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ABSTRACT

Traditional fault diagnosis and prognosis (FDP) approaches
are based on periodic sampling,i.e. samples are taken and
algorithms are executed both in a periodic manner. As the
volume of sensor data and complexity of algorithms keep in-
creasing, the bottleneck of FDP is mainly the limited com-
putational resources, which is especially true for distributed
applications where FDP functions are deployed on microcon-
trollers and embedded systems with limited computation re-
sources. This paper introduces the concept of Lebesgue sam-
pling in FDP and proposes a Lebesgue sampling based fault
diagnosis and prognosis (LS-FDP) framework. In the pro-
posed LS-FDP, a novel diagnostic philosophy of “execution
only when necessary” is developed in computation cost re-
duction and uncertainty management. For prognosis, differ-
ent from traditional approaches in which the prognostic hori-
zon is on the time axis, the proposed approach defines prog-
nostic horizon on the state axis. With a reduced prognostic
horizon, the LS-FDP naturally benefits the uncertainty man-
agement. The goal is to create the fundamental knowledge for
LS-FDP solutions that are cost-efficient, capable for the de-
ployment on systems with limited computation sources, and
supportive to the trend of distributed FDP schemes in com-
plex systems. The design and implementation of LS-FDP
based on particle filtering algorithms are presented with ex-
perimental results to verify the effectiveness of the proposed
approaches.

1. INTRODUCTION

Integrated System Health Management is a critical capability
required for many safety critical systems such as unmanned
air/ground/sea vehicles, aircraft, power generation, nuclear
power plants, and various industrial systems (Tang, Zhang,
DeCastro, & Hettler, 2011; Tang, Hettler, Zhang, & DeCas-
tro, 2011; DeCastro, Tang, & Zhang, 2011; Zhang, Tang, De-
Castro, & Goebel, 2011; Balanban & Slonso, 2013). The fun-
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damental enabling technologies of integrated system health
management include sensing, data acquisition, fault diagno-
sis and prognosis (FDP), and decision-making, etc. Diagnosis
and prognosis, as fundamental enabling techniques, are not
new concepts (Tumer & Bajwa, 2004; Vachtsevanos, Lewis,
Roemer, Hess, & Wu, 2006; Zhang, Khawaja, Patrick, &
Vachtsevanos, 2008; Schwabacher & Goebel, 2007). Diag-
nosis aims to monitor the health state of the component or
the system such that the current health state can be obtained
in real-time. The challenge in diagnosis is to detect potential
faults as early and accurate as possible during the operation of
a monitored system. Usually a fault cannot be measured di-
rectly. In Bayes theory, the fault state can be obtained by ap-
plying Bayesian estimation with a fault diagnostic model and
a real-time measurement (Boskoski & Urevc, 2011; Zhang,
Khawaja, Patrick, & Vachtsevanos, 2010; Zhang, Sconyers, et
al., 2009; Zhang, Khawaja, et al., 2009; Li, Kurfess, & Liang,
2000; Goebel, Eklund, Hu, Avasarala, & Celaya, 2006; Goebel,
Saha, & Saxena, 2008). In the context of fault diagnosis, the
real-time measurements are often features or fault condition
indicators extracted from raw measurements, such as vibra-
tion, current, voltage.

Prognosis refers to the generation of long-term predictions
that describe the evolution of a fault and the estimation of the
remaining useful life (RUL) of a failing component or sub-
system. In reliability study, there are many diagnostic and
prognostic approaches, such as Weibull-based risk distribu-
tions (Kaminskiy, 2005), the graphical reliability degrada-
tion modeling approach (Huang & Dietrich, 2005), and the
degradation path curve approach (Lawless, 2003; Finkelstein,
2004; Yang, 2005), to name a few. For online prognosis,
filter-based approaches are more promising, such as Kalman
filter (Celaya, Saxena, & Goebel, 2012), extended Kalman fil-
ter (Saha, Goebel, Poll, & Christophersen, 2009), unscented
Kalman filter (Anger, Schrader, & Klingauf, 2012), and par-
ticle filter (Zhang et al., 2010). Compared with many suc-
cessful cases of diagnosis (Isermann, 2005; Zhong, Fang, &
Ye, 2007; Hess & Wells, 2003; Zhang et al., 2010; Zhang,
Sconyers, et al., 2009; Zhang, Khawaja, et al., 2009; Zhang
et al., 2008; Oppenheimer & Loparo, 2002; Agogino, Bonis-
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sone, Goebel, & Vachtsevanos, 2001; Jardine, Lin, & Ban-
jevic, 2006), prognosis is more challenging (Schwabacher &
Goebel, 2007; Vachtsevanos et al., 2006; Edwards, Orchard,
Tang, Goebel, & Vachtsevanos, 2010; Usynin & Hines, 2007;
Celaya et al., 2012). Major contributors to this difficulty in-
clude nonlinear nature of fault growth, absence of measure-
ment, hybrid nature of fault modes, and various uncertainties.

A comparison of several prognostic approaches can be found
in (Goebel et al., 2008). To evaluate the performance of FDP,
different performance indexes were also developed (Saxena,
Celaya, Saha, Saha, & Goebel, 2009; Orchard & Vachtse-
vanos, 2009). For diagnosis, the matrices are often relatedto
false alarm rate, probability of detection, etc. For prognosis,
most matrices are evaluated in terms of accuracy and preci-
sion of RUL estimation. These metrics are often offline eval-
uated when failure has been physically reached and is com-
pared with the RUL estimation from prognosis.

Traditional ways to design FDP algorithms adopt periodic
sampling (also called “Riemann sampling (RS)”) where sam-
ples are taken in a periodic manner and the diagnostic and
prognostic algorithms are executed at the same rate. A nice
feature of FDP with this fixed time interval sampling is the
easiness in analysis and design. However, it may be unde-
sirable in many situations, from the computation-efficiency
point of view. On the one hand, since the sampling period is
determined according to the worst-case operating scenario,
the FDP algorithm might be executed even if there is lit-
tle new information actually present in the measurements.
In other words, the algorithm may take greater utilization
than it actually needs. This will result in significant over-
provisioning of the real-time system hardware. On the other
hand, when the fault grows very fast, it is expected to assign
more resources to the FDP algorithm so that it can takes more
frequent actions to provide accurate fault information, which
obviously cannot be met by periodic sampling. For prognosis,
RS-based FDP usually has a large prediction horizon, from
the time that a fault is detected at very early stage to a future
time instant that the fault grows to the failure threshold. This
long-term prediction not only requires a lot computation re-
sources, but also causes accumulation of uncertainties. The
LS-FDP considers the prediction horizon in the fault dimen-
sion axis and described by the number fo fault states. This
provides a straightforward means to conduct prognosis that
requires little computation resources.

As the applications of FDP has increased rapidly, the heavy
demand on computational resources makes existing FDP al-
gorithms very hard to be deployed on embedded systems that
are widely used but have very limited computation capabili-
ties. This becomes the bottleneck that prevents the distribu-
tion of FDP algorithms in complex systems. To break this
bottleneck, cost-efficient FDP solutions must be developed.
With this vision, we propose the Lebesgue sampling-based

FDP (LS-FDP) method, which is a cost efficient FDP ap-
proach where computation can be executed on an “as-needed”
basis and is promising in reducing the computational cost
compared with the traditional Riemann sampling-based FDP
(RS-FDP) algorithms. In this new approach of FDP, the nov-
elty comes from the concept of “Lebesgue sampling (LS)” (or
“event-based sampling”). Contrast to conventional periodic
sampling-based approaches, the computation in LS-FDP will
be triggered only when an event takes place, and the prog-
nosis will be executed based on the LS-based model whose
states are predefined according to the quantization level. With
the feature of “execution only when necessary” in LS, the
computation efforts in LS-FDP can be significantly reduced
by eliminating unnecessary computation when fault growth is
slow.

The paper is organized as follows: Section 2 provides an
overview of the proposed LS-FDP framework. Section 3 de-
velops a particle filtering based LS-FDP approach, which is
followed by experimental results on an epicycle planetary
gear box presented in Section 4. Section 5 gives the con-
cluding remarks with some future research topics.

2. THE PROPOSED LS-FDP FRAMEWORK

This section will establish the complete LS-FDP framework
with an overview of the proposed solutions. The unique in-
novative feature of the proposed LS-FDP is that the diag-
nostic and prognostic algorithm is no longer carried out in a
fixed time interval. Instead, the diagnosis is carried out only
when new measurements justify that the fault conditions have
changes to warrant the execution. The LS-FDP framework
is illustrated in Figure 1, which integrates external inputs,
Lebesgue samples of feature and fault dimension, models for
diagnosis and prognosis, and diagnostic and prognostic algo-
rithms.

Figure 1. The implementation framework of LS-FDP

In this paper, our focus is the introduction of Lebesgue sam-
pling into diagnosis and prognosis. Therefore, we will not
discuss data collection, preprocessing, and feature extraction.
After a feature has been successfully extracted from data to

2



ANNUAL CONFERENCE OF THEPROGNOSTICS ANDHEALTH MANAGEMENT SOCIETY 2014

indicate the growth of a fault, the performance and efficiency
of FDP relies greatly on the dynamic model that describes the
fault behavior, and the diagnostic and prognostic algorithms,
which will be elaborated in the following sections.

2.1. Fault Mechanism Modeling

Assume that the actual fault growth dynamics can be described
by the following continuous-time differential equation:

ȧ = F (a, u) (1)

wherea is the fault dimension,u is system input including
items (such as external environmental factors and operating
modes) that have impacts on fault growth, andF (·) is a non-
linear function that describes the fault growth under the cur-
rent fault dimension with inputu. The feature or condition
indicator, denoted byy, is extracted from raw measurements
and serves as the real-time measurement for FDP algorithm.
Note that the mapping betweeny anda can be described by a
nonlinear functiony = h(a). In most cases,a is not measur-
able andy = a is employed such that we can usey to indicate
fault a directly. To simplify the description, we takey = a in
the following discussion.

To use this model in LS-FDP, we quantify the fault measure-
ments. Lebesgue sampling basically takes samples when the
difference between the current state and the last sampled state
exceeds the pre-defined Lebesgue state length. Then the LS-
based model of the fault dynamics in discrete-time can be
described as follows:

â(tk+1) = â(tk) + ft(D, ˙̂a(tk)) (2)

whereâ(tk) is the Lebesgue state,tk is thekth sampling in-
stant,D is the Lebesgue length, andft(·) is a nonlinear func-
tion.

In traditional prognostic algorithm, there are two steps of
prognosis. The first step is the generation of a long-term pred-
ication for the fault state pdf estimation. This is obtainedby
recursive execution of the fault growth model. The second
step is the estimation of RUL, which is essentially related to
the probability of failure at future time instants. The RUL pdf
is obtained by defining a failure threshold established from
historical data or empirical knowledge and comparing this
threshold with the long-term prediction of fault state at all
the future time instants. Compared to diagnosis, prognosis
requires much more computational resources mainly because
of long-term predication, especially when the prediction hori-
zon is large, which is not a rare case in FDP applications. To
reduce computation time and resources, a new model is de-
veloped in the LS-FDP as follows:

tk+1 = tk + gt(D, ˙̂a(tk)) (3)

Note that˙̂a(tk) = f(â(tk), u(tk)) andgt(D, ˙̂a(tk)) is a non-

linear function. Rather than conducting a long-term predic-
tion on the time axis, this model calculates the RUL on each
Lebesgue state directly so that the prediction horizon is the
number of Lebesgue states on the fault dimension axis. Since
the number of Lebesgue states on the fault dimension axis is
small, the prediction horizon for LS-based prognosis is small
and will significantly reduce the computation.

2.2. The Concept of Lebesgue Sampling

The concept of Lebesgue sampling can be illustrated through
an example of a crack on a planetary gear carrier plate in
a helicopter main power transmission system (Zhang et al.,
2010). The seeded crack starts to grow from an initial value
of 1.34 inches to 7.67 inches in 1000 cycles of operation and
the ground truth crack dimension growth is shown in Figure
2. It is clear that the fault growth in the rangeR1 = [50, 650]
cycle is slower than that in the rangeR2 = [650, 750] cycle.
Using Riemann sampling-based FDP with fix time interval,
as shown in Figure 2(a), the FDP algorithms are executed at
each cycle no matter if it is necessary. Since the fix time inter-
val is selected according to the worst-case scenario to guaran-
tee tracking accuracy for fault growth in rangeR2, there are
many unnecessary calculations in rangeR1.
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Figure 2. Illustration of LS. (a) RS with fixed time interval;
(b) LS with fixed Lebesgue state length

Ideally, we expect to reduce the number of FDP execution in
the rangeR1 where the fault growth is slow so that more re-
sources can be assigned to other tasks. In the range ofR2

where the fault growth becomes fast, we increase the num-
ber of FDP execution by assigning more resources to FDP
tasks. This setting is desirable in FPGA-based embedded sys-
tems where resources are dynamically reconfigurable and are
assigned to different tasks in realtime. With this configura-
tion, a balance between computation and performance can be
achieved. This strategy however involves time-varying sam-
pling periods that is not an easy task within the Riemann sam-
pling framework. With Lebesgue sampling, the realization of
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this strategy becomes natural. By defining Lebesgue states on
the vertical axis of fault dimension (crack length in this fig-
ure), fewer transitions between states are made when the fault
growth is slow while more transitions are made when the fault
growth is fast. For the example shown in Figure 2.(b), only
5 Lebesgue states are visited during the 550 cycles inR1 and
4 states during the 100 cycles inR2, which means that the
FDP only needs to be executed 5 times duringR1 and 4 times
duringR2. With this consideration, duringR1, more com-
putation resources can be assigned to other tasks while only
a little resources are needed for FDP. DuringR2, more re-
sources are assigned to FDP tasks so that the fault dimension
can be tracked accurately.

2.3. Lebesgue Sampling-Based Diagnosis

In the LS-FDP framework, the range of the statea(t) is par-
titioned into Lebesgue states{F1, F2, · · · , Ff}, with which
the diagnostic model is discretized. The diagnostic algorithm
is executed when an event happens,i.e. the statea(t) changes
from one Lebesgue state to another one (McCann & Le, 2008;
Astrom & Bernhardsson, 1999). The time instant when an
event is generated is called the “event stamp”. The sequence
of the event stamps is denoted ast1, t2, t3, · · · , which formu-
lates a time series that can be used as the input of run-time di-
agnostic algorithms such as a Kalman filter-based or particle
filter-based algorithm (Morales-Menendez, de Freitas, Mon-
terrey, Freitas, & Poole, 2002; de Freitas, 2002; Zhang et al.,
2010; Zhang, Sconyers, et al., 2009; Orchard, Hevia-Koch,
Zhang, & Tang, 2013). The output of diagnostic algorithm is
the current fault state distribution at these event stamps and
the probability of fault detection. The implementation proce-
dure of the Lebesgue sampling-based diagnosis can be illus-
trated in the flow charts shown in Figure 3.

Figure 3. Flow chart of Lebesgue sampling-based diagnosis

2.4. Lebesgue Sampling-Based Prognosis

When a fault is detected attd, a time distribution is initialized
as the initial condition for prognosis. By Riemann sampling-
based prognosis, the prediction is conducted from the current
time instanttcurrent to future time instants tilltfail when
the fault state reaches a failure thresholdFf . The prognos-
tic horizon[tcurrent, tfail] is usually large, especially at the
early stage of the fault or when the fault growth is slow. The
prediction calculates the fault state at each fixed time interval,
which is demanding on the computational resources. More-
over, prognostic uncertainty will grow rapidly with large pre-
diction horizon.

With LS, a new prognostic philosophy is proposed. Suppose
that the fault is detected at Lebesgue stateFd, then we con-
sider the discretized prognostic model with Lebesgue states
{Fd, Fd+1, · · · , Ff}. The prognostic algorithm is implemented,
together with the LS-based prognostic model, to calculate the
distributions of operation time when the fault state reaches
different Lebesgue states{Fd, Fd+1, · · · , Ff}. Meanwhile,
it will provide a RUL estimation on Lebesgue stateFf . Note
that the prognostic horizon can be controlled by adjusting
Lebesgue state length. Increasing the Lebesgue state length
will decrease the number of events, which will reduce the
required computational resources. The implementation pro-
cedure of the Lebesgue sampling-based prognosis can be il-
lustrated in the flow charts shown in Figure 4.

Figure 4. Flow chart of Lebesgue sampling-based prognosis

3. METHODOLOGY DEVELOPMENT

3.1. Particle Filter for LS-Based Diagnosis

The fault diagnosis is basically a state estimation problem,
which can be handled in a Bayesian framework. Mathemat-
ically, assume the unobserved fault processX to be a Markov
process characterized by initial distributionp(x0) and the tran-
sition probabilityp(xk|xk−1) defined byxk = fk(xk−1, ωk)
with ωk being the process noise. The subscriptk represents
the kth event stamp caused by the transition of Lebesgue
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states. The observationsY are assumed to be conditionally
independent givenX . The distribution of(Yk|Xk) is defined
by yk = hk(xk, vk) with vk being observation noise. Let
x0:k = {x0, · · · , xk} andy1:k = {y1, · · · , yk} denote the
state and the observation up to thekth event. It is of interest
to estimate theposterior distributionp(x0:k|y1:k). The task
can be achieved by two sequential steps, prediction and filter-
ing.

In most nonlinear cases, however, analytical solutions do not
exist. Alternatively, sequential Monte Carlo (SMC) methods,
such as particle filter (Zhang et al., 2010), provide approxi-
mate solution to state estimation that is used for fault diagno-
sis.

Assume that a set ofN particles(w(i)
k−1, x

(i)
0:k−1) is available

such that they can be used to approximate a desired distri-
butionπk−1(x0:k−1), where the superscripti = 1, 2, · · · , N

denotesN particles located atx(i)
0:k−1 andw(i)

k−1 is the weight
of the ith particle at the(k − 1)th event. The objective is to

efficiently obtain a new set ofN particles(w(i)
k , x̄

(i)
0:k) that can

approximate the distributionπk(x0:k), wherex̄(i)
0:k denotes lo-

cation ofN new particles. In the context of SMC methodol-
ogy, a Monte Carlo approximation can be obtained as:

πk(x0:k) =
N
∑

i=1

w
(i)
k δ

(

x0:k − x̄
(i)
0:k

)

. (4)

with
∑N

i=1 w
(i)
k = 1, whereδ denotes the Dirac-delta func-

tion. The weight can be updated in a recursive formula as:

w
(

x̄
(i)
0:k

)

= w
(i)
k−1hk

(

y1:k|x̄
(i)
0:k

)

and

w
(i)
k =

w
(

x̄
(i)
0:k

)

∑

N

i=1 w
(

x̄
(i)
0:k

) .
(5)

To implement the above mentioned particle filtering based
fault diagnosis with LS, an LS-based diagnostic model is given
by:


















[

xd,1(tk+1)
xd,2(tk+1)

]

= fb

([

xd,1(tk)
xd,2(tk)

]

+ n(tk)

)

â(tk+1) = â(tk) + ft

(

D, ˙̂a(tk)
)

· xd,2(tk) + ωa(tk)

y(tk) = â(tk) + v(tk)
(6)

with nonlinear mappingfb(x) is given by

fb(x) =

{

[1 0]
T
, if ‖x− [1 0]

T
‖ ≤ ‖x− [0 1]

T
‖

[0 1]
T
, otherwise.

and the initial condition is given by:
[

xd,1(0)
xd,2(0)

]

=

[

1
0

]

,

wherexd,1 andxd,2 are a collection of Boolean states that
indicatenormal and faulty conditions, respectively,̂a is the
Lebesgue state that represents the fault dimension,ωa andv
are process and observation noises, respectively,n is inde-
pendent and identically distributed uniform white noise, and
u is the external input. In this equation,tk is the event stamp
indicating that there is a state transition event. As assumed
earlier, the feature valuey(tk) indicates the fault valuêa(tk)
directly, in order to simplify the description.

During the process of LS-based diagnosis, the diagnostic al-
gorithm is executed only when the new measurementy shows
that significant information is included. For this purpose,the
range of feature (also fault in this case) is divided into a series
of Lebesgue states. If two successive measurements cause a
transition of Lebesgue state, the diagnostic algorithm will be
executed. Otherwise, it won’t be executed.

3.2. Particle Filter for LS-Based Prognosis

Prognosis estimates the RUL. In traditional RS-based progno-
sis, the prediction is carried out with fix time interval fromthe
current time instanttcurrent to the time instanttfail that fault
state reaches failure thresholdFf . The particles are estimated
at each future time instant to approximate a fault state distri-
bution at that time instant (the first prognosis level). Then,
the fault distributions at all the future time instants are com-
pared with the failure thresholdFf by applying the law of
total probability to calculate the RUL distribution (the second
prognosis level).

This RS-based prognostic approach often involves a large prog-
nostic horizon, especially at the early stage of a fault and
when the fault growth is slow. This large prognostic horizon
causes two major issues. First, it is computationally expen-
sive and not suitable for applications with limited computa-
tional resource. Second, the uncertainty in prognosis is inher-
ent and will accumulate as the prediction horizon increases.
When the uncertainty becomes too large, the estimation of
the RUL becomes unreliable that cannot be used in decision-
making.

Figure 5. Comparison of prognostic horizon

With LS, the prediction horizon reduces to the number of
Lebesgue states from the current Lebesgue stateFj to fail-
ure thresholdFf . With this idea, each run of the prognostic
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algorithm guarantees that the fault has changed and an event
has been generated. As a result, a large amount of unnec-
essary computation can be avoided, which is impossible with
RS. It will not only reduce the requirements on computational
resources, but also provide an intuitive way to manage uncer-
tainties in prognosis. The comparison of prognostic horizon
with RS and LS is illustrated in Figure 5.

In the context of LS, the prognostic model is given by:

tk+1 = tk + gt(D, ˙̂a(tk)) + ωt(tk) (7)

whereD is Lebesgue state length andωt(tk) is a model noise.

With this model, the particles are defined on the time axis
instead of the fault dimension axis in RS-based prognosis. To
initialize the prognosis, a new set ofN particles is defined as
(w

(i)
L , t

(i)
L ), in which subscriptL denotes the Lebesgue state,

w
(i)
L denotes the particle weight, andt(i)L denotes particle on

the time axis. The initial particles can be equally weighted
with w

(i)
L = 1

N
, ∀i or from diagnosis.

Note that the prognosis is carried out with a model given by
equation (7). The outcome is the distributions of the operating
time for the fault state to reach each Lebesgue state. There-
fore, in this LS-based prognosis, the RUL pdf is calculated
directly at the Lebesgue stateL = Ff .

(a) RS-based prognosis

(b) LS-based prognosis

Figure 6. Comparison of RS-based prognosis and LS-based
prognosis

The difference between RS-based and LS-based prognosis is
illustrated in Figure 6. We assume that a fault is initialized
at an unknown time instantt0. The fault is detected att1 and
prognosis is activated from this time instant. For RS-based
prognosis in Figure 6(a), the prediction horizon is[t1, tf ],
wheretf is the time stamp when the prediction of all particles
pass the failure threshold. With a sampling period ofT , the
prognostic algorithm needs to recursively prediction all par-
ticles(tf − t1)/T steps and this is the most time-consuming
part of prognosis which limits many applications. In other
words, the prediction steps are[t1, · · · , tk, tk+1, tk+2, · · · ] on
the horizontal time axis. The expectations of the distribu-
tions of the operating time to reach these Lebesgue states are
[t1, · · · , t(Fk), t(Fk+1), · · · , tf ], of which the time intervals
could be uneven.

In the Lebesgue sampling-based prognosis, the prediction hori-
zon is [F1, Ff ] whereFf is the fault dimension that indi-
cates the failure of the system. With a uniform Lebesgue
length ofD, there will be(Ff−F1)/D predication steps, and
can be denoted as[F1, · · · , Fk, Fk+1, · · · , Ff ] on the verti-
cal axis. The expectations of the distributions of the oper-
ating time for the fault reaching these Lebesgue states are
[t1, · · · , t(Fk), t(Fk+1), · · · , tf ], of which the time intervals
are uneven. In summary, the fundamental difference is that
RS-based prognosis calculates fault state distribution atgiven
time instants, while LS-based prognosis calculates time dis-
tribution at predefined Lebesgue states.

4. EXPERIMENTAL RESULTS

In this section, the proposed LS-FDP scheme with a parti-
cle filtering algorithm will be verified in a case study of an
epicyclic gear system in which a crack in the planetary car-
rier plate is developed.

4.1. Planetary Gear Box

The main transmission of Blackhawk and Seahawk helicopters
employs a five-planet epicyclic gear system, which is a criti-
cal component directly related to the availability and safety of
the vehicle. The fault is a crack in the planetary carrier plate,
as shown in Figure 7.

A timely detection of crack and prediction of failure will not
only help the decision-making on mission planning and sys-
tem reconfiguration, but also improve the reliability and safety
of the vehicle. In the experiments, a fault of seeded crack
grows with the evolving operation of the gearbox. The gear-
box operates over a large number of Ground-Air-Ground(GAG)
cycles at different torque levels. An accelerometer is mounted
at a fixed position to collect vibration data as crack length
grows. In our previous research, the vibration signal pro-
cessing and feature extraction have been discussed and ap-
plied in Riemann sampling based diagnosis and prognosis
(Chen, Zhang, Vachtsevanos, & Orchard, 2011; Chen, Zhang,
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Figure 7. Crack of planetary gear carrier plate.

& Vachtsevanos, 2012; Zhang, Khawaja, et al., 2009; Zhang,
Sconyers, et al., 2009; Zhang et al., 2008). In this section,we
will use the crack growth data for verification of LS-FDP.
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Figure 8. Feature vector for fault growth.

The feature vectors is shown in Figure 8. Since a fault is
seeded in the experiment, the data from the first 50 cycles are
used as baseline data, which has a mean value of 1.5741, and
our objective is to detect the real-time fault growth from this
baseline crack length. Note that this feature value will be used
as a direct indicator of fault dimension as fault crack length
as described in Section 2. For prognosis, the failure threshold
is set as 4. The figure shows that the feature value reaches
this threshold at around 750th cycle of operation.

4.1.1. RS-based Diagnosis and Prognosis

To implement diagnosis and prognosis, a fault growth model
needs to be developed. For Riemann sampling based diagno-
sis and prognosis, the fault growth model is given by:

â(tk+1) = â(tk) + p1 · a(tk)
p2 + ω(tk) (8)

wherep1 andp2 are parameters andω is a model noise.

A particle filtering with 500 particles are implemented and the
results of fault diagnosis is shown in Figure 9. The fault is de-
tected at the 183rd cycle, at which the expected value of fault
state is 1.94 and the 95% confidence interval is[1.79, 2.08].

In this figure, the top subfigure is the feature, given by blue
curve, compared with the filtered feature, given by magenta
curve. the bottom subfigure shows the comparison of base-
line pdf (green one) compared with the real-time estimation
pdf (red bars) at the cycle when the fault is detected. In this
experimental, 5% false alarm rate is defined and the fault de-
tection threshold is given by the blue vertical line. Note that
in this RS-based diagnosis, the diagnostic algorithm needs
to execute 183 time,i.e., every time when a new feature be-
comes available.
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Figure 9. Experimental result of RS-based diagnosis.

As a fault is detected, prognostic algorithm is activated to
conduct the long-term predication and estimation of RUL.
The initial condition of prognostic algorithm is the fault state
at the cycle when the fault is detected. The result of fault
growth and RUL estimation is shown in Figure 10. To make
the figure clear, only the fault state pdf at the 183rd cycle is
plotted and the fault state pdf at other time instants are not
shown in this figure. Instead, the expected value, upper and
lower bound of 95% confidence interval of the pdf at each
time instants are shown in this figure. Note that the progno-
sis needs to predict all particles from its current value at the
cycle 183 to the failure threshold value. In this figure, the
prediction horizon is about 700 cycles. To make the real-time
implementation of prognosis possible, the number of particles
is reduced to 20.

Then, the fault state pdf at each time instant is compared with
the failure threshold to obtain the RUL pdf, as shown in the
histogram on the horizontal axis. This process uses the law
of total probabilities and can be mathematically describedas:

pfailure(t) =

N
∑

i=1

Pr
(

Failure|x
(i)
t > Ff

)

w
(i)
t (9)

where superscript(i) is the index of particles,pfailure(t) is

the probability of failure at timet, w(i)
t = Pr(x = x(i)) is
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the weight of particles at timet, andxt is the predicted value
of a particle at timet.

The RUL pdf is shown as the histogram in the figure. With
this figure, the predicted expectation of the failure time isat
the 588.6 cycle and the RUL life is 405.6 cycle. The 95% con-
fidence bound of the RUL pdf is given as[443 767]. The un-
certainty caused by the long prediction horizon is very large.
In addition, from feature vector, we can see that the feature
value reaches 4 at around 750th cycle. The distance from the
predicted expected value to this ground truth value is 161.4
cycle.
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Figure 10. Experimental result of RS-based prognosis.

4.1.2. LS-based Diagnosis and Prognosis

For LS-based diagnosis, the feature value range [1.28 4.57]
is partitioned into 20 states. The diagnostic algorithm is ex-
ecuted only when the collected feature value changes from
one Lebesgue state to another,i.e. an event happens. The
diagnostic model used in LS-based is given as:

â(tk+1) = â(tk) +D · sgn( ˙̂a(tk)) + ωa(tk) (10)

wheresgn(·) is a sign function andωa is the model noise.

The diagnostic results are shown in Figure 11. In the par-
ticle filtering algorithm, 500 particles are used. The faultis
detected at the 186th cycle. In the upper subfigure of Figure
11, the blue curve is the trajectory of feature values and the
magenta curve is the filtered feature from particle filtering.
Note that the flat segments mean no event and the diagnos-
tic algorithm does not execute. The lower subfigure shows
the fault distribution at the time of detection, where the green
distribution is the baseline pdf while the magenta histogram
is the real-time fault distribution from diagnosis. The blue
vertical line is the threshold of fault detection with 5% false
alarm rate. During these 186 cycles, there are 76 events,i.e.,
the diagnostic algorithm only runs 76 times. The reduction
of computational cost is 59.7%, which is a remarkable im-
provement. At the 186th cycle when the fault is detected, the

expected value of fault state is 1.91 and the 95% confidence
interval is[1.69, 2.08].
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Figure 11. Experimental result of LS-based diagnosis.

Same as the RS-FDP, as the fault is detected, prognostic algo-
rithm becomes activated. Since the prediction horizon is on
the vertical axis, the initial condition of prognosis cannot use
the estimation result from diagnosis directly. Therefore,we
convert the fault state pdf at the time instant of fault detection
to a time distribution for fault reaching the current Lebesgue
state. This can be done by predicting those particle not yet
reach the current Lebesgue state to this state. Then equation
(9) is used to obtain the initial time distribution for prognosis.
Note that for the prognosis shown in this figure, the prediction
horizon is only 15 Lebesgue states, which is very small com-
pare to that in RS-FDP, which is about 700 cycles. Therefore,
the LS-FDP prognosis can afford the computation of 500 par-
ticles and we do not need to reduce the number of particles.

Since the prognosis is conducted on fault dimension axis, the
diagnostic model cannot be used as we described in Section
2. The prognostic model used in LS-based prognosis is given
as:

tk+1 = tk +D · exp(− ˙̂a(tk))) + ωt(tk) (11)

The prognosis results are shown in Figure 12. To make the
figure clear, only the time distribution pdf at a few selected
Lebesgue state are plotted. Note that the time distributionpdf
at the Lebesgue state defined by the failure threshold gives the
RUL estimation pdf. In this figure, the predicted failure time
is at the 689.4 cycle and the RUL life is 503.6 cycle. The 95%
confidence bound of the RUL pdf is given as[601 747.6]. The
uncertainty is much smaller than that of Riemann-sampling
based prognosis. When the predicted RUL pdf expected value
compared with the ground truth value of 750 cycle, the dif-
ference between them is 60.6 cycle.

The advantages of Lebesgue sampling in fault diagnosis and
prognosis are obvious from the comparison of above exper-

8



ANNUAL CONFERENCE OF THEPROGNOSTICS ANDHEALTH MANAGEMENT SOCIETY 2014

0 200 400 600 800 1000

1.5

2

2.5

3

3.5

4

4.5

5

Cycle of Operation

F
ea

tu
re

 V
al

ue

LS−FDP: Fault Prognosis and RUL Distribution

 Operation: 186 cycles
 Detection: 186

Figure 12. Experimental result of LS-based prognosis.

imental results. For the diagnosis, the two approaches show
the comparable performance. In terms of prognosis, the LS-
FDP shows better performance in terms of accuracy and pre-
cision. First, the introduction of Lebesgue sampling in FDP
greatly reduce the computation time and the requirement of
computation resources without sacrificing the performance
of diagnosis. Since prognosis in Riemann sampling frame-
work usually have a large prediction horizon, it often needs
more computation time and resources. This in consequence
becomes a main limitation of prognosis for those applications
with fault tolerant control and reconfigurable control, where
the real-time calculation of RUL is critical. Another impor-
tant issue with large prediction horizon in Riemann sampling
is the significant accumulation of uncertainties in prognosis
and the degradation of the performance of prognosis in terms
of accuracy and precision. The introduction of Lebesgue sam-
pling in FDP provide a natural solution for real-time imple-
mentation, especially on those systems (such as embedded
systems) with limited computation capability. The prediction
horizon of LS-FDP can be very small comparing to that of
RS-FDP, this is very good in managing the uncertainties in
prognosis.

5. CONCLUSION AND FUTURE WORKS

This paper introduces a novel fault diagnosis and progno-
sis methodology that aims to: 1) introduce the concept of
Lebesgue sampling into FDP and develop a novel FDP ap-
proach with an philosophy of “execution only when neces-
sary” or an “as-needed” basis; and 2) enable the FDP on sys-
tems with limited computation capabilities, such as the em-
bedded systems, that are widely used in automobiles, dis-
tributed diagnosis and prognosis, complex systems and net-
worked systems. The methodology is composed of mathe-
matically rigourous modules including the definition of diag-
nosis and prognosis in the framework of Lebesgue sampling
with particle filtering. Other diagnostic and prognostic al-
gorithms can be applied in this framework similarly. In the

LS-FDP, diagnostic model and prognostic model need to be
developed separately because fault diagnosis is based on the
growth of fault dimension while prognosis is based on the cal-
culation of operation time to reach different Lebesgue states
defined as different fault dimensions. Experimental results
from RS-FDP and LS-FDP on a planetary gear box with a
seeded fault are presented and compared to illustrate the ad-
vantages of the proposed solution.

The use of Lebesgue sampling concept in fault diagnosis and
prognosis are new in the research community of prognostic
and health management. The paper only shows some prelim-
inary results and there are many topics worth further research
efforts. Some of the next step research include: 1) In this pa-
per, the Lebesgue states are defined with uniform Lebesgue
length. For some applications, the optimal Lebesgue length
can be nonuniform and, therefore, the interval between Lebesgue
states are not even. 2) Uncertainty management in prognosis
is very important and critical. Although LS-FDP in many
cases can reduce the prediction horizon and is naturally ad-
vantageous in uncertainty management, the theoretical and
quantitatively analysis needs to be carried out to provide guid-
ance for FDP algorithm design and implementation. There
are many uncertainty management efforts in Riemann sam-
pling based approaches and can be extended to LS-FDP ap-
proaches. 3) As we know, modeling is critical to the per-
formance of FDP. The fault growth is a continuous process.
For FDP, we discretize the model with Lebesgue sampling
and therefore, it is necessary to investigate the accuracy loss
caused by Lebesgue sampling. This result will provide a
guidance for us on how to optimally choose the Lebesgue
states and Exergue length. 4) For many applications, diag-
nosis and prognosis is not the goal but just the starting point
for fault tolerance or system reconfiguration. It is of great
interest to integrate the LS-FDP in Riemann sampling-based
and Lebesgue sampling-based system reconfigurable control
design.
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