrence of risk-factors and
aids decision-making under uncertainty. While the frame-
work was presented in a mathematical manner, it is still nec-
essary to develop a software architecture that can systemati-
cally implement the proposed decision-making framework.

This paper investigates propsective architectures for enabling
real-time decision-making for unmanned aerial systems. The
first architecture supports all computations on board, it may
be time-consuming due to lack of sufficient onboard hardware
that support computing. The second architecture is consid-
ered from the point of view of cloud-based computing where,
time-consuming computations can be outsourced from the ve-
hicle to the cloud. The advatnages and the disadvantages of
both of these architectures are discussed in detail

The rest of this paper is organized as follows. Section 2 dis-
cusses the various risk-factors in flight, and explains how to
model such risk-factors in order to aid decision-making. Pre-
diction of risk-factors is an important component of decision-
making; such prediction can either be performed onboard
(for instance, using the Generic Software Architecture for
Prognostics, that is developed and open-sourced by NASA
Ames Research Center) or on the cloud (using “Prognos-
tics as a Service”, i.e., Paas, being developed at NASA
Ames Research Center). Section 3 uses the prediction of
risk-factors to enable decision-making and summarizes the
decision-making framework developed by Sankararaman and
Krishnakumar (Sankararaman & Kalmanje, 2017). Section 4
discusses multile architectures that can implement the afore-
mentioned decision-making framework, and discusses the ad-
vantages and disadvantages of each of these architectures. Fi-

nally, Section 5 concludes the paper and discusses possible
directions for further research.

2. RISK FACTORS IN FLIGHT AND MODELING

There are several risk-factors that affect the flight of un-
manned systems. Decision-making needs to take into ac-
count the occurrence of risk-factors, compute the likelihood
of such occurrence in the future, and proactively make plans
at the time of decision-making. For instance, one risk-factor
could refer to complete discharging of the battery prior to the
completion of the trajectory; another risk-factor could refer
to the impending collision of the unmanned system against a
static/dynamic obstacle.

Consider a given trajectory and a generic time of prediction
tP at which it is necessary to calculate the likelihood of a par-
ticular risk-factor continuously as a function of future time
(∀ t > tP ). In order to achieve this goal, it is necessary to
model the evolution of the UAS continuously as a function
of time along with the evolution of external factors related to
the risk-factor. For instance, in the case of a collision against
a dynamic obstacle, it may be necessary to model the evo-
lution of the position of the UAS continuously as a function
of time (based on the planned trajectory), and the anticipated
position of the dynamic obstacle (which is typically uncertain
if the trajectory of the obstacle is unknown and can only be
approximately quantified based on its position and velocity as
estimated by the sensors on the UAS).

2.1. Modeling the Evolution of State With Respect to the
Risk-Factor

Consider the state space model which is used to continuously
predict the state of the system, as:

ẋ(t) = f(t,x(t),θ(t),u(t),v(t)) (1)

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the pa-
rameter vector, u(t) ∈ Rnu is the input vector, v(t) ∈ Rnv

is the process noise vector, f is the state equation, and t is
the continuous time variable. Note that the above state vector
is not necessarily equal to the aerodynamic state of the UAS
(measured in terms of position, attitude, etc.); instead, this
state vector is directly related to the risk-factor under con-
sideration. If collision against a dynamic obstacle is a risk-
factor, then this state vector contains the position of the UAS.
On the other hand, if battery-charge draining is a risk-factor,
then this state vector contains the charge of the battery of the
UAS. Note that all the quantities in Eq. 1 are uncertain in na-
ture and need to be treated probabilistically (Sankararaman,
2015).

The state vector at time tP , i.e., x(t) (and the parameters θ(t),
if they are unknown) is (are) estimated using output data col-
lected until tP . Let y(t) ∈ Rny , n(t) ∈ Rnn , and h de-
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note the output vector, measurement noise vector, and output
equation respectively. Then,

y(t) = h(t,x(t),θ(t),u(t),n(t)) (2)

Typically, filtering approaches such as Kalman filtering, par-
ticle filtering, etc. may be used for such state estima-
tion (Sankararaman, Daigle, & Goebel, 2014).

Having estimated the state at time tP , Eq. 1 is used to predict
the future states of the component/system. This differential
equation can be discretized and used to predict x(t) for all
t > tP .

2.2. Modeling the Risk-Factor

Risk-Factors can be expressed in terms of a binary constraint
function cH(x(t),θ(t),u(t)) = 1 that maps a given point
in the joint state-parameter space given the current inputs,
(x(t),θ(t),u(t)), to the Boolean domain B , [0, 1]. With-
out loss of generality, cH(x(t),θ(t),u(t)) can be written as
cH(t); cH(t) = 1 implies that the risk-factor is encountered
at time t whereas cH(t) = 0 implies that the risk-factor is not
encountered at time t.

At any generic time of prediction tP , note that the constraint
function cH(t) associated with each risk-factor is a function
of t. Therefore, the approach needs to forecast all available
information until future time t in order to predict the occur-
rence of the risk-factor. Thus, it needs all information (states,
parameters, and inputs in Eq. 1) between time tP and t.

2.3. Likelihood of Risk-Factor and Prediction of Time of
Occurrence

Typically, there are two quantities of interest, in the context
of risk-factor prediction:

1. Time of Occurrence: At any time of prediction tP , it is
useful to know the future time at which the risk-factor
will be encountered. Let TH(tP ) denote this quan-
tity. This information can be helpful in determining the
amount of time remaining so that corrective action may
be taken. However, due to the uncertainties involved, this
quantity is a probability distribution.

2. Likelihood of Occurrence of the Risk-Factor as a func-
tion of time: At any time of prediction tP , it is also use-
ful to know the likelihood of the occurence of risk-factor
as a function of future time. This likelihood is denoted
as PH

t (tP ); note that this is a trajectory as a function of
future time t and changes with the time of prediction tP .

First, at any tP , the time of occurrence of a risk-factor (that is,
the future time at which the risk-factor will be encountered)
can be written as:

TH(tP ) , inf{t ∈ R : t ≥ tP ∧ cH(t) = 1}. (3)

It can be easily seen that TH(tP ) depends on the state at time
of prediction, future inputs/parameters, etc., which are uncer-
tain in nature; in order to calculate the probability distribution
of TH(tP ), it is necessary to systematically propagate the
aforementioned uncertain quantities and quantify their effect
on the probability distribution of TH(tP ). Second, PH

t (tP ),
i.e., the likelihood of the risk-factor at future time t (predicted
at time tP ) can be expressed as P (cH(t) = 1).

The computation of both the probability distribution of
TH(tP ) and the probability P (cH(t) = 1) can be accom-
plished using Monte Carlo sampling-based techniques, ana-
lytical techniques based on first-order and second-order reli-
ability methods, or hybrid methods involving machine learn-
ing approaches (Haldar & Mahadevan, 2000; Sankararaman,
2015).

While onboard computational resources can be used to com-
pute the aforementioned two quantities, it is also possible to
send the relevant information to the cloud which hosts PaaS
(Prognostics as a Service), to perform future predictions and
perform these computations. Each of these approaches have
their own advantages, and disadvantages. These issues will
be discussed in detail in the following section, by analyzing
multiple computational/software architectures

3. DECISION-MAKING FRAMEWORK

This section summarizes the decision-making frame-
work presented earlier by Sankararaman and Krishnaku-
mar (Sankararaman & Kalmanje, 2017).

3.1. Goal of Decision-Making: Trajectory Selection

An ideal decision-making algorithm should autonomously
work in conjunction with the path planner (that generates
trajectories) to identify whether a given trajectory is safe or
not. In order to achieve this goal, the decision-making algo-
rithm leverages information available from various sources as
shown in Fig. 1, and identifies safe trajectories for real-time
flight.

As seen from Fig. 1 (Krishnakumar et al., 2017), a trajectory
is classified as follows:

1. Safe

(a) Nominally safe: The likelihoods of risk-factors are
extremely low

(b) Off-nominal but safe: The likelihood of risk-factors
are higher than the nominal scenario, but still low
enough to be considered safe

2. Unsafe: The likelihood of risk-factors are considerably
high.

The limits for likelihood demarcating (1) the nominally safe
scenario and the off-nominally safe scenario; and (2) the safe
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Figure 1. Goal of Decision-Making: Identify Safe Trajectory

and unsafe scenarios need to be assigned based on computing
the costs/risk associated with each risk-factor.

If a trajectory is unsafe, then it is necessary to identify
whether it is possible to generate a trajectory that can:

1. Abort the mission and return the UAS safely to a landing
site; (or)

2. Abort the mission and ditch the UAS without any loss of
private and/or public property.

These four different types of trajectories, i.e., nominally safe,
off-nominal but safe, abort and return to base, and abort and
ditch, are identified in Fig. 1. Note that the scope of this paper
is limited to identifying whether a given trajectory is safe or
not; further classification and aspects of decision-making will
be considered in future work.

3.2. Risk-Factors

While there are different types of risk-factors that are
associated with flights in urban environments, they can
be broadly classfied into two categories, as shown in
Fig. 2 (Krishnakumar et al., 2017).

As seen from Fig. 2, risk-factors may arise simply out of un-
certainties (inherent variability, lack of information, etc. due
to GPS Denied, degraded sensors, dynamic obstacles, etc.)
or due to vehicular performance constraints (such as rapidly
draining battery, lack of control, etc.) The decision-making
system needs to assess all risk-factors as far as possible, as-
similate information from the sensors, and select trajectories.
Note that the decision-making is both risk-informed (since it
calculates the likelihood of risk-factors along with the asso-
ciated risk) and safety-assured (selects only those trajectories
that are considered “safe”, i.e., the likelihood of a risk-factor
is far below a critical limit and hence the operation is consid-
ered safe).

3.3. Decision-Making through Information Fusion

Given a trajectory, and a risk-factor, how should the deter-
mine whether the trajectory is safe? Modern reliability anal-
ysis (Hohenbichler & Rackwitz, 1983) defines safety using
the so-called limit state function, i.e., a curve of demarcation
between a predefined “safe region” and an “unsafe region”.

In simple scenarios, the idea of the limit state can be viewed
in terms of capabilities (C) and requirements (R). When ca-
pabilities of a system are more than its requirements, then the
system is said to be safe; otherwise, the system is consid-
ered to be unsafe. The limit state is then represented by the
equation that implies capabilities are equal to requirements
C −R = 0.

In more realistic scenarios, the limit state can be represented
as a generic function G(X) = 0, where X represents the
vector of quantities that affect the limit state. In the context of
this paper,X may potentially include (depending on the risk-
factor under consideration) wind information, obstacle infor-
mation, vehicular information (including motion, dynamics,
and properties), energy information, and trajectory informa-
tion, as shown in Fig. 3. Without loss of generality, the re-
gion represented by the curve G(X) > 0 can be assumed to
be the safe region, and the region represented by the curve
G(X) < 0 can be assumed to the be the unsafe region.

As mentioned earlier in Section 1, it is likely that elements
contained in the vector X are all uncertain quantities and
hence, these are represented as probability distributions in
Fig. 3. It is therefore necessary to compute the probability
(P (G) < 0), and this probability corresponds to the likeli-
hood of the risk-factor under consideration. It is important to
compute this likelihood continuously as a function of future
time (starting with the time of prediction) until the end of the
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Figure 2. Risk-Factors in Low-Altitude Urban Environment Flight

trajectory under consideration. This computation is discussed
in detail in the following section.

4. ARCHITECTURES FOR DECISION-MAKING

There are three primary functions in a prognostics-enabled
decision making architecture: risk factor prediction (prognos-
tics), a decision maker, and a trajectory generator. These units
are described in greater detail in the previous section.

Each of the three primary functions in prognostics-enabled
decision making can be either hosted on-board or remotely.
On-board hosting reduces risk by eliminating dependency on
a communication method, but it requires user to host a com-
puter capable of performing complex prognostics and prog-
nostic decision making activities. This might not be possible
because of size, weight, or power constraints (SWaP). Re-
mote prognostics allows users to share resources efficiently,
have access to greater computational resources, and upgrade
capabilities easily, but communication between the vehicle
and the remote server requires time and energy.

Architectures exist for performing the risk factor prediction
functions on-line or remotely. The Generic Software Archi-
tecture for Prognostics (GSAP) is often used to create an on-
board prognostics application. GSAP is a general, object-
oriented, cross-platform software framework and support li-
brary for prognostics technologies. GSAP implements many
of the functions and algorithms used in prognostics as part of
a prognostics support library. The GSAP framework imple-
ments and enforces the prognostic process. A standard inter-

face is supplied for integrating new models and algorithms,
and for integrating the system into data sources (sensors) and
sinks (displays, decision support tools, etc.). Users are then
able to create a prognostic application by integrating their
algorithms, models, and interfaces to their systems into the
GSAP framework, with possible integration onboard or off-
board a vehicle or other asset.

At the highest level, GSAP consists of two parts: The
Prognostics Framework and the Prognostics Support Library.
These are compiled with any user layer contributions to build
a prognostics application, as shown in Fig. 4. In this case the
user-layer includes prognosers for the risk factor prediction.

Alternatively the Prognostics As-A-Service (PaaS) architec-
ture could be used to support remote prognostics. PaaS is a
GSAP-enabled Prognostics Application (See Fig. 4) for per-
forming prognostics remotely, as-a-service. A RESTful API
is used to communicate with the Prognostics Application.

The efficiency of each option is explored in the following sec-
tions.

4.1. Assessment of Architecture Efficiency

The cost of transferring between on-board and remote func-
tions can be represented by Eq. 4. Here L is average latency,
B is bandwidth, and b is the amount of bits transferred. Here,
average latency is defined as the time it takes one bit to travel
through the network. This is equal to the propagation delay
(time to move through the physical layer) plus the queuing
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Figure 4. Using GSAP

delay (delay in routers due to queuing) plus the processing
delay (time to process the packet). Note that for most of the
team’s past applications an average latency of around 0.1 sec-
onds could be expected. Part of this was due to the complexity
of the connection. Some applications will have less.

tnet = n(L+ b/B) (4)

Using this equation, the total step time is represented in Eq. 5.
Here n is the number of times data is sent back and forth.
Note that this is true because none of the actions can be done

in parallel. That is, the output of path generation depends on
the output of decision making, which depends on the output
of prognostics.

tt = tnet + tp + tdm + ttg (5)

All the variables used in these equations are described below:

tt Total time to complete one step of UAS decision making

tp Time to perform risk factor prediction

tdm Time to perform decision making

tg Time to perform trajectory generation

tnet Network cost: the time required for data transmission
over the network

L Latency: time it takes one bit to travel through the net-
work

B Bandwidth: Capacity of the network (in bits per second,
bps)

b Bits transferred (data plus headers)

n Number of times that transfer must be made
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The below sections outline the advantages and disadvantages
of the four architectures considered.

4.1.1. Architecture 1: All On-Board

The first architecture option under consideration is to host all
three primary functions on-board the vehicle. This architec-
ture is illustrated in Fig. 5.

System 

Trajectory 
Generator 

Decision-Making Flight Management 
System 

Sensor Data 

Potential 
Trajectories 

Chosen 
Trajectory 

Control 
Risk-Factor 
Prediction 

Figure 5. On-Board Architecture for Decision-Making

The advantages and disadvantages of this architecture are de-
scribed below:

1. Advantages
(a) Less risk through reduced dependence on commu-

nications
(b) Reduced the communication requirements (band-

width, etc). This reduces the mass and cost of com-
munication equipment.

(c) Reduced communication time between the three
functions

2. Disadvantages
(a) Need to host computer capable of performing cal-

culations on-board
(b) Increased difficulty in upgrading components

A major consideration in total step time (tt). For this exam-
ple there is no network delay (tnet), so the step time can be
considered just the processing time, shown in Eq. 6. This is
considered the baseline for this activity.

tt = tp + tdm + ttg (6)

4.1.2. Architecture 2: Remote Prognostics

The second architecture option under consideration is to host
risk-factor prediction remotely using PaaS, while continuing
to host trajectory generation and decision making on-board.
This architecture is illustrated in Figure 6.

The advantages and disadvantages of this architecture are de-
scribed below:

System 

Trajectory 
Generator 

Decision-Making Flight Management 
System 

Sensor Data 

Potential 
Trajectories 

Chosen 
Trajectory 

Control 
Risk-Factor 
Prediction 

Figure 6. Cloud-based Architecture for DM using PaaS

1. Advantages
(a) Partially hosted remotely: This allows resource

sharing, and access to more powerful machines
(b) Somewhat reduced weight, size, and power (SWaP)

of on-board computer
2. Disadvantages

(a) Data has to be transmitted every iteration of the Pre-
diction, Decision Making, and Trajectory Genera-
tion.

(b) Network needs: Need to host a network hardware
capable of robustly handling communications

(c) Increased risk: Decision making now becomes de-
pendent on the network connection

For this architecture network delay is significant. It has three
parts, as seen in Eq. 7. The three parts are time to commu-
nicate sensor information to PaaS (tS→P ), time to commu-
nicate prognostic results to the decision maker (tP→D), and
time to communicate trajectories to test to PaaS (tG→P ). The
number of iterations of the prediction, decision making, tra-
jectory generation process is signified by ncyc, which can be
one in the case of an ideal trajectory generator. The complete
step-time can be seen in Eq. 8. Here t′p is the computation
time for running risk factor prediction remotely, which will
likely be less than that of running risk factor prediction on-
board (t′p < tp).

tnet = tS→P + ncyc ∗ (tP→D + tG→P ) (7)

tt = tnet + t′p + tdm + ttg (8)

4.1.3. Architecture 3: Remote Prognostics and Path Gen-
eration

The third architecture option under consideration is to host
risk-factor prediction (using PaaS) and path generation re-
motely, while continuing to host decision making on-board.
This architecture is illustrated in Fig. 7.
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Figure 7. Cloud-based Architecture for DM using PaaS

The advantages and disadvantages of this architecture are de-
scribed below:

1. Advantages
(a) More hosted remotely: This allows resource shar-

ing, and access to more powerful machines
(b) More reduced weight, size, and power (SWaP) of

on-board computer
2. Disadvantages

(a) Data has to be transmitted every iteration of the Pre-
diction, Decision Making, and Trajectory Genera-
tion.

(b) Network needs: Need to host a network hardware
capable of robustly handling communications

(c) Increased risk: Decision making now becomes de-
pendent on the network connection

For this architecture network delay is significant. Network
delay has three parts, as seen in Equation 9. The three parts
are time to communicate sensor information to PaaS (tS→P ),
time to communicate prognostic results to the decision maker
(tP→D), and time to decision making instructions to the path
generator (tD→G). The number of iterations of the prediction,
decision making, trajectory generation process is signified by
ncyc. The complete step-time can be seen in Equation 9. Here
t′tg is the computation time for running trajectory generation
remotely, which will likely be less than that of running trajec-
tory generation on-board (t′tg < ttg).

tnet = tS→P + nloops(tP→D + tD→G) (9)

tt = tnet + t′p + tdm + t′tg (10)

4.1.4. Architecture 4: All Remote

The final architecture option under consideration is to host all
critical funcitons remotely. This architecture is illustrated in
Fig. 8.

System 

Flight Management 
System 

Sensor Data 

Chosen 
Trajectory 

Control 
Trajectory 
Generator 

Risk-Factor 
Prediction 

Potential 
Trajectories 

Decision-Making 

Figure 8. Cloud-based Architecture for DM using PaaS

The advantages and disadvantages of this architecture are de-
scribed below:

1. Advantages
(a) Low network costs: Only have to transmit twice:

once to receive the sensor data, a second time to
send the results of decision making

(b) Most hosted remotely: This allows resource shar-
ing, and access to more powerful machines

(c) Most reduced weight, size, and power (SWaP) of
on-board computer

2. Disadvantages
(a) Network needs: Need to host a network hardware

capable of robustly handling communications
(b) Increased risk: Decision making now becomes de-

pendent on the network connection

For this architecture network delay is much lower than the ar-
chitectures 1 and 2. Network delay has two parts, as seen in
Eq. 11. The three parts are time to communicate sensor infor-
mation to PaaS (tS→P ) and time to decision making results
to the aircraft (tD→F ). Note that this transfer of information
is only done once per iteration, elimination the ncyc term.
The complete step-time can be seen in Eq 11. Here t′dm is
the computation time for running decision making remotely,
which will likely be less than that of running decision making
on-board (t′dm < tdm).

tnet = tS→P + tD→F (11)

tt = tnet + t′p + t′dm + t′tg (12)

5. CONCLUSION AND FUTURE WORK

The decision of architectures to choose for UAS decision
making is highly dependent on a) the ability of the vehicle
to host computers capable of performing these computations,

8
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b) the quality (reliability, bandwidth, latency) of communica-
tions, and c) risk tolerance of the mission.

In all cases there are advantages to hosting operations re-
motely. These include: shared resources (one server can host
capabilities for multiple vehicles), reduced on-board hosting
requirements, simplified updating, and increased capabilities.
There are also disadvantages, such as increased network re-
quirements, increased program risk due to reliance on net-
working, and, sometimes, increased step time when network
times (tnet) are greater than function step duration improve-
ments (t− t′) from running remotely.

For example: For a small Unmanned Aerial Systems (sUAS),
hosting computers capable of accurately and precisely per-
forming this kind of decision making technologies may not
be feasible. These systems might be forced to use completely
remote hosting. On the other end of the spectrum, critical
UAS may not tolerate relying on network connections for de-
cision making. These vehicles may decide to host on-board,
unless they can establish a very reliable connection.

One thing that is clear is that splitting the core functionality
of UAS decision making between on-board and remote oper-
ations will result in severe network delays, due to the number
of iterations (ncyc) of the predict, decision make, trajectory
generation loop performed. For that reason, it seems likely
that systems that require quick decision making should either
host all three functions on-board or remotely, not split them.

The next steps for this research include benchmarking algo-
rithm performance on different class computers and network
performance to provide numbers for a few examples of these
trade-offs. Future work could also include exploring reduced-
operation decision making client hosted on-board that can
take over in the case of a network failure in a completely-
remote architecture. Finally, future work includes testing and
benchmarking of the PaaS architecture with a real UAS sys-
tem to discover other design concerns.
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