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ABSTRACT

The regeneration phenomena of the lithium-ion battery are
widely existed in reality but rarely studied due to the gap
between experiment conditions and practical working condi-
tions. In this paper, the capacity regeneration phenomena are
considered during the degradation process of batteries. An
improved empirical model incorporating both rest time and
discharge cycles for remaining useful life (RUL) prediction is
proposed. The degradation process and regeneration process
have been described by different components and integrated
to formulate the whole model. The dual estimation frame-
work is employed to decouple the states and parameters dur-
ing the degradation and regeneration process. The datasets
from NASA Prognostics Center of Excellence (PCoE) have
been adopted for model validation. The proposed model is
compared with other empirical model and also different esti-
mation methods. The results are satisfactory, and demonstrate
the capability of the proposed model for the RUL prediction
of Lithium-ion battery.

1. INTRODUCTION

Dramatic progresses have been made to put forward lithium-
ion batteries as the main energy solution in many areas. Due
to the performance of high energy density, high power den-
sity, and low weight, Lithium-ion batteries have replaced
many other batteries in the market of computers, communica-
tions and other kinds of consumer electronics (He et al., 2011,
Huggins, 2008, Nazri & Pistoia, 2008). The safety and secu-
rity of batteries have been absorbed increasingly concerns ac-
cordingly. The failure of batteries could lead to loss of func-
tions, millions of dollars or even human lives. The recent im-
pact events are the series explosion of Galaxy Note 7, a kind
of smartphones made by Samsung in 2016. Samsung had to
recall the smartphones due to the failure of batteries, which
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cost billions of dollars (Lopez, 2017). The reasons for the
failure of batteries vary from design or manufacturing faults,
aging, to unexpected operating conditions (Lawson, 2005).
Battery aging is the process that battery performance grad-
ually deteriorates with time due to the side reactions. The
aging process is generally irreversible and eventually leads to
the end of battery life, if not early ended by other reasons. The
aging process can be characterized as the change of internal
states, such as the decrease of capacity or the increase of in-
ternal impedance, over repeated charge and discharge cycles.
When the internal states reach a specified threshold, the bat-
tery is generally considered to be unreliable. The remaining
useful life (RUL) can be defined as the time span between the
observation time and the time when the internal states reach
the specified threshold (Xing et al., 2013, Yang et al., 2017).

Although the regeneration phenomenon has been mentioned
by many studies (He et al., 2011, Qin et al., 2015), there are
few studies on the regeneration phenomenon among the RUL
or SOH prediction. Some detection methods for identifying
the regeneration phenomenon have been conducted in litera-
ture. Oliveres et al. (Olivares et al., 2013) and Orchard et al.
(M. E. Orchard et al., 2015) utilized regeneration detection
modules, like PF-based detection module (M. E. Orchard &
Vachtsevanos, 2009), RSPF-based detection module (M. Or-
chard et al., 2010) and their variants, to isolate the effects
of capacity regeneration phenomenon and then incorporat-
ing the detection results into state space model for the end
of life (EOL) prediction. Qin et al. (Qin et al., 2016) de-
tected the regeneration phenomenon directly according to the
difference between two adjacent cycles of the state of health
(SOH), and then approximated the regeneration amplitude
with a hyperbolic tangent function based on the rest period
of time. However, all the aforementioned detection methods
restrict the detection time of early detected regeneration phe-
nomenon and inappropriate for multi-step-ahead prediction
of RUL. Saha et al. (Saha & Goebel, 2009) regarded the re-
generation phenomenon as self-recharge process and approx-
imated it with an exponential model. Some researchers fol-
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lowed this regeneration model (Jin et al., 2013, Tang et al.,
2014) for RUL prediction. The exponential model has made
some improvements for RUL prediction when the regenera-
tion phenomenon appears.

Our paper focuses on the remaining useful life prediction un-
der the consideration of the regeneration phenomenon. In
section 2, the characteristics of degradation and regenera-
tion process have been described and an improved empiri-
cal model has been developed for RUL prediction. The dual
EKF has been introduced for parameter estimation in section
3. Section 4 presents the RUL prediction with the improved
empirical model and the proposed estimation method. The
detailed experiments and the results are described and com-
pared in section 5 respectively. In section 6, we conclude
our studies and also point out some problems in the proposed
framework.

2. MODEL DEVELOPMENT

2.1. Capacity degradation and regeneration

The aging process of a lithium-ion battery includes the ca-
pacity degradation and regeneration. The degradation phe-
nomenon is obvious that the capacity fades along with the
repeated charge and discharge cycles. The regeneration phe-
nomenon is defined as the battery capacity can be recovered
partially during the process (Eddahech et al., 2013). As sug-
gested in Figure 1, there are two main characteristics of the
degradation and regeneration process:
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Figure 1. The degradation and regeneration process of 4
lithium-ion batteries.

• Capacity suffers sudden increments when the regenera-
tion happens, and then degrades to the norm rate quickly
(Olivares et al., 2013);

• The global capacity degradation rates are changeable,

and tends to be slow in total after considering the ca-
pacity rise due to the regeneration;

The capacity increments can extend the useful life of batter-
ies. Failure of considering the regeneration phenomenon will
be a great waste to early replace batteries before the useful
life really ended.

2.2. Modeling capacity

The empirical model, introduced by Saha et al. (Saha &
Goebel, 2009), combined the Coulombic efficiency as the ca-
pacity degradation rate, and the next cycle of charge capacity
can be approximated by two components: one is the remain-
ing capacity from the previous capacity degradation; the other
is the capacity obtained from the regeneration during the rest.
The model can be denoted as Equation (1).

Ck+1 = ηCCk + β1 exp(−β2/∆tk) (1)

where ηC represents the Coulombic efficiency, Ck is capac-
ity in cycle k, ∆tk indicates the rest time between cycle k
and cycle k + 1, β1 and β2 are the model parameters. The
Coulombic efficiency (ηC ) is defined as the fraction of the
prior charge capacity that is available during the following
discharge (Huggins, 2008). Since the following available dis-
charge capacity cannot be obtained in future cycles, the exact
ηC is unavailable in the prediction stage. The decision of the
ηC is quite an art and hard to be approximated because the
Coulombic efficiency depends upon a number of factors and
varied in each cycle. Thus, in previous studies, ηC is assumed
as a fixed equivalent value on the whole.

As for the degradation of capacity during the aging process
of lithium-ion batteries, the degradation rate varies according
to the conditions of operation and the aging stage of batteries.
The assumption that Coulombic efficiency is fixed in Equa-
tion (1) is inappropriate during the aging process. This moti-
vates us allowing the parameter to be adjustable. To improve
the adaptive capability of the model in Equation 1, we relax
the fixed Coulombic efficiency ηC and estimate it with mea-
sured data. The proposed model is shown in Equation (2).

Ck+1 = αCk + β1 exp(−β2/∆tk) (2)

The notations are the same as the previous equation except
the α that we regard it as a model parameter. However, the
parameter and capacity are coupled together and each can be
difficult to estimate. The dual estimation framework is em-
ployed to decouple their interactions. The detailed methods
will be presented in the next section.

3. DUAL EXTENDED KALMAN FILTER

3.1. State-space model

State space model originates from control engineering for de-
scribing a system in terms of inputs, outputs, and states in
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vector space (Wan & Van Der Merwe, 2000). We denote the
states xk and the observations yk at the time k. In Kalman
filter, the assumption is that states follow first order Markov
process, which means that current states are conditionally in-
dependent to all previous states except those states right be-
fore the current states (Haug, 2012, Welch & Bishop, 1995).

p(xk|xk−1, xk−2, ..., x0) = p(xk|xk−1) (3)

The model used in Kalman filter thus can be expressed by

xk = f(xk−1, wk−1) (4)

zk = h(xk, vk) (5)

where f and h are the transformation function of the process
and measurement. wk and vk are the process noise and mea-
surement noise in the model.

Initialise: x̂0 and P0

for k=1,2,3...

State vector prediction:
x̂−k = f(x̂−k−1, 0)

Error covariance ahead:
P−
k = AkPk−1A

T
k + ΩkR

wΩTk

Calculating Kalman gain:
Kk = P−

k H
T
k (HkP

−
k H

T
k + ΥkR

vΥT
k )−1

Measurement update:
x̂k = x̂−k + Kk(zk − h(x̂−k , 0))

Error covariance update:
Pk = (I − KkHk)P−

k

Return k++

Figure 2. Flowchart for extended Kalman filter estimation.

3.2. Extended Kalman filter

Kalman filter is developed to resolve the discrete-data filter-
ing problem by minimizing the mean-square-error of a state-
space model (Wan & Van Der Merwe, 2000, Welch & Bishop,
1995, Haug, 2012). Many researchers used Kalman filter and
its family to model battery degradation (Lu et al., 2013).

When Kalman filter was first introduced, it can only solve the
linear system. Over years of development, extended Kalman
filter was developed to approximately solve the non-linear fil-
tering problem (Welch & Bishop, 1995).

In the process, we assume that wk and vk are white noise fol-
low the Gaussian distribution with the covarianceRw andRv .
The non-linear transformation may distort white noise which
no longer follows the normal distribution. As a result, the ex-

tended Kalman filter (EKF) is an estimator for the nonlinear
system (Welch & Bishop, 1995).

The idea of EKF is using the first order Tylor expansion to ap-
proximate the non-linear system (Haug, 2012). The approxi-
mation equations are formulated as Equation (6) and (7).

xk ≈ x̃k +A(xk−1 − x̂k−1) + Ωwk−1 (6)

zk ≈ z̃k +H(x̂k − xk) + Υvk (7)

whereA and Ω are the partial derivative of f with respect to x
and w respectively. Likewise, H and Υ are the partial deriva-
tive of h with respect to x and v. The implementation(Najim,
2010, Haug, 2012) detail is shown in Figure 2.

Initialize statse and parameters:
x̂0 = E[x0],Px0 = E[(x0 − x̂0)(x0 − x̂0)T ]
p̂0 = E[p0],Pp0 = E[(p0 − p̂0)(p0 − p̂0)T ]

for k=1,2,3,...
x̂k−1 p̂k−1

EKF time up-
date for states:

x̂−k = f(x̂k−1, p̂
−
k , 0)

P−
xk

=

Ak−1Pxk−1
ATk−1 + Rv

EKF time update
for parameters:
p̂−k = p̂k−1

P−
wk

= Pwk−1
+ Rχk−1

x̂−k yk p̂−k

EKF measurement
update for states:

Kx
k = P−

xk
(P−
xk

+Rw)−1

x̂k = x̂−k +Kx
k (yk− x̂−k )

Pxk
= (I − Kx

k )P−
xk

EKF measurement
update for parameters:
Kp
k = P−

pk
(P−
pk

+Rε)−1

p̂k = p̂−k +Kp
k(yk − x̂k)

x̂k p̂k

k++

Figure 3. Flowchart for dual extended Kalman filter estima-
tion.

3.3. Dual estimation

In the remaining useful life prediction of batteries, the clean
state is not available and coupled with parameters in the
empirical model. To decouple the states and parameters,
the dual extended Kalman filter which employs an extended
Kalman filter tracking on state variables and the other ex-
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tended Kalman filter tracking parameters of the process (Wan
& Nelson, 2001).

Given that we have a series of states and outputs [xk, dk], we
can use extended Kalman filter to estimate the parameter of
the process pk at time step k (Wan & Nelson, 2001). Because
the parameter ideally should remain same value, the parame-
ters state-space model are written as

pk+1 = pk + χk (8)

dk = h(xk, χk) + εk (9)

where χk is the noise during the process with covariance Rχ,
h is the observation function, and εk is the measurement error.
Therefore, we can apply extended Kalman filter government
parameter estimation(Wan & Nelson, 2001).

In the dual extended Kalman filter, we consider the situation
that we estimate not only parameters but also the hidden pro-
cess states by extended Kalman filter. In particular, the EFK
calculation in battery remaining useful life estimation is eas-
ier as the state xk and the output yk are the same (i.e. capacity
of battery). Therefore, zk = h(xk, vk) = Ixk + vk The im-
plementation framework (Wan & Nelson, 2001, Plett, 2004,
2005) is shown in Figure 3.

4. REMAINING USEFUL LIFE PREDICTION

In this section, we reformulate the model in Equation (2) with
state-space model. The transition model of parameters is de-
fined as Equation (10), the state (capacity) transition model is
shown in Equation (11).

pk+1 =

β1,k+1

β2,k+1

αk+1

 =

β1,kβ2,k
αk

 +

χ1

χ2

χ3

 , χ1∼N(0, σ2
1)

χ2∼N(0, σ2
2)

χ3∼N(0, σ2
3)

(10)

where the noise χ follows the gaussian distribution, with zero
mean and σ2 variance.

Ck+1 = αkCk+β1,k exp(−β2,k/∆tk) + χ4,

χ4∼N(0, σ2
4)

(11)

The capacity is selected as the measurement output, and the
measurement error is selected as Gaussian noise, as shown in
Equation (12)

zk = Ck + vk,

vk∼N(0, σ2
5)

(12)

With the measurement capacity and the obtained rest time,
the dual extended Kalman filtering method is then incorpo-
rated to update the parameters and the state capacity. On the
prediction stage, the parameters and the state are updated se-
quentially according to the transition model. The prediction
of capacity is thus obtained after the state has been updated.
The predicted RUL is then extracted from the predicted ca-

pacity that first hit the specified threshold, as shown in Equa-
tion (13)

RUL = kte − kt0 (13)

where kt0 is the end of cycle that the measurement capacity
updated via the Equation (12), which means the training of
the model is finished and starts for the prediction. kte is the
cycle that the predicted capacity hits the specified threshold
for the first time, that is Ckte ≤ Cthreshold < Ckte−1.
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Figure 4. Comparison of RUL prediction results under 40%
training samples of # 18 battery.

5. EXPERIMENTS AND RESULTS

The battery datasets from NASA Prognostics Center of Ex-
cellence (PCoE) (Saha & Goebel, 2007) have been adopted
in this study. Three different operational profiles (charge, dis-
charge, and impedance) have been sequentially committed for
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Table 1. COMPARING THE PERFORMANCE OF RUL PREDICTION

Battery N.o. True RUL Model A based PF Model B based PF Model B based dual EKF
Prediction Absolute error Prediction Absolute error Prediction Absolute error

B0005
98 (%60 of AL) -a - 22 76 90 8
65 (%40 of AL) 45 20 51 14 61 4
33 (%20 of AL) 15 18 10 23 28 5

B0006
62 (%60 of AL) 101 49 37 25 63 1
41 (%40 of AL) 37 4 19 22 41 0
21 (%20 of AL) 15 6 6 21 16 5

B0007
96 (%60 of AL) 64 32 36 60 77 19
64 (%40 of AL) 37 27 14 50 52 12
32 (%20 of AL) 14 18 8 24 27 5

B0018
60 (%60 of AL) 59 1 27 33 44 16
40 (%40 of AL) 45 5 12 28 38 2
20 (%20 of AL) 12 8 5 15 16 4

aThe RUL prediction failed.
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Figure 5. Comparison of RUL prediction results under 60%
training samples of # 18 battery.
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Figure 6. Comparison of RUL prediction results under 80%
training samples of # 18 battery.
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four Li-ion batteries (# 5, 6, 7 and 18) at room temperature,
and repeated until their capacity faded 30%.

To investigate the effective of our proposed framework, we
compare the RUL prediction performance among the im-
proved model estimated with dual EKF and joint particle fil-
tering, and also the original model (Saha & Goebel, 2009)
estimated with particle filtering. In the setting of our ex-
periments, the actual life (AL) is defined as the cycle dura-
tion that the capacity fades 30% for # 5 and # 6 batteries.
Since the capacity when fades 30% of the beginning capac-
ity is smaller than all the extracted capacity from # 7 and #
18 battery dataset, AL for these two batteries is calculated
according to a 25% fades of capacity in order to utilize the
datasets. The RUL is defined as the number of cycles from
current cycle to the cycle that the capacity fades to the afore-
mentioned indicators. In order to investigate the prediction
performance of the models on different degradation phases,
models are trained with 40%, 60% and 80% of AL data re-
spectively, and RUL is predicted based on the trained models
accordingly. Thus, the true RUL is the remaining life cycles
given the current trained AL, that are 60%, 40% and 20% of
AL data accordingly. The true RUL, the prediction results
and the absolute prediction errors are summarized in Table
1. Where Model A represents the original model as shown
in Equation (1) and Model B represents our improved model
as shown in Equation (2). The estimation methods are also
indicated in the table.

Our proposed framework, Model B estimated by dual EKF
method, outperform the other paradigms in RUL prediction
on most of the degradation phases for all batteries. Here, we
visualize the tracking and prediction capacity for # 18 battery
on different prediction start cycles, as shown in Figure 4, Fig-
ure 5 and Figure 6 respectively. The plots for other batteries
have similar properties and are not displayed here. The verti-
cal blue line in each figure represents the end of the training
samples, in other words, the start cycle for the prediction of
capacity. The horizontal blue line in each figure represents
the specified threshold to decide the end of life for batter-
ies. Then, the prediction RUL can be visualized as the cycle
length from the start prediction cycle (vertical blue line) to
the corresponding cycle that the prediction capacity hits the
horizontal blue line (capacity threshold).

The sub-figure in Figure 4(a), Figure 5(a) and Figure 6(a)
are comparing the parameter estimation methods between the
joint particle filtering and the dual EKF for our proposed
model. All these sub figures demonstrate that the joint par-
ticle filtering underestimated the future capacity. A possible
reason may be the state capacity and the degradation rate α
coupled together and will be adjusted as a whole αCk. If
the degradation rate α is adjusted with some errors, the er-
rors may be compensated by adjusting the state capacity si-
multaneously. Thus, there is no guarantee for accurate es-

timation of α. Although the dual estimation cannot capture
the regeneration obviously, the prediction lines are bent up,
which alleviate the underestimation of future capacity. From
the sub-figure in Figure 4(b), Figure 5(b) and Figure 6(b),
these figures compare the prediction performance of original
model (Model A) and the improved model (Model B). From
each figure, it is obvious that the predicted capacity obtained
from model A is roughly a straight line though some sudden
rise in the regeneration area. However, the degradation trend
of battery capacity will not always be a straight line. Thus,
an adjustable degradation rate in our improved model is more
accurate for the prediction of future capacity.

Only one case that the Model A with less absolute error than
Model B, as also shown in Figure 4(b). This happens acci-
dentally when the fixed degradation rate ηC is roughly equal
to the future overall degradation rate. However, finding the
specified degradation rate ηC is very difficult, which relates
to the degradation profile, prediction start cycles and the end
of life. Thus, the results demonstrate the capability and su-
perior of our proposed model and the dual EKF estimation
method for RUL prediction under regeneration phenomenon.

6. CONCLUSION

In this paper, an improved empirical model has been pro-
posed and analyzed for RUL prediction under regeneration
phenomenon. The proposed model inherently demonstrates
the superiority for RUL prediction due to the adjustable pa-
rameter can approximate the changeable degradation rate rea-
sonably. The dual EKF estimation has been employed to deal
with the coupled problem of parameter and state. The expo-
nential term can improve the prediction accuracy further for
considering the influence of the regeneration phenomenon.
The prediction performance of the proposed framework has
been validated by the lithium-ion battery datasets from PCoE.
The results are favorable comparing to other methods. How-
ever, the sudden rise capacity during the regeneration is not
predicted obviously as other methods. There is still some
room for the improvements of this proposed framework. Fur-
ther work is to consider the real working conditions as sug-
gested in (Daigle & Kulkarni, 2016).
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