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ABSTRACT 

Thrust is the main performance figure for a turbofan. The 

engine is sold for a given thrust and cannot be delivered under 

a minimum thrust level (EASA, 2010), requirement CS-E 40 

(f). Hence it is fundamental to accurately evaluate thrust. All 

individual engines are verified before delivering to the 

customer during pass-off tests. However, those tests are 

realized in different bench test cells, under different ambient 

conditions (pressure, temperature and humidity). All those 

context variations imply that the rough thrust measurement is 

far to be normalized. Moreover, the certification process 

proposes computation of thrust margin (𝑀) which is the 

relative difference between standard thrust (𝑇 ̅) and the 

specified value (𝑇0): 𝑀=(�̅�−𝑇0)/𝑇0. The standard thrust is 

obtained from the measurement in the bench test referred to 

standard ISA conditions at Sea Level Static. This is computed 

for each rating proposed for each type of engine. The ratings 

correspond to the ability to power a given aircraft but in this 

first study we only consider the most restrictive rating. 

Even so a scatter in the thrust margin is still observed. It has 

been found that the measurement of the thrust margin is 

particularly influenced by certain important components such 

as slave nacelle used for pass-off test and the bench itself. 

One of our objectives is to make the thrust margin 

independent of the test conditions and to reduce its scatter. 

This task is complicated by the fact that engine parts, such as 

fan blades, come from different suppliers and we also try to 

follow the production trends of each part supplier 

independently. 

 

The resolution technique consists in two steps. During the 

first step, we describe the evolution of the thrust margin 

independently of the absolute level resulting from one or 

more components of the bench. Once an average model 

evolution of the margin of thrust is set up for each supplier. 

The second step is to identify the average bias introduced by 

each component of the bench, those biases if troublesome are 

also normal and should be identified to improve our 

measurement capability. 

1. INTRODUCTION 

Turbofan components, such as fan blades, are produced by 

several suppliers each using their own different fabrication 

processes. It is natural to find variations between 

performances of engines, but with different sources of 

fabrication this variation is not only the result of process 

uncertainties but also of trends generated by each different 

production schemes. Furthermore, the production tests that 

verifies essential engine functions before delivering to an 

airline company is done in different bench test cells, under 

different ambient conditions, etc. A thermodynamic model is 

applied to compensate for weather variations but there still 

exists some second level residuals we may be catch to 

improve the measurements.  Anyway, performance trends are 

still perturbed by parasitic components not related to the 

turbofan constitution. As we will see below, they essentially 

depend on tests benches, tests bench components like slave 

cowls, sites and suppliers. Moreover, there is still missing 

data to explain the acquisition context and the bench test 

measurements should be confirmed and normalized. Here are 

some references about our previous work on bench test cells 

and normalization algorithms (Gouby, 2014; Lacaille, 2010; 

Lacaille & Bellas, 2014; Lacaille, Gerez, & Zouari, 2010).  

The goal of thrust margin modeling is to normalize the 

measurement against the effect of these heterogeneous 

conditions:  
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 So, for each supplier, we describe thrust margin 

evolution independently of the absolute level generated 

by the cowl and test bench.  

 For all measurements, we identify the bias introduced by 

test bench components. 

 Then, we estimate the thrust margin normalized gap 

between all suppliers.  

 

The study is about the thrust margin of the turbofan engine 

and the main component responsible for the thrust on such 

engine is the fan, but our approach is essentially data-based 

and does not use any other physical models than the ones used 

to refer the measured thrust to Sea Level Static ISA 

conditions, dry air (ISO, 1975) and (AGARD-AR-332, 

1995). Such models are mainly used to control the thrust 

online (Litt, 2005; Monaco, Malloy, Kidman, Ward, & Gist, 

2008). Our study is about the production and design 

optimization, moreover we restrict our analysis to the 

supplier of fan blades. In this work, we present only the 

impact of the fan supplier production on the thrust 

measurement which is mandatory to understand and 

computes the bias of benches and other equipments. In 

another study not presented here we were able to complete 

the work by anticipating the margin value using only the fan 

blades geometric measurements. 

2. DESCRIPTION OF THE OBSERVATIONS  

Our measurement of interest during the production test is the 

thrust margin (the percentage of thrust residual above a 

bottom limit). Higher is this margin, easier it is to deliver the 

engine. As observed in the Figure 1, a gap between thrust 

margins exists between each couple of suppliers. This is 

confirmed by the thrust margin distribution Figure 2 and 

thrust margin mean comparison between suppliers (Figure 3).     

 

Figure 1. Observation of the thrust margin measured on 

each engine during the production tests. Plain curves show 

monthly smoothing. The different colors correspond to 

different suppliers. We clearly observe differences of the 

production thrust mean between suppliers. 

 

 

 

Figure 2. Repartition functions for the thrust margin by 

supplier. The abscissa represents the thrust margin which is 

the percentage of residual thrust over a bottom limit. The 

50% median quantile is different for each curve and we may 

suppose at first inspection that the red supplier is better than 

the blue one. (The number between parentheses in the 

legend corresponds to the amount of tested engines. This 

stays valid for the next figures.) 

 

Figure 3. Mean of thrust margin by supplier with 95% 

confidences intervals. 

As for the preceding comparison between suppliers thrust 

margins, a similar comparison may be observed for test bench 

0.5% 

0.5% 

0.25% 
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(Figure 4) and for one of the most influence complementary 

technical adaptations on the measurement which is the cowl 

(Figure 5). It is noticeable that the difference between 

benches or cowls has the same order of magnitude as the 

difference across suppliers. Therefore, the scatter generated 

by test cell devices needs to be reduced. 

 

 

Figure 4. Repartition functions of the observed thrust 

margins measured on different bench test cells. As we can 

see the bench cell has a clear influence on the measurements 

because all produced engines are randomly distributed on 

each cell for production tests. 

 

Figure 5. Different cowls may be used in each test cells, 

however, a cowl stays in the same site but this site may use 

different cells. 

3. METHODOLOGY 

As illustrated in this last figure of the thrust margin evolution 

by cowl (Figure 5), there is a kind of ranking established 

between thrust margin cowls. However, this ranking depends 

of the cowl use period (Figure 6).           

 

 

Figure 6. The thrust margin dependency on the cowl also 

depends on time intervals. 

The reasons of cowl dependency on time is linked to bench 

equipment maintenance procedures. We consider the bench 

context stable between maintenances and its effect constant 

during those time intervals. Hence the evolution observed 

during inter-maintenance interval is only due to the 

production trends which is still a mixture between suppliers. 

For model simplicity, we consider the production trend linear 

per supplier during those small intervals. Hence, for a given 

turbofan production and bench test component use period, the 

thrust margin evolution is supposed linear.    

Each input measurement is defined by three observations 

(𝑦, 𝑡, 𝑘) where 𝑦 is a thrust margin measure, 𝑡 is a production 

test date and 𝑘  is the component (or bench) used during 

period 𝑘. 

For each component, we build a binary function 𝛿𝑘(𝑖) that 

gives 1 if the production test 𝑖  is realized using the 

component 𝑘 and 0 otherwise. 

So, looking only at one production type, we are resolving the 

system of equations (1):      

 𝑦𝑖 =  ∑ 𝑏𝑘𝛿𝑘(𝑖) 

𝑘

+  𝜙(𝑡𝑖) + 𝜖𝑖 (1) 

Where 𝜙  is piecewise linear function representing thrust 

margin evolution, 𝑏𝑘 is the bias introduced by the component 

𝑘  and  𝜖𝑖  is the measure error that quantify the unknown 

mathematic innovation (elements not reachable from the 

data). 

There is an initial indeterminate of the thrust margin that we 

are fixing with initial condition on the mean bias:  �̅� =
1

𝑁
 ∑ 𝑁𝑘𝑏𝑘𝑘    𝑤ℎ𝑒𝑟𝑒 𝑁𝑘 = ∑ 𝛿𝑘(𝑖)𝑖  is the number of tests 
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with the component 𝑘 and 𝑁 = ∑ 𝑁𝑘𝑘  is the total number of 

measurements. 

Then, we have to take in consideration the existence of 

specific trends for each supplier. The turbofan and test sets 

are different for each supplier but the bias remains identical. 

For each supplier 𝑗, a piecewise linear function 𝜙𝑗 is defined, 

we keep the same bias and use a supplier indicator function 

𝛾𝑗 (analogue to the component indicator function 𝛿𝑘) which 

leads to equation (2) 

 𝑦𝑖 =  ∑ 𝑏𝑘𝛿𝑘(𝑖) 

𝑘

+  ∑ 𝜙𝑗(𝑡𝑖)𝛾𝑗(𝑖) 

𝑗

+ 𝜖𝑖 (2) 

The goal of the study is to find a good set of trend functions 

(𝜙𝑗) and bias (𝑏𝑘) that minimize the variance of 𝜖. 

4. A SOLVING APPROACH 

We solve this problem in two steps, first we are describing 

the thrust margin evolution independently of the absolute 

level resulting of the component influence. We compute the 

bias afterward.  

Each measure belongs to a small time period when the 

production test conditions are constants. This constant period 

is the intersection between two kinds of periods that we 

define as:  

 Turbofan production period, between different linear 

trends of production (Figure 7).  

 Component use period, between bench cells 

maintenances (Figure 8). 

For each constant period, a mean point is placed in the middle 

of the period with value at the corresponding thrust margin 

mean as shown in Figure 9, top.   

Then, we characterize the evolution between each thrust 

margin measure and corresponding mean point, which is 

independent of the measurement conditions. Given that the 

functions (𝜙𝑗) represent the thrust margin evolution mean 

model we just need to solve the optimisation problem (3) for 

each supplier 𝑗  where (𝑡�̅� , �̅�𝑙)  are the coordinate of the 

selected mean point and 𝜏𝑙 a binary indicator function of the 

𝑙 period. 

 �̂�𝑗 = argmin
𝜙𝑗

{∑
𝛾𝑗(𝑖)𝜏𝑙(𝑖) × …

[(𝑦𝑖 − �̅�𝑙)– (𝜙𝑗(𝑡𝑖) − 𝜙𝑗(𝑡�̅�))]2

𝑙,𝑖

} (3) 

This model of piecewise slopes should be initialized with an 

indeterminate level as described previously: this first step just 

help identifying the slopes and change points for each 

supplier and stable period. At first the production change 

points were visually identified but the optimization 

algorithms help adjusting those intervals. 

Once the mean evolution model is chosen, we may estimate 

mean bias introduced by the test bench components (𝑘).  

 (�̂�𝑘) = argmin
(𝑏𝑘)

{∑

𝛾𝑗(𝑖) × …

[𝑦𝑖 − 𝜙𝑗(𝑡𝑖) − ∑ 𝑏𝑘𝛿𝑘(𝑖) 

𝑘

]

2

𝑖,𝑗
}

 

 (4) 

And compute the normalized thrust margin  

 �̂�𝑖 =  𝑦𝑖 − ∑ �̂�𝑘𝛿𝑘(𝑖) 

𝑘

 (5) 

 

Figure 7. For a first try, the trend changes are visually 

identified by experts. Stable linear production for each 

supplier is supposed between two of those changes. 

 

Figure 8. Intervals of cowls and cells use are defined by 

inter-maintenance periods. On this graph one clearly see the 

difference of the mean thrust margin observed during each 

of those intervals. However, even if those measurements are 

coming from only one provider, its production trend may 

have change. 
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5. RESULTS 

Concretely, the application of this method helps reduce the 

scatter of the thrust margin (𝐸[𝜖2]) by a factor of 2, hence 

achieving a 50% gain in accuracy as shown in the examples 

below: Figure 9 shows the initial values measured for the 

margin of engines produced by a given supplier (top) and 

presents the identification of the trends and the reduction of 

variance (bottom). 

Otherwise, we were also able to compute a bias for each test 

bench and component (the cowl here) as described by Figure 

10 and Figure 11. Notice that each computed bias (�̂�𝑘) is 

independent of the evolution of the supplier production. 

6. CONCLUSION 

This study of the thrust margin trend allows us to propose a 

new application to calibrate our bench test cells and 

normalize our results. Moreover, we are now able to identify 

specific trends per supplier and emit alerts if necessary. 

Once a real and objective computation of the thrust was 

available it becomes possible to check the dependencies with 

the geometry of the fan blades and then understand the 

second order characteristics that let us define better 

fabrication process and inform our suppliers. 

The fact that those bias are now identified becomes a help to 

calibrate slave cowls or compensate measurements used by 

design offices. 
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Figure 9. Top: initial observation of the thrust margin for a given supplier. Colors represent different cowls and benches and 

the black points are the mean points used for each local estimation of the supplier trend. Bottom: the same observations after 

renormalization using the piecewise linear model drawn as a black line. 
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Figure 10. Evolution of the bias corresponding to cowls for different inter-maintenance intervals. The width of each bar 

corresponds to the confidence interval of the bias. 

 

Figure 11. Computation of the benches bias during the period of analysis. 
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