Fault Diagnosis and Prognosis Based on L ebesgue Sampling

Bin Zhang and Xiaofeng Wang

Department of Electrical Engineering, University of So@#rolina, Columbia SC, USA
zhangbin@cec.sc.edu
wangxi@cec.sc.edu

ABSTRACT damental enabling technologies of integrated system thealt

. . . . management include sensing, data acquisition, fault dragn
Traditional fault diagnosis and prognosis (FDP) approachesiS and prognosis (FDP), and decision-making, etc. Didgnos

are based on periodic samplingg. samples are taken and . ) .
: ; S and prognosis, as fundamental enabling techniques, are not
algorithms are executed both in a periodic manner. As the : ) :
) . . _hew concepts (Tumer & Bajwa, 2004; Vachtsevanos, Lewis,
volume of sensor data and complexity of algorithms keep in-

creasing, the bottleneck of FDP is mainly the limited Com_Roemer, Hess, & Wu, 2006; Zhang, Khawaja, Patrick, &
INg, L ainty o Vachtsevanos, 2008; Schwabacher & Goebel, 2007). Diag-
putational resources, which is especially true for distieiol

S . . nosis aims to monitor the health state of the component or
applications where FDP functions are deployed on microcon; .
L . the system such that the current health state can be obtained

trollers and embedded systems with limited computation re- . L - )
) : in real-time. The challenge in diagnosis is to detect padént

sources. This paper introduces the concept of Lebesgue sam-

S : ults as early and accurate as possible during the opeitio
pling in FDP and proposes a Lebesgue sampling based fauﬁmonitored system. Usually a fault cannot be measured di-

glc?s?en doilg_la:gdp p::\or?crn]\?esllzig_gigs?ii)pfr:ﬁ;ivgﬁ;kéf I,'?e;re]iu%rgnrectly. In Bayes theory, the fault state can be obtained by ap
' . : . plying Bayesian estimation with a fault diagnostic moded an
only when necessary” is developed in computation cost €] real-time measurement (Boskoski & Urevc, 2011; Zhang
duction and uncertainty management. For prognosis, diﬁerKhawaja Patrick & Vachtsevanos 2010'Zhar’lg SC(;nyers e’
ent from traditional approaches in which the prognostid-hor al 2009_’ Zhang ’Khawaja ot al 2'009_ Li Kurfe’ss & Liané
zon is on the time axis, the proposed approach defines pro%-d’oo_ Gc;ebel EI,<Iund Hu ’Avas;rala 8’<C’elaya 20'06' Gaebel
nostic horizon on the state axis. With a reduced prognostigaha’ & Saxe,na ZOOé) I,n the conte’xt of fault (’jiagnc;sis the
horizon, the LS-FDP naturally benefits the uncertainty man_real—ti’me measu’rement.s are often features or fault cmmd,iti
agement. The goalis to create the fundamental knoWledgef%dicators extracted from raw measurements, such as vibra-
LS-FDP solutions that are cost-efficient, capable for the de,. ’
ployment on systems with limited computation sources, ané'on' current, voltage.
supportive to the trend of distributed FDP schemes in comPrognosis refers to the generation of long-term predistion
plex systems. The design and implementation of LS-FDRhat describe the evolution of a fault and the estimatiomef t
based on particle filtering algorithms are presented with exremaining useful life (RUL) of a failing component or sub-

perimental results to verify the effectiveness of the pegab  system. In reliability study, there are many diagnostic and

approaches. prognostic approaches, such as Weibull-based risk distrib
tions (Kaminskiy, 2005), the graphical reliability degead
1. INTRODUCTION tion modeling approach (Huang & Dietrich, 2005), and the

degradation path curve approach (Lawless, 2003; Finle|ste
004; Yang, 2005), to name a few. For online prognosis,
ilter-based approaches are more promising, such as Kalman

filter (Celaya, Saxena, & Goebel, 2012), extended Kalman fil-

power plants, and various industrial systems (Tang, Zhanq ;
i er (Saha, Goebel, Poll, & Christophersen, 2009), unsdente
DeCastro, & Hettler, 2011; Tang, Hettler, Zhang, & Decas_Kalman filter (Anger, Schrader, & Klingauf, 2012), and par-

tro, 2011; DeCastro, Tang, & Zhang, 2011; Zhang, Tang, De:. : .
Castro, & Goebel, 2011; Balanban & Slonso, 2013). The fun:[ICIe filter (Zhang .Et al, 2010)' Compared thh many suc
cessful cases of diagnosis (Isermann, 2005; Zhong, Fang, &
Bin Zhang et al. This is an open-access article distributateuthe terms of Ye, 2007; Hess & Wells, 2003; Zhang et al., 2010; Zhang,
the Creative Co.mmons Attribution 3.0 United States Licemggch permits Sconyers, et al., 2009; Zhang' Khawaja' et al., 2009; Zhang

unrestricted use, distribution, and reproduction in anlire, provided the €t al., 2008; Oppenheimer & Loparo, 2002; Agogino, Bonis-
original author and source are credited.

Integrated System Health Management is a critical capgbili
required for many safety critical systems such as unmanne
air/ground/sea vehicles, aircraft, power generation Jearc
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sone, Goebel, & Vachtsevanos, 2001; Jardine, Lin, & BanFDP (LS-FDP) method, which is a cost efficient FDP ap-
jevic, 2006), prognosis is more challenging (Schwabacher &roach where computation can be executed on an “as-needed”
Goebel, 2007; Vachtsevanos et al., 2006; Edwards, Orchartdasis and is promising in reducing the computational cost
Tang, Goebel, & Vachtsevanos, 2010; Usynin & Hines, 2007compared with the traditional Riemann sampling-based FDP
Celaya et al., 2012). Major contributors to this difficultyi (RS-FDP) algorithms. In this new approach of FDP, the nov-
clude nonlinear nature of fault growth, absence of measureelty comes from the concept of “Lebesgue sampling (LS)” (or
ment, hybrid nature of fault modes, and various uncergsnti “event-based sampling”). Contrast to conventional peciod
saampling-based approaches, the computation in LS-FDP will
e triggered only when an event takes place, and the prog-

n (Goebel etal., 2008).' To evaluate the performance of FD nosis will be executed based on the LS-based model whose
different performance indexes were also developed (Saxena . X o .
States are predefined according to the quantization levigh. W

Celaya, Saha, Saha, & Goebel, 2009; Orchard & Vachtse;

) . ; the feature of “execution only when necessary” in LS, the
vanos, 2009). For diagnosis, the matrices are often retated . . R
o : . computation efforts in LS-FDP can be significantly reduced
false alarm rate, probability of detection, etc. For pragjsao

. : by eliminating unnecessary computation when fault grosth i
most matrices are evaluated in terms of accuracy and preci
sion of RUL estimation. These metrics are often offline eval- '

uated when failure has been physically reached and is coni-he paper is organized as follows: Section 2 provides an
pared with the RUL estimation from prognosis. overview of the proposed LS-FDP framework. Section 3 de-
velops a particle filtering based LS-FDP approach, which is

Traditional ways to design FDP algorithms adopt pe”Od'Cfollowed by experimental results on an epicycle planetary

sampling (also called "Riemann sampling (RS)") where sam. ear box presented in Section 4. Section 5 gives the con-

ples are taken in a periodic manner and the diagnostic an91 : : ;
. : . Cluding remarks with some future research topics.
prognostic algorithms are executed at the same rate. A nicé

feat_ure of_FDP W|th this flxed_t|me interval sgmphng is the 2 THE PROPOSED L S-FDP ERAMEWORK
easiness in analysis and design. However, it may be unde-
sirable in many situations, from the computation-efficienc This section will establish the complete LS-FDP framework
point of view. On the one hand, since the sampling period isvith an overview of the proposed solutions. The unique in-
determined according to the worst-case operating scenarioovative feature of the proposed LS-FDP is that the diag-
the FDP algorithm might be executed even if there is lit-nostic and prognostic algorithm is no longer carried out in a
tle new information actually present in the measurementdfixed time interval. Instead, the diagnosis is carried oy on

In other words, the algorithm may take greater utilizationwhen new measurements justify that the fault conditionghav
than it actually needs. This will result in significant over- changes to warrant the execution. The LS-FDP framework
provisioning of the real-time system hardware. On the otheis illustrated in Figure 1, which integrates external irgut
hand, when the fault grows very fast, it is expected to assighebesgue samples of feature and fault dimension, models for
more resources to the FDP algorithm so that it can takes momiagnosis and prognosis, and diagnostic and prognostie alg
frequent actions to provide accurate fault informationiclth  rithms.

obviously cannot be met by periodic sampling. For prognosis
RS-based FDP usually has a large prediction horizon, frorr

A comparison of several prognostic approaches can be fou

system

the time that a fault is detected at very early stage to adutur ’—\Dia A
time instant that the fault grows to the failure thresholtlisT Pfognostic

long-term prediction not only requires a lot computation re
sources, but also causes accumulation of uncertainties. Th
LS-FDP considers the prediction horizon in the fault dimen-

Data Feature algorithm
processing extraction

) . . . Operating Diagnostic] | ] LS-based Current fault
sion axis and described by the number fo fault states. This condition model ?| Diagnosis state pdf
provides a straightforward means to conduct prognosis tha Jinitialization
requires little computation resources. [Scheduled] Prognostic] | [ LS-based }__){ UL el

. rd . P
. . . . mission model rognosis
As the applications of FDP has increased rapidly, the heavy —

demand on computational resources makes existing FDP al-

gorithms very hard to be deployed on embedded systems that Figure 1. The implementation framework of LS-FDP

are widely used but have very limited computation capabili-

ties. This becomes the bottleneck that prevents the distrib

tion of FDP algorithms in complex systems. To break thisIn this paper, our focus is the introduction of Lebesgue sam-

bottleneck, cost-efficient FDP solutions must be developedpling into diagnosis and prognosis. Therefore, we will not

With this vision, we propose the Lebesgue sampling-basegliscuss data collection, preprocessing, and featureaictra
After a feature has been successfully extracted from data to
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indicate the growth of a fault, the performance and effiggenc linear function. Rather than conducting a long-term predic
of FDP relies greatly on the dynamic model that describes th&on on the time axis, this model calculates the RUL on each
fault behavior, and the diagnostic and prognostic algoréh Lebesgue state directly so that the prediction horizonés th

which will be elaborated in the following sections. number of Lebesgue states on the fault dimension axis. Since
the number of Lebesgue states on the fault dimension axis is
2.1. Fault Mechanism Modeling small, the prediction horizon for LS-based prognosis islsma

Assume that the actual fault growth dynamics can be desi:ribé”lnd will significantly reduce the computation.

by the following continuous-time differential equation: 2.2. The Concept of L ebesgue Sampling
@ = F(a,u) M) The concept of Lebesgue sampling can be illustrated through
an example of a crack on a planetary gear carrier plate in

wherea is the fault dimensiony is system input including hell . . 7h |
items (such as external environmental factors and op(gjratina elicopter main power transmission system (Zhang et al.,

modes) that have impacts on fault growth, d@nd) is a non- 2010). The seeded crack starts to grow from an initial value
linear function that describes the fault growth under the cu of 1.34 inches to 7.67 |n<_:hes n 1000 cycl_es of oper_atlo_n and
rent fault dimension with input. The feature or condition the ground truth crack dimension growth is shown in Figure

indicator, denoted by, is extracted from raw measurements 2. Itl IS clelar thatr:he fﬁult.gror\]/vth n the_rarégg% ?5[50’ 65|O]
and serves as the real-time measurement for FDP algorithn(?yC € is slower than that in the rang& = [650, 750] cycle.

Note that the mapping betwegranda can be described by a Using Rieman_n sampling-based FDP v_vith fix time interval,
nonlinear functiony — h(a). In most cases; is not measur- &5 shown in Figure 2(a), the FDP algorithms are executed at

able andy — a is employed such that we can usto indicate each cycle no matter if it is necessary. Since the fix time-inte

fault o directly. To simplify the description, we take— a in val is selected according to the worst-case scenario taguar
the following discussion ' tee tracking accuracy for fault growth in rangg, there are

many unnecessary calculations in rarige
To use this model in LS-FDP, we quantify the fault measure-

ments. Lebesgue sampling basically takes samples when the
difference between the current state and the last samale st
exceeds the pre-defined Lebesgue state length. Then the LS
based model of the fault dynamics in discrete-time can be
described as follows:

a(tis1) = alt) + fu(D, a(tr)) (2)

wherea(tx) is the Lebesgue statg, is thekth sampling in-
stant,D is the Lebesgue length, arfe-) is a nonlinear func-
tion.
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In traditional prognostic algorithm, there are two steps of
prognosis. The first step is the generation of a long-term-pre L _ - S J
ication for the fault state pdf estimation. This is obtairgd ime (cycles)

recursive execution of the fault growth model. The second

step is the estimation of RUL, Wh_'Ch 'S essentially related t Figure 2. lllustration of LS. (a) RS with fixed time interval;
the probability of failure at future time instants. The RUfp () |S with fixed Lebesgue state length

is obtained by defining a failure threshold established from

historical data or empirical knowledge and comparing thisideally, we expect to reduce the number of FDP execution in
threshold with the long-term prediction of fault state dt al the rangeR, where the fault growth is slow so that more re-
the future time instants. Compared to diagnosis, prognosisources can be assigned to other tasks. In the rang& of
requires much more computational resources mainly becausghere the fault growth becomes fast, we increase the num-
of long-term predication, especially when the predictiorih  ber of FDP execution by assigning more resources to FDP
zon is large, which is not a rare case in FDP applications. Teasks. This setting is desirable in FPGA-based embedded sys
reduce computation time and resources, a new model is dgems where resources are dynamically reconfigurable and are

~
T

crack length (inches)

R

2

o

veloped in the LS-FDP as follows: assigned to different tasks in realtime. With this configura
. tion, a balance between computation and performance can be
thtr =tk + gu(D; a(tk)) (3)  achieved. This strategy however involves time-varying-sam

Note that&(tk) = f(a(ty), u(ty)) andg: (D, é(tk)) isanon- Pling periods thatis not an easy task within the Riemann sam-
pling framework. With Lebesgue sampling, the realizatibn o
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this strategy becomes natural. By defining Lebesgue states 02.4. L ebesgue Sampling-Based Prognosis

the vertical axis .O.f fault dimension (crack length in this-fig When a fault is detected &t, a time distribution is initialized
ure), fewer transitions between states are made when the fau - o : : )
s the initial condition for prognosis. By Riemann sampling

growth is slow while more transitions are made when the faul : 2
. A ased prognosis, the prediction is conducted from the ntrre
growth is fast. For the example shown in Figure 2.(b), only. : . . .
o ’ . time instantt.,, ren: to future time instants tilk ,;; when
5 Lebesgue states are visited during the 550 cycléd iand the fault state reaches a failure threshéld The prognos
4 states during the 100 cycles R, which means that the prog

’ . tic horizon[teyrrent, t e 1S Usually Iargé, especially at the
FDP only needs to be executed 5 times duditigand 4 times ) .
during R,. With this consideration, duringg,, more com- early stage of the fault or when the fault growth is slow. The

. . . rediction calculates the fault state at each fixed timevale
putation resources can be assigned to other tasks while only, .~ ~. . )
. : hich is demanding on the computational resources. More-
a little resources are needed for FDP. DuriRg, more re-

sources are assigned to FDP tasks so that the fault dimensicca)ﬁ/er’ prognostic uncertainty will grow rapidly with largeep

iction horizon.
can be tracked accurately.
With LS, a new prognostic philosophy is proposed. Suppose

2.3. Lebesgue Sampling-Based Diagnosis that the fault is detected at Lebesgue stgiethen we con-
. sider the discretized prognostic model with Lebesgue state
In the LS-FDP framework, the range of the stafe) is par {Fi, Fip1,- - , Fy }. The prognostic algorithm is implemented,

titioned into Lebesgue statgsd, Fy, - - -, Fy}, with which
the diagnostic model is discretized. The diagnostic atbori

is executed when an event happeres the state:(t) changes . ' .
from one Lebesgue state to another one (McCann & Le, poodlifferent Lebesgue statelsy, Fuyy, -+, Fy}. Meanwhile,
it will provide a RUL estimation on Lebesgue stdfg. Note

AS”‘”T‘ & Bernhard;son, 1999)[, The time |rlstant when 2 hat the prognostic horizon can be controlled by adjusting
event is generated is called the “event stamp”. The sequence

of the event stamps is denotedtasts, £5. - - -, which formu- ebesgue state length. Increasing the Lebesgue statdnlengt

lates a time series that can be used as the input of run-time d\f\”” decrease the number of events, which will reduce the

. . , . _required computational resources. The implementation pro
agnostic algorithms such as a Kalman filter-based or partmlcedure of the Lebesaue samplina-based broanosis can be il-
filter-based algorithm (Morales-Menendez, de Freitas, Mon 9 ping prog

terrey, Freitas, & Poole, 2002; de Freitas, 2002; Zhang. et allustrated in the flow charts shown in Figure 4.
2010; Zhang, Sconyers, et al., 2009; Orchard, Hevia-Koch,
Zhang, & Tang, 2013). The output of diagnostic algorithm is
the current fault state distribution at these event stampls a
the probability of fault detection. The implementation gze
dure of the Lebesgue sampling-based diagnosis can be illus-
trated in the flow charts shown in Figure 3.

together with the LS-based prognostic model, to calculage t
distributions of operation time when the fault state reache

fVCurrentfault i
y distribution |

4
| Lebesgue

states of fault j

Prognosis
initialization

Run prognosis

start

)

Diagnosis —— .
i s g. . Lebesgue
initialization

states of

DESSOTIENE, Figure 4. Flow chart of Lebesgue sampling-based prognosis

Distributions of
operation time
for fault reaching
Lebesgue states

3. METHODOLOGY DEVELOPMENT

Wait for event;

update time stamp 3.1. Particle Filter for L S-Based Diagnosis

Run diagnosis

The fault diagnosis is basically a state estimation problem
Current fault . . .
Jistebution which can be handled in a Bayesian framework. Mathemat-

ically, assume the unobserved fault proc&s® be a Markov
. . . . process characterized by initial distributipf( ) and the tran-
Figure 3. Flow chart of Lebesgue sampling-based d|agnos|§ition probabilityp(z |11 ) defined byx?(: Folzn1,wp)
with wj, being the process noise. The subsckipepresents
the kth event stamp caused by the transition of Lebesgue
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states. The observations are assumed to be conditionally wherez,, andz, 2 are a collection of Boolean states that
independent giverX . The distribution of( Y| X;) is defined  indicatenormal andfaulty conditions, respectively; is the

by yr = hi(zr,vx) with vy being observation noise. Let Lebesgue state that represents the fault dimensigandv
zo.k = {xo, -+ ,xx} andyr.x, = {y1, - - ,yx} denote the are process and observation noises, respectively, inde-
state and the observation up to ttté event. It is of interest pendent and identically distributed uniform white noised a
to estimate thgosterior distributionp(xo.x|y1.x). The task  w is the external input. In this equation, is the event stamp
can be achieved by two sequential steps, pred|ct|on and filteindicating that there is a state transition event. As assume
ing. earlier, the feature valug(t; ) indicates the fault valué(ty)

In most nonlinear cases, however, analytical solutionsato n directly, in order to simplify the description.

exist. Alternatively, sequential Monte Carlo (SMC) methpd During the process of LS-based diagnosis, the diagnostic al
such as patrticle filter (Zhang et al., 2010), provide approxigorithmis executed only when the new measuremestiows

mate solution to state estimation that is used for faultmiag that significant information is included. For this purpabe,

sis. range of feature (also fault in this case) is divided intoréese

of Lebesgue states. If two successive measurements cause a

Assume that a set a¥ particles(w,iizl,xgzk ,) is available
such that they can be used to approximate a desired distrtl[amsmon of Lebesgue state, the diagnostic algorithrhiveil

bution 1 (0.1 ), where the superscript= 1,2, --- , N executed. Otherwise, it won't be executed.

denotesV particles located aty;;,_, andw;” , isthe weight 35 paytidie Filter for LS Based Prognosis
of theith particle at th€k — 1)th event. The objective is to
efficiently obtain a new set of particles(w'”, 2/} ) that can
approximate the distributiom (xo.x), Wheref:((f,C denotes lo-
cation of N new particles. In the context of SMC methodol-
ogy, a Monte Carlo approximation can be obtained as:

Prognosis estimates the RUL. In traditional RS-based progn
sis, the prediction is carried out with fix time interval frahe
current time instant.,, .+ to the time instanty,;; that fault
state reaches failure threshdlg. The particles are estimated
at each future time instant to approximate a fault stateidist
_ bution at that time instant (the first prognosis level). Then
& (Zo:x) Z wk (:vo:k — :E(()li) . 4) the fault distributions at all the future time instants aoene
pared with the failure thresholfly by applying the law of

_ total probability to calculate the RUL distribution (thecead
with SN, w,C = 1, whered denotes the Dirac-delta func- rognosis level).

tion. The weight can be updated in a recursive formula as: ) _ _
This RS-based prognostic approach often involves a laiagp pr

w (:vffl) w  hy, (y1 E (i>) and nostic horizon, especially at the early stage of a fault and
‘ w(i( )) (5) when the fault growth is slow. This large prognostic horizon

w,(j) = = 0”‘7(1.) ) causes two major issues. First, it is computationally expen

i w(% k) sive and not suitable for applications with limited computa

tional resource. Second, the uncertainty in prognosisisrin
To implement the above mentioned particle filtering basedent and will accumulate as the prediction horizon increases

by: the RUL becomes unreliable that cannot be used in decision-
making.
T t
[ ;E ; ] fb |: Ijigtzg ] +n(tk)) 5l Failurethrelshold .
ltrer) = alt) + fi (Dsaltn)) - waa(te) +waltr) . g T s
o R 0= H !
y(tr) = a(te) + v(ty) 2 | 2P ;
(6) gl B8 | |
with nonlinear mappingy(z) is given by S Ffl ®< a i
S & H
© |
T . T T uw e 3
_ < _ h >
fb(l') = { {(1) ?}T: I(:thlleS[el O] H - Hx [O 1] H ! i Prognosis horizon (Riemann sampling) i '
tO tcurrent tfail
and the initial condition is given by: Figure 5. Comparison of prognostic horizon
{ idJEgg } = { (1) ] , With LS, the prediction horizon reduces to the number of
d,2

Lebesgue states from the current Lebesgue dtat® fail-
ure thresholdF;. With this idea, each run of the prognostic
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algorithm guarantees that the fault has changed and an evehhe difference between RS-based and LS-based prognosis is
has been generated. As a result, a large amount of unneitlustrated in Figure 6. We assume that a fault is initiadize
essary computation can be avoided, which is impossible witlat an unknown time instamng. The fault is detected &t and
RS. It will not only reduce the requirements on computationaprognosis is activated from this time instant. For RS-based
resources, but also provide an intuitive way to manage unceprognosis in Figure 6(a), the prediction horizon[ts, ¢ ],
tainties in prognosis. The comparison of prognostic harizo wheret; is the time stamp when the prediction of all particles
with RS and LS is illustrated in Figure 5. pass the failure threshold. With a sampling period otthe
prognostic algorithm needs to recursively prediction all-p
ticles(ty — t1)/T steps and this is the most time-consuming
tos1 = tr 4+ ge(D, alty)) + wi(te) (7)  part of prognosis which limits many applications. In other
words, the prediction steps dte, - - - , tx, tg+1, tht2, -] ON
whereD is Lebesgue state length andt, ) is amodel noise. the horizontal time axis. The expectations of the distribu-
ions of the operating time to reach these Lebesgue states ar
SE t¢], of which the time intervals

In the context of LS, the prognostic model is given by:

With this model, the particles are defined on the time axi
instead of the fault dimension axis in RS-based prognosis. T t, e 6(F), HFrr), o
initialize the prognosis, a new set of particles is defined as could be uneven.

(w(LZ), t(Ll)), in which subscript. denotes the Lebesgue state, In the Lebesgue sampling-based prognosis, the prediotign h

w'" denotes the particle weight, angl’ denotes particle on 20N is [Fi, Fr] where Fy is the fault dimension that indi-
the time axis. The initial particles can be equally weightedCates the failure of the system. With a uniform Lebesgue
with w(Lz) — L Vi or from diagnosis. length ofD, there will be(Fy — F)/ D predication steps, a_nd
can be denoted d$", - - - , Fi, Fy1,- - - , F] on the verti-
Note that the prognosis is carried out with a model given bycal axis. The expectations of the distributions of the oper-
equation (7). The outcome is the distributions of the ofiegat  ating time for the fault reaching these Lebesgue states are
time for the fault state to reach each Lebesgue state. Therg—h oo t(F}),t(Fri1), - - 5], of which the time intervals
fore, in this LS-based prognosis, the RUL pdf is calculatedare uneven. In summary, the fundamental difference is that
directly at the Lebesgue stafe= F. RS-based prognosis calculates fault state distributigivan
time instants, while LS-based prognosis calculates tirse di
tribution at predefined Lebesgue states.

Fault

Failure threshold / 4. EXPERIMENTAL RESULTS

Distribution of
fault state at each
time instant

In this section, the proposed LS-FDP scheme with a parti-
cle filtering algorithm will be verified in a case study of an

?E;’:*;S P g epicyclic gear system in which a crack in the planetary car-
113 I il | rier plate is developed.
detection b} I L RUL pdf
_\_/_\TEW : i . /\ - 4.1. Planetary Gear Box
fo cmilemime el g The main transmission of Blackhawk and Seahawk helicopters
(a) RS-based prognosis employs a five-planet epicyclic gear system, which is a-criti

cal component directly related to the availability and saté
the vehicle. The fault is a crack in the planetary carrieteyla

as shown in Figure 7.
gt teshald ,%71\“% i A timely detection of crack and prediction of failure will ho
' only help the decision-making on mission planning and sys-
- tem reconf_iguration, butalso _improve the reliability anfésa
et Telbesgie of the vehicle. In the experiments, a fault of seeded crack
state grows with the evolving operation of the gearbox. The gear-

box operates over alarge number of Ground-Air-Ground (GAG)

detection ! ;
'"}FE‘MN ! ! o cycles at differenttorque levels. An accelerometer is nedin
’lo I ) e f(Fk+'z>f(FH>ltf at a fixed position to collect vibration data as crack length
currenttime  * grows. In our previous research, the vibration signal pro-
(b) LS-based prognosis cessing and feature extraction have been discussed and ap-
Figure 6. Comparison of RS-based prognosis and LS-basdyied in Riemann sampling based diagnosis and prognosis
prognosis (Chen, Zhang, Vachtsevanos, & Orchard, 2011; Chen, Zhang,
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In this figure, the top subfigure is the feature, given by blue
curve, compared with the filtered feature, given by magenta
curve. the bottom subfigure shows the comparison of base-
line pdf (green one) compared with the real-time estimation
pdf (red bars) at the cycle when the fault is detected. In this
experimental, 5% false alarm rate is defined and the fault de-
tection threshold is given by the blue vertical line. Notatth

in this RS-based diagnosis, the diagnostic algorithm needs
to execute 183 timd,e., every time when a new feature be-
comes available.

RS-FDP: Fault Diagnosis Feature
T T

Figure 7. Crack of planetary gear carrier plate.

N

=
©
T

& Vachtsevanos, 2012; Zhang, Khawaja, et al., 2009; Zhang,
Sconyers, et al., 2009; Zhang et al., 2008). In this sectien,
will use the crack growth data for verification of LS-FDP.
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Figure 9. Experimental result of RS-based diagnosis.

1
0 100 200 300 400 500 600 700 800 900 1000
Cycles of operation

As a fault is detected, prognostic algorithm is activated to
conduct the long-term predication and estimation of RUL.
The initial condition of prognostic algorithm is the faulate

The feature vectors is shown in Figure 8. Since a fault is?t the cycle when the fault is detected. The result of fault
seeded in the experiment, the data from the first 50 cycles a@oWth and RUL estimation is shown in Figure 10. To make
used as baseline data, which has a mean value of 1.5741, afi¢ figure clear, only the fault state pdf at the 183rd cycle is
our objective is to detect the real-time fault growth froristh Plotted _and_thg fault state pdf at other time instants are not
baseline crack length. Note that this feature value willgec  Shown in this figure. Instead, the expected value, upper and
as a direct indicator of fault dimension as fault crack langt lower bound of 95% confidence interval of the pdf at each
as described in Section 2. For prognosis, the failure tiolésh time instants are shown in this figure. Note that the progno-
is set as 4. The figure shows that the feature value reach&& needs to predict all particles from its current valuehat t

Figure 8. Feature vector for fault growth.

this threshold at around 750th cycle of operation. cycle 183 to the failure threshold value. In this figure, the
prediction horizon is about 700 cycles. To make the reagtim
4.1.1. RS-based Diagnosis and Prognosis implementation of prognosis possible, the number of padic

: . _ _ is reduced to 20.
To implement diagnosis and prognosis, a fault growth model

histogram on the horizontal axis. This process uses the law
a(tr41) = aty) + p1 - a(te)?? + w(ty) (8)  of total probabilities and can be mathematically descrieed

wherep; andp, are parameters andis a model noise.

N
ailure(t) = Pr ( Failurelz'? > F; ) w® (9
A particle filtering with 500 particles are implemented alnel t Praiture(?) ; ( e f> t ©

results of fault diagnosis is shown in Figure 9. The faultds d o _ _ _
tected at the 183rd cycle, at which the expected value of fauwhere superscriptti) is the index of particlesp faiure(t) is
state is 1.94 and the 95% confidence interval i89, 2.08].  the probability of failure at time, wt(l) = Pr(z = 2@)is
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the weight of particles at timg andz; is the predicted value expected value of fault state is 1.91 and the 95% confidence
of a particle at time. interval is[1.69, 2.08].

The RUL pdf is shown as the histogram in the figure. With

this figure, the predicted expectation of the failure timatis 2
the 588.6 cycle and the RUL life is 405.6 cycle. The 95% con-
fidence bound of the RUL pdf is given &8l3 767]. The un-
certainty caused by the long prediction horizon is verydarg
In addition, from feature vector, we can see that the feature

LS-FDP: Fault Diagnosis Feature
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value reaches 4 at around 750th cycle. The distance from the 0 50 16? 150 200
predicted expected value to this ground truth value is 161.4 LS~FOP: Faul Diagnoss Distrbution
cycle. 1
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Figure 11. Experimental result of LS-based diagnosis.
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: Same as the RS-FDP, as the fault is detected, prognostic algo
2t ; ] rithm becomes activated. Since the prediction horizon is on
the vertical axis, the initial condition of prognosis cahuse
‘ A ] the estimation result from diagnosis directly. Therefave,

0 200 Cytles of Operaton 800 1000 convert the fault state pdf at the time instant of fault detec

to a time distribution for fault reaching the current Lebesg

Figure 10. Experimental result of RS-based prognosis. state. This can be done by predicting those particle not yet
reach the current Lebesgue state to this state. Then equatio
(9) is used to obtain the initial time distribution for prazgis.
Note that for the prognosis shown in this figure, the predicti
For LS-based diagnosis, the feature value range [1.28 4.5Horizon is only 15 Lebesgue states, which is very small com-
is partitioned into 20 states. The diagnostic algorithmxis e pare to thatin RS-FDP, which is about 700 cycles. Therefore,
ecuted only when the collected feature value changes frorthe LS-FDP prognosis can afford the computation of 500 par-
one Lebesgue state to anothiee, an event happens. The ticles and we do not need to reduce the number of particles.
diagnostic model used in LS-based is given as:

4.1.2. LS-based Diagnosisand Prognosis

Since the prognosis is conducted on fault dimension axs, th

a(tpsr) = alty) + D - sgn(a(ty)) + wa(te) (10)  diagnostic model cannot be used as we described in Section
2. The prognostic model used in LS-based prognosis is given
wheresgn(-) is a sign function and,, is the model noise. as:

The diagnostic results are shown in Figure 11. In the par- ther =ty + D - exp(=a(te))) + we(tr) (11)

ticle filtering algorithm, 500 particles are used. The fasilt
detected at the 186th cycle. In the upper subfigure of Figur

11, the blue curve is the trajectory of feature values and th ebesgue state are plotted. Note that the time distribyitin

m(?tgeetnr:;lt iﬁ;vﬁa:fstgen?gﬁtrse%f;ur:i g\?;tp:r:gclﬁglgie:nr?oa! the Lebesgue state defined by the failure threshold diees t
9 9INORUL estimation pdf. In this figure, the predicted failure &m

tic algorithm does not execute. The lower subfigure shows L 0
the fault distribution at the time of detection, where theegr IS atthe 689.4 cycle and the RUL life is 503.6 cycle. The 95%

o : : . confidence bound of the RUL pdfis given[é81 747.6]. The
distribution is the baseline pdf while the magenta histogra Lo . .
) . o : . uncertainty is much smaller than that of Riemann-sampling
is the real-time fault distribution from diagnosis. The dlu : .
. S ; . based prognosis. When the predicted RUL pdf expected value

vertical line is the threshold of fault detection with 5%sfl : :

. . compared with the ground truth value of 750 cycle, the dif-
alarm rate. During these 186 cycles, there are 76 evieats,

the diagnostic algorithm only runs 76 times. The reductionference between them is 60.6 cycle.
of computational cost is 59.7%, which is a remarkable im-The advantages of Lebesgue sampling in fault diagnosis and
provement. At the 186th cycle when the fault is detected, thgprognosis are obvious from the comparison of above exper-

The prognosis results are shown in Figure 12. To make the
ﬁgure clear, only the time distribution pdf at a few selected
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LS-FDP: Fault Prognosis and RUL Distribution
LS-FDP, diagnostic model and prognostic model need to be
a5l Operation: 166 cycles developed separately because fault diagnosis is baseaon th
Detection; 186 growth of fault dimension while prognosis is based on the cal
culation of operation time to reach different Lebesgueestat
defined as different fault dimensions. Experimental rasult
from RS-FDP and LS-FDP on a planetary gear box with a
seeded fault are presented and compared to illustrate the ad
vantages of the proposed solution.
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The use of Lebesgue sampling concept in fault diagnosis and
prognosis are new in the research community of prognostic
Ls ‘ ‘ ‘ ‘ ‘ and health management. The paper only shows some prelim-
0 200 e of Operas 800 1000 inary results and there are many topics worth further rebear
efforts. Some of the next step research include: 1) In this pa
Figure 12. Experimental result of LS-based prognosis. per, the Lebesgue states are defined with uniform Lebesgue
length. For some applications, the optimal Lebesgue length
can be nonuniform and, therefore, the interval between $gloe

imental results. For the diagnosis, the two approaches shos?\;ates are not even. 2) U_n_certalnty management IN prognosis
the comparable performance. In terms of prognosis, the LSS Very important and critical. Although LS-FDP in many
FDP shows better performance in terms of accuracy and pré:_ases can re_duce the predlctlon horizon and is natur_ally ad-
cision. First, the introduction of Lebesgue sampling in FDP\’amtagequS in unce_rtalnty managemgnt, the the0r§t|cal and
greatly reduce the computation time and the requirement dfuantitatively analysfls needs.to be carrled outto pr.ovu:iég
computation resources without sacrificing the performancélnce for FDP aIgc_mthm design and |mplement§t|on. There
of diagnosis. Since prognosis in Riemann sampling frame&® Many uncertainty management efforts in Riemann sam-
work usually have a large prediction horizon, it often needd?!i"d based approaches and can be extended to LS-FDP ap-

more computation time and resources. This in consequend§0aches. 3) As we know, modeling is critical to the per-
becomes a main limitation of prognosis for those applicatio {ormance of FDP. The fault growth is a continuous process.
with fault tolerant control and reconfigurable control, wne 7" FDP. we discretize the model with Lebesgue sampling
the real-time calculation of RUL is critical. Another impor and therefore, itis necessary to investigate the accucesy |
tant issue with large prediction horizon in Riemann sanplin €@used by Lebesgue sampling. This result will provide a
is the significant accumulation of uncertainties in progmos 9uidance for us on how to optimally choose the Lebesgue
and the degradation of the performance of prognosis in term&.ates and Exergue length. 4) For many applications, diag-
of accuracy and precision. The introduction of Lebesgue san{!©SiS @nd prognosis is not the goal but just the startingtpoin
pling in FDP provide a natural solution for real-time imple- for fault toI_erance or system rec_onﬁ_guratlon. It |s_of great
mentation, especially on those systems (such as embeddBlierest to integrate the LS-FDP in Riemann sampling-based
systems) with limited computation capability. The preigiot and Lebesgue sampling-based system reconfigurable control

horizon of LS-FDP can be very small comparing to that ofdesign.
RS-FDP, this is very good in managing the uncertainties in
prognosis.
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