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ABSTRACT

In many applications, there are a number of data sources that
can be collected and numerous features that can be calculated
from these data sources. The error of big data has lead many
to believe that the larger the data, the better the results. How-
ever, as the dimensionality of the data increases, the effects
of the curse of dimensionality become more prevalent. Fur-
ther, a large feature set also increases the computational cost
of data collection and feature calculation. In this study, we
evaluated four dimensionality reduction techniques as part
of a system for condition monitoring of a hydraulic actua-
tor. Two feature selection techniques, ReliefF and variable
importance, and two feature extraction techniques, principal
component analysis and autoencoders, are used to reduce the
input into three classification algorithms. We conclude that
variable importance in conjunction with the random forest al-
gorithm outperforms the other dimensionality reduction tech-
niques. Feature selection has the added advantage of being
able to remove data sources and features from the data col-
lection and feature calculation process that are not present in
the relevant feature subset.

1. INTRODUCTION

In many prognostics and health management (PHM) applica-
tions, there are a number of different data sources that could
be collected. Further, there are numerous types of features
that can be calculated from these data sources and used in
conjunction with machine learning algorithms to predict cur-
rent or future health states. The abundance of data sources
and possible features can lead to extremely large feature sets.
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As the size of the feature sets grows, the curse of dimensional-
ity (Jain, Duin, & Mao, 2000; Keogh & Mueen, 2011) begins
to degrade the performance of machine learning algorithms.
Data sets with a large number of observations must be col-
lected to overcome the downside of high-dimensional data.
However, in application, collecting very large data sets may
be very expensive or impossible due to limited resources.

Feature selection is one possible method for alleviating the
effects of the curse of dimensionality. Feature selection is
the process of selecting a subset of relevant features from the
larger set of collected features (Blum & Langley, 1997; Dash
& Liu, 1997; Guyon & Elisseeff, 2003). Feature extraction
is another method for addressing the curse of dimensionality
and constructs new features in a lower dimensional space than
the original feature set (Jain et al., 2000). Both of these meth-
ods are considered dimensionality reduction techniques. The
primary difference between these two methods is that feature
extraction requires all of the collected data while feature se-
lection only requires the data associated with the features in
the selected relevant subset.

In this paper, we evaluate feature selection and feature ex-
traction for condition monitoring of a hydraulic actuator. The
data set for the actuator and some initial results on classifi-
cation accuracy and computation time were presented at the
2016 Annual Conference for Prognostics and Health Man-
agement (Adams, Beling, Farinholt, et al., 2016). This prior
work used small feature sets of only 5 and 6 features so no
dimensionality reduction was necessary. We build upon our
previous work by first expanding the feature set to over 100
features. We then evaluate two feature selection methods and
two feature extraction methods. Our objective is to character-
ize the tradeoffs between lower dimensional data and classi-
fication accuracy.
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The ultimate goal of this project is to develop distributed
hardware that can monitor the health state of the actuator
while consuming as little power as possible. It is necessary
to minimize power consumption because these hydraulic ac-
tuators will be used on Naval vessels where electrical power
may be limited or not available. The distributed hardware
is being designed to run on a very small battery for several
years. The previous study evaluated several classification al-
gorithms on error rate and computation time. Computation
time is used as a surrogate for power consumption where it is
assumed that less computation equals less power consumed.
The previous study concluded that classification trees yield
a satisfactory trade-off between accuracy and computation
time. The random forest algorithm outperformed the clas-
sification trees in terms of accuracy, but the computation time
was much greater.

Our previous work did not evaluate the cost of collecting data
and calculating features. In the presented study, we begin by
assessing the performance of classifiers on feature sets of var-
ious sizes. There is significant evidence that feature extrac-
tion techniques can provide new feature representations that
are both smaller in size than the original data set and represen-
tative of the process (Hinton & Salakhutdinov, 2006; Vincent,
Larochelle, Bengio, & Manzagol, 2008; Vincent, Larochelle,
Lajoie, Bengio, & Manzagol, 2010). Many of these advances
in feature extraction are due to the development of deep learn-
ing techniques. However, feature selection could offer the
added advantage of eliminating the need for collecting some
data sources or calculating some features, and thus reducing
the cost of the data collection process. Further, we make the
assumption that when comparing feature sets a smaller fea-
ture set is preferred as long as the predictive accuracy is the
same. Further, in some applications, a smaller less costly fea-
ture set with lower predictive ability might be preferable over
a larger more costly feature set with better predictive ability.

This paper is organized in the following manner. Section 2
outlines background information on feature selection and fea-
ture extraction. Section 3 describes the experimental setup
and the collected data. Section 4 describes the dimension-
ality reduction techniques explored in this study. Section 5
presents the results from numerical experiments performed
on the data. Section 6 presents our conclusions and plans for
future work.

2. BACKGROUND

With the growth in the size of collected data sets, dimen-
sionality reduction has become a larger part of the model-
ing process. In fields where high-dimensional data is abun-
dant such as bioinformatics, dimensionality reduction has be-
come a prerequisite to model construction (Saeys, Inza, &
Larrañaga, 2007). In this section, we give background infor-

mation on feature selection and feature extraction and provide
a brief review of their use in PHM activities.

There are numerous methods for feature selection. One possi-
ble method is to exhaustively test every possible combination
of features, but this approach quickly becomes impractical as
the number of features grows. There are general feature selec-
tion techniques that can be applied to any model (Almuallim
& Dietterich, 1991; John, Kohavi, & Pfleger, 1994; Kira &
Rendell, 1992; Kohavi & John, 1997) and model specific
techniques (Adams, Beling, & Cogill, 2016; Law, Figueiredo,
& Jain, 2004). Senoussi et al. (Senoussi, Chebel-Morello,
Dena, & Zerhouni, 2011) develop a method for feature selec-
tion and classification for general fault detection systems. In
a more specific application, the Euclidean distance technique
has been used to select features for gear box fault diagnos-
tics (Li, Zhao, Yang, Zhao, & Teng, 2014). An ensemble of
feature selection techniques were used to select relevant con-
trol variables for IT infrastructure monitoring (Paljak, Koc-
sis, Égel, Tóth, & Pataricza, 2009). Minimum-redundancy
maximal-relevance has been used with support vector ma-
chines in a railcar diagnostics application (Shahidi, Maraini,
& Hopkins, 2016).

As with feature selection, there are a number of feature ex-
traction techniques. Generally, feature extraction is an unsu-
pervised process meaning class labels are not needed to ex-
tract the features. Many view this as a very attractive qual-
ity because labeled data can often be difficult and expensive
to collect. Further, the unsupervised nature of feature ex-
traction makes the methods robust to mislabeled data. One
of the most popular feature extraction techniques is principal
component analysis (PCA) and has been used for fault detec-
tion (Harmouche, Delpha, & Diallo, 2014), damage detection
(Shao, Hu, Wang, & Qi, 2014), and remaining useful life es-
timation (Benkedjouh, Medjaher, Zerhouni, & Rechak, 2015;
Le Son, Fouladirad, Barros, Levrat, & Iung, 2013). There are
several examples of autoencoders being used in PHM appli-
cations including diagnostics of rotating machinery (Verma,
Gupta, Sharma, & Sevakula, 2013), health indicator extrac-
tion (Hu, Palmé, & Fink, 2016), and structural health moni-
toring (Sarkar, Reddy, Giering, & Gurvich, 2016). Linear dis-
criminant analysis has been used to extract features for partial
discharge diagnostics (Yan, 2012).

3. EXPERIMENTAL SETUP AND DATA

In this section, we briefly outline the experimental setup and
the data set. For the numerical experiments, we use the data
collected in (Adams, Beling, Farinholt, et al., 2016). The ex-
perimental system is composed of two matched Moog Flo-
Tork 15,000 in.-lbf. rotary actuators that are coupled together
such that one serves as the actuator and the other as the load.
A 5-horsepower pump supplies 3000 psi of pressure at a 2
GPM flow rate to produce an actuation stroke time of approx-
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imately one second. We are interested in using data collected
during this actuation stroke to monitor the condition of the
actuator. An adjustable pressure relief valve with a range of
400-3000 psi sets the maximum system pressure. A turbine
flow meter is located on the inlet to the side of the actuator.
Temperature and pressure sensors are located at each inlet
and the gear case relief port. A rotary position sensor tracks
the angle of the actuator through its actuation stroke. Re-
sistive torque from the matched actuator is produced by the
backpressure generated when forcing fluid through a flow re-
striction. A friction braking can be applied using a manual
pump with a precision pressure gauge. Figures 1 and 2, both
originally printed in (Adams, Beling, Farinholt, et al., 2016),
display a schematic and a labeled photograph of the experi-
mental test stand..

This test stand is designed to simulate a number of common
faults for a hydraulic actuator. Further, it can simulate the
fault at different severity levels. A total of five different fault
conditions are simulated with a varying number of severity
levels. Several baseline conditions are also simulated. All
baseline conditions are considered normal operating condi-
tions and grouped into a single class. Under each simulated
condition, data from multiple actuation strokes are collected.

In the numerical experiments, we study two separate prob-
lems. The first, called the 6-Class problem, attempts to clas-
sify an observation into either the baseline condition or one
of the five fault conditions. The second, called the 24-Class
problem, attempts to classify an observation into either the
baseline condition or one of the 23 conditions with severity.
A binary problem was also studied in our previous work, but
it is omitted from this study. Table 1 displays class labels, a
description of each condition, and the number of observations
for each condition.

Data from three pressure gauges, three temperature gauges, a
flow meter, an angular position sensor, and an accelerometer
are collected during actuation. From these nine data streams
several features can be calculated. The mean, standard devi-
ation, skewness, and kurtosis are calculated on each of these
streams during actuation. These four moments are also calcu-
lated on the difference in pressure between pressure gauge 1
and 2. These four moments are also calculated on these data
sources for 5 and 10 data points past the end of the actuation
stroke (see Figure 3). A binary variable representing the di-
rection of the actuation stroke is also added to the feature set.
This results in a feature set of 121 features (120 calculated
features plus the binary direction feature).

4. METHODS

In this section, we outline the feature selection and feature ex-
traction methods used on the collected feature set described
in the previous section. Both feature selection methods rank
features from most important to least important and provide

a weight symbolizing the importance of each feature. Gener-
ally, the four methods used in this paper were selected due to
their prevalence in the literature and their ease of use. More
specifically, ReliefF and PCA have both been used as dimen-
sionality reduction methods in numerous machine learning
and PHM applications. Deep feature extraction using au-
toencoders was selected because of the growing popularity of
deep learning methods in machine learning and PHM appli-
cations. Variable importance was selected because this met-
ric is easily extracted from the training phase of the random
forest algorithm. Each of these methods has advantages and
disadvantages which will be discussed in their corresponding
subsections.

4.1. ReliefF

Relief is a feature selection algorithm first introduced in (Kira
& Rendell, 1992). This algorithm finds features that are sta-
tistically relevant to the provided class label. The original
version of the algorithm was designed for a binary classifica-
tion problem. At each instance of the algorithm, an observa-
tion is chosen at random and compared to the observation in
each class that is closest based on a distance measure. The
observation from the same class is called a near hit and the
observation from the other class is called a near miss. The
weight wl for the lth feature is updated by

wl = wl − (xl − xh
l ) + (xl − xm

l ), (1)

where xl is the lth feature value from the randomly chosen
sample, xh

l represents the feature value from the near hit, and
xm
l represents the feature value from the near miss.

ReliefF (Kononenko, 1994) is an extension of the original
Relief algorithm that can be used on multi-class problems.
In this paper, the MATLAB implementation of the ReliefF
algorithm is used. This version of the algorithm allows for
the number of closest neighbors to be selected. Ten neigh-
bors were chosen for both the 6-Class and 24-Class problems.
Selecting the number of neighbors in the ReliefF algorithm
can affect the results and is the primary disadvantage to this
method.

4.2. Variable Importance

The random forest algorithm can produce a variable impor-
tance metric. This metric is calculated by permuting the fea-
tures over all the trees in the forest and then calculating the
decrease in the out-of-bag error rate. The variable importance
metric as produced by MATLAB is this decrease in error di-
vided by the standard deviation. Features that are relevant
should cause the error to drop more than features that are ir-
relevant. We sort the variable importance of each feature in
the feature set and use this to rank features.
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Figure 1. Actuator test stand hydraulic layout, including instrumentation locations (CW, CCW indicate direction of shaft
rotation when pressure is applied) (Adams, Beling, Farinholt, et al., 2016).

There are several drawbacks to using this method as a gen-
eral feature selection technique. First, these metrics are de-
rived from the trained random forest and might not gener-
alize to other classifiers. Second, research has shown that
this metric can be biased when the scale of the feature differs
greatly or the number of categories for categorical variables
differ greatly (Strobl, Boulesteix, Zeileis, & Hothorn, 2007).
Third, this measure can also give preference to strongly
correlated features (Strobl, Boulesteix, Kneib, Augustin, &
Zeileis, 2008). The primary advantage of this method is that
it is easily extracted from the training phase of the random
forest algorithm, and that it tends to outperform other feature
selection methods when used with the random forest algo-
rithm because it is specific to this classifier.

4.3. PCA

PCA is one of the oldest and most widely used feature ex-
traction techniques. It uses an orthogonal transformation to
project features that may be correlated into a new feature
space where there is minimum correlation between the new
features. Let X be a matrix of data with N observations and
L features and let x(n) represent the nth row vector. This
data is transformed into the principal component space by
tk(n) = wk · x(n), where wk is the L-dimension loading vec-
tor and tk(n) is the kth component score. The weight of the
first principal component w1 is found by

w1 = argmax
{

wT XT Xw
wT w

}
. (2)

The subsequent principal components can be found by sub-
tracting the first k components from the data

X̂k = X−
k−1∑
m=1

XwmwT
m, (3)

and then finding the loadings

wk = argmax

{
wT X̂

T
X̂w

wT w

}
. (4)

Generally, a majority of variance resides in the first few prin-
cipal components. The dimensionality of the transformed
space can be reduced by only using the first k components.

PCA is a well developed method for feature extraction. The
primary disadvantages have to do with the underlying as-
sumptions such as that the component with the most variance
is the most important and that the collected data is Gaussian.
A majority of the collected data streams in this paper roughly
follows a Gaussian distribution.
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Figure 2. Detailed view of actuator/load, instrumentation locations, and leakage paths (Adams, Beling, Farinholt, et al., 2016).

Table 1. Fault Conditions and Class Labels

Cases # Observations Fault Condition 24-Class Label 6-Class Label

Baseline 2035 0 1 1
40 Hz 120 1 2 2
50 Hz 120 1 3 2

40 Hz 1000 PSI Backdrive/Opposing Load 20 2 4 3
50 Hz 1000 PSI Backdrive/Opposing Load 20 2 5 3
60 Hz 1000 PSI Backdrive/Opposing Load 129 2 6 3

60 Hz Bypass valve at 10% first turn 130 4 7 5
60 Hz Bypass valve at 25% first turn 69 4 8 5
60 Hz Bypass valve at 50% first turn 129 4 9 5

60 Hz Bypass valve at 100% first turn 129 4 10 5
60 Hz Leak Valve into case at 50% 83 5 11 6

60 Hz Leak Valve into case at 100% 139 5 12 6
60 Hz External load at 1500 PSI 129 3 13 4
60 Hz External load at 2500 PSI 130 3 14 4
60 Hz Opposing Load 1500 PSI 59 2 15 3

60 Hz External Load 250 PSI 62 3 16 4
60 Hz External Load 500 PSI 59 3 17 4

60 Hz External Load 1000 PSI 60 3 18 4
60 Hz Bypass valve at 5% first turn 60 4 19 5

60 Hz Bypass valve at 20% first turn 120 4 20 5
60 Hz Bypass valve at 150% first turn 59 4 21 5

60 Hz Leak Valve into case at 10% 60 5 22 6
60 Hz Leak Valve into case at 100% low heat 60 5 23 6

60 Hz Leak Valve into case at 100% high heat 60 5 24 6
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Figure 3. Angular position data. The red squares indicate
data collected during the actuation stroke or the active region.
The blue squares indicate data collected at rest or inactive.
The green squares indicate the after active region used for
calculating some features.

Figure 4. Basic structure of a single layer autoencoder.

4.4. Autoencoders

Autoencoders are an unsupervised feature extraction tech-
nique based on neural networks. Here, we explain an au-
toencoder with a single hidden layer (Figure 4) but this can
be easily expanded to multiple layers. Assume that there are
L inputs represented by x1, ..., xL and that the hidden layer
contains M nodes. The values at the M hidden nodes are
represented by

zm = h

(
L∑

l=1

ωlxl

)
, (5)

where h(·) is a non-linear transformation function and w rep-
resents weights. This is called the encoding step of the au-
toencoder. The decoding step reconstructs the input signals,
represented by x̂ using the same weights. The autoencoder is
trained using back propogation of the loss between the inputs
and the reconstruction

L(x, x̂) = ||x− x̂||2. (6)

Autoencoders have been growing in popularity due to their
success in extracting features in several domains. The pri-
mary disadvantage of this method is selecting the architecture
of the network, i.e. the number of layers and the number of
nodes in each layer. There is no method for this other than
trial and error.

5. NUMERICAL EXPERIMENTS

In this section, we outline the numerical experiments per-
formed on the data set. We begin by assessing the error and
total cost of the full feature set. Total cost refers to the sum of
the computation time for feature calculation and the average
testing time. All experiments are performed in MATLAB and
run on the University of Virginia high performance comput-
ing system – Rivanna. Basic MATLAB functions are used for
feature calculation and classification. The computation time
is calculated using the tic and toc functions in MATLAB. We
then perform test on a reduced feature set that removes fea-
tures with a large number of missing values. We conclude by
evaluating the dimensionality reduction techniques.

5.1. Full Feature Set

In order to establish a baseline, we first perform numerical
experiments on the full feature set. This set contains 121
features and has several observations with missing values.
Based on the experiments in (Adams, Beling, Farinholt, et
al., 2016), we evaluate three types of classifiers: k-nearest-
neighbor (KNN) (Bishop, 2006; Duda, Hart, & Stork, 2001;
Murphy, 2012), random forest (RF) (Breiman, 2001; Murphy,
2012), and classification trees (Tree) (Bishop, 2006; Duda et
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Figure 5. Error and total cost for 6 class 10-fold experiments.

Figure 6. Error and total cost for 6 class LOOCV experi-
ments.

Figure 7. Error and total cost for 24 class 10-fold experi-
ments.

Figure 8. Error and total cost for 24 class LOOCV experi-
ments.

al., 2001; Murphy, 2012). For this set of numerical experi-
ments, KNN classifiers with 1, 3, 5, 10, and 25 neighbors and
RF classifiers with 25, 50, 75, and 100 trees were evaluated.
Both a 10-fold cross validation (CV) and leave-one-out cross
validation (LOOCV) testing scheme were implemented.

Figures 5 to 8 display the results from this set of numeri-
cal experiments. The cost of feature extraction is the same
for all algorithms in this experiment. The difference in total
cost is solely attributed to the computation time for predic-
tion because the feature set is the same for classifiers. It is
interesting to note that while there is little difference between
the LOOCV and the 10-fold for RF and Tree, the prediction
time for KNN is much larger for the 10-fold experiments. The
prediction time for all algorithms increases for the 10-fold ex-
periments because the number of observations in the test set
is larger, and the presented testing time is the time to predict a
label for all observations in the test set. However, the increase
in prediction time for the KNN classifier is greater than for
the other two algorithms because KNN requires the calcula-
tion of distance, which contains several operations, while the
other two only have logical comparisons.

The RF algorithm has the lowest error rate but the Tree clas-
sifier has the lowest total cost. Selection of the optimal clas-
sifier depends on the stake holder assessment of error rate
versus total cost. This set of numerical experiments confirms
the overall results from the prior study but the larger feature
set has decreased the error rate for for the Tree and RF al-
gorithms. The error rate for KNN has increased due to the
effects of the curse of dimensionality.

5.2. Reduced Feature Set

The full feature set contains a number of features with a large
number of missing values. Our first effort to reduce the di-
mensionality of the feature set is to remove the features that
are missing more than 100 values. This value was chosen
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Figure 9. Error and total cost for 6 class 10-fold experiments
on reduced feature set.

Figure 10. Error and total cost for 6 class LOOCV experi-
ments on reduced feature set.

Figure 11. Error and total cost for 24 class 10-fold experi-
ments on reduced feature set.

Figure 12. Error and total cost for 24 class LOOCV experi-
ments on reduced feature set.

after observing the number of missing values for each fea-
ture. A majority of the features containing missing values had
more than 100. This results in a reduced set of 97 features.
The numerical experiments performed on the full feature set
are performed on this reduced feature set.

Figures 9 to 12 display the results for the numerical experi-
ments on the reduced feature set. Removing the 24 features
with a number of missing values only reduce the total feature
extraction time by 0.0034 s per observation, but the error rate
is reduced for all classifiers. While this reduction in compu-
tation time seems small on a per observation basis, with over
4000 observations in the data set this equates to a 13 second
reduction in feature calculation time. This set of numerical
experiments demonstrates that both error rate and total cost
can be reduced by reducing the size of the feature set.

5.3. Feature Selection and Feature Extraction

In this set of numerical experiments, we evaluate two feature
selection methods and two feature extraction methods. These
experiments use the reduced feature set that have the features
with a large number of missing values removed. The reduced
feature set still contains a small number of observations with
missing values. ReleifF and variable importance can accom-
modate data with missing values but PCA and autoencoders
cannot. When evaluating PCA and autoencoders, all missing
values are replaced with the mean of the data for that feature.

The feature selection techniques rank features in order of rel-
evance. We perform experiments by adding features to the
subset based on the rankings provided by the selection algo-
rithms, and then performing 10-fold CV to estimate the error
associated with the subset. The smallest feature subset in this
set of experiments is 5 and one feature is added until all 97 are
included. The features are added based on their ranking from
the feature selection algorithm. We perform similar experi-
ments with the feature extraction techniques where the size
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of the new reduced data set spans from 5 to 97. Based on
prior experiments, KNN with 1 neighbor, RF with 100 trees,
and Tree are used as the classifiers.

Figures 13 and 14 contain the results of the 6 class and 24
class experiments. The results are consistent across both ex-
periments. The random forest algorithm generally outper-
forms the other algorithms when using the same feature se-
lection or feature extraction technique. The feature selection
methods outperform the feature extraction methods when us-
ing RF and Tree. The autoencoder can outperform the other
methods when using KNN. This indicates that the autoen-
coder is extracting information from the data that transforms
into meaningful distances and not logical comparisons of be-
ing above or below certain thresholds.

The KNN classifier shows some interesting characteristics.
First, using the top five features selected by the ReliefF algo-
rithm yields a smaller error rate than all other classifier using
the same input dimension except the RF using variable impor-
tance on the 6 class problem and outperforms all other classi-
fiers with the same input dimension on the 24 class problem.
Second, the error rate when using PCA does not change much
with an increase in the number of components. This is most
likely due to a large proportion of the variance being charac-
terized by the first few principal components.

6. CONCLUSION

In this study, we evaluated four dimensionality reduction
techniques. We have demonstrated that the larger feature
set outperforms the smaller feature set collected in our pre-
vious study in terms of classification error. The first attempt
to reduce the size of the data was to remove features with
a large number of missing values. This reduction also im-
proves classification error. Finally, the variable importance
feature selection technique yields a relevant feature subset
that generally outperforms the other dimensionality reduction
techniques. Further, feature selection would allow for data
sources and features not in the selected feature subset to be
removed from the data collection and feature calculation pro-
cess. This would reduce the computational cost of this step
of the process. The feature extraction techniques would not
allow for this because all data sources must be collected and
all features must be calculated.

In future work on this project, we plan on further investigat-
ing of new features. At this point, we have limited the feature
set to statistical moments, but plan on exploring more com-
plex features. Further, the sampling rate of the data has not
been investigated. This is another factor that could effect the
cost of data collection and feature calculation as well as clas-
sification error. Finally, we plan on testing these classification
on hardware where power consumption instead of computa-
tion time can be used to assess the cost of each algorithm and
feature set.
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Figure 13. Error rate as dimension of input into each classification algorithm increases for the 6 class problem.

Figure 14. Error rate as dimension of input into each classification algorithm increases for the 24 class problem.
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