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ABSTRACT

Nowadays, in several areas, efficient fault diagnosis methods
for complex machinery and equipments are required. Sev-
eral fault diagnosis methods based on different theories and
approaches have been proposed in the literature. In general,
these methods use mathematical/statistical models, accumu-
lated experience, or even process historical data to perform
fault diagnosis. Although methods based on models or expe-
rience have shown to be effective, they have the disadvantage
of requiring previous knowledge of the dynamic system in
question. On the contrary, methods based on process histor-
ical data do not require a prior knowledge, they are based
solely on data obtained directly from the dynamic system.
The application of so-called “Evolving Intelligent Systems”
to accomplish fault diagnosis from process data have been
shown a promising approach. This paper proposes an evolv-
ing fuzzy classifier based on a new approach that combines
a recursive clustering algorithm and a drift detection method
and its application on dynamic systems fault diagnosis. The
novel approach provides greater robustness to outliers and
noise present in data from process sensors. The classifier is
evaluated in fault diagnosis of an interacting tank system and
the results are promising.

1. INTRODUCTION

Nowadays, the advance of technology has resulted in the emer-
gence of machinery and complex equipments, which impose
great challenges for its management and maintenance. In
many industries, for instance, fault diagnosis in major pro-
cesses is vitally important to assure normal operation of a
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plant and avoid economic losses, security reductions and en-
vironmental damages. This context led to the emergence of
new concepts on management and maintenance of machin-
ery and equipments, such as Condition-Based Maintenance
(CBM). In CBM, machine or equipment data obtained in real
time are used to infer its working condition (or faulty condi-
tion), allowing maintenance scheduling and preventing equip-
ment crashes. Another concept has emerged based on CBM,
the concept of intelligent maintenance (Vachtsevanos, Lewis,
Roeme, Hess, & Wu, 2006).

In past decades several fault diagnosis methods based on dif-
ferent approaches have been proposed in the literature. These
methods use mathematical models, statistical models, accu-
mulated experience, or process historical data to perform fault
diagnosis (Venkatasubramanian, 2005). Fault diagnosis meth-
ods based on process historical data have received great em-
phasis recently (Abellan-Nebot & Subirón, 2010) and several
works have already proposed data based diagnostics methods
employing intelligent systems, mainly artificial neural net-
works and fuzzy systems (Jardine, Lin, & Banjevic, 2006).
Nevertheless, despite the good performance achieved by in-
telligent systems in fault diagnosis, they tend to face difficul-
ties when the problem involves complex non-stationary dy-
namic systems. In this systems, physical parameters, operat-
ing characteristics and fault behaviours change over time, re-
quiring an adaptive fault diagnosis system, able to self-adapt
to cope with changes in the monitored system. In order to
address fault diagnosis in this cases, some works propose the
use of so-called “Evolving Intelligent Systems” (Lughofer &
Guardiola, 2008; Filev, Chinnam, Tseng, & Baruah, 2010;
Lemos, Caminhas, & Gomide, 2013).

Based on artificial neural networks, fuzzy inference systems
or a combination of both, the neurofuzzy networks, the evolv-
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ing intelligent systems are systems whose main characteristic
is the ability to gradually determine both its structure and pa-
rameters from input data acquired in online mode and often in
real time. Evolving intelligent systems applications has been
growing in recent years. Many authors have obtained suc-
cessful applications in real world complex problems involv-
ing modeling, control, classification or prediction (Angelov,
Filev, & Kasabov, 2010). Evolving clustering algorithm is the
most widely used approach to define the structure of an evolv-
ing intelligent system (Kasabov & Song, 2002; Angelov &
Filev, 2003; Leng, McGinnity, & Prasad, 2005; Rong, Sun-
dararajan, Huang, & Saratchandran, 2006; Lughofer, 2008;
Soleimani-B., Lucas, & Araabi, 2010; Lima, Hell, Gomide,
& Ballini, 2010; Lemos, Caminhas, & Gomide, 2011). This
algorithms generally adopt a mechanism to update the struc-
ture (creation/modification/removal of clusters) and parame-
ters of the system using some measure of similarity between
input data samples and existing clusters. This mechanism
may lead to an erroneous definition of the structure, since
outliers or noisy samples (as usually are the data acquired by
sensors in industrial environments) which exceeds the mea-
sure of similarity can generate clusters that do not effectively
represent the data spacial structure (Lemos et al., 2011).

In fault diagnosis problems, the use of evolving intelligent
systems based on recursive clustering algorithms robust to
outliers and data noise is mandatory. In this case, each new
cluster created is usually associated with a new faulty condi-
tion. Thus, if the clustering procedure is not robust, the fault
diagnosis model tends to have a high false alarm rate, i.e.,
new faulty conditions are erroneously detected. Considering
this context, this paper proposes a fault diagnosis approach
based on an evolving fuzzy classifier which uses a new ro-
bust unsupervised recursive clustering algorithm. The unsu-
pervised recursive clustering algorithm classifier consists of a
modified version of the Gustafson-Kessel (GK) clustering al-
gorithm (Gustafson & Kessel, 1979) with the incorporation of
the Drift Detection Method (DDM) (Gama, Medas, Castillo,
& Rodrigues, 2004).

Considered a powerful clustering algorithm, GK clustering
algorithm unlike many others allows the identification of clus-
ters with different shapes and orientations in space. The al-
gorithm employs a technique to adapt the distance metric to
the shape of each cluster using a estimation of the cluster co-
variance matrix. Furthermore, the algorithm has also the ad-
vantage of being relatively insensitive to data scale and ini-
tialization of the partition matrix (Filev & Georgieva, 2010).
Drift detection, according to the literature, is a method to de-
tect gradual changes in the context of input data. By context,
it is understood as a set of generated data when the process
is stationary. Drift detection methods are suitable for appli-
cations involving machine learning, where algorithms are ap-
plied to real world problems, in complex, non-stationary and
dynamic environments (Sebastião & Gama, 2009). Among

several methods proposed for drift detection, the DDM algo-
rithm employs simple and computationally efficient method
to detect moments when changes occur and it can be embed-
ded into any learning algorithm, increasing its efficiency in
problems involving non-stationary dynamic models.

In this paper, a new unsupervised recursive clustering algo-
rithm is proposed, where any clustering update depends not
only on the similarity measure, but also on the monitoring
changes in the input data flow, which gives the algorithm a
greater robustness to the presence of outliers and noise. A
merging cluster mechanism was also incorporated into the
algorithm to enable the removal of redundant clusters. The
fuzzy rule base of the proposed classifier is updated when-
ever the cluster structure is modified. The clusters centers and
covariance matrices are used as parameters of fuzzy rules.
Multivariate Gaussian membership functions are employed
in the rules to avoid information loss when there is interac-
tion between input variables. Regarding the characteristics of
the proposed recursive clustering algorithm, the main bene-
fits achieved by the classifier used in this work are: 1) the
ability to learn the dynamic system model in online mode
and, if necessary, in real time; 2) the ability to adapt when-
ever changes are detected in the monitored system, allowing
the application to real problems; 3) low false alarm rate and
high fault isolation rate due to the robustness to outliers and
noise, increasing the reliability of diagnosis. To evaluate the
performance of the proposed approach in fault diagnosis, an
interacting tank system simulator was used to simulate nor-
mal and several faulty conditions. Outliers and noise were
added to the simulated data to evaluate the robustness of the
proposed algorithms.

After this introduction, the rest of the paper proceeds as fol-
lows. Section 2 presents the theoretical concepts regarding re-
cursive clustering algorithm, drift detection method and pre-
sents the proposed recursive clustering algorithm. Next, Sec-
tion 3 presents the proposed classifier and its application in
fault diagnosis. Section 4 presents the simulations and results.
Finally, Section 5 presents the conclusion and suggestions for
future works.

2. THEORETICAL CONCEPTS: RECURSIVE CLUSTER-
ING ALGORITHM AND DRIFT DETECTION

2.1. Recursive Gustaffson-Kessel Algorithm

Clustering algorithms are among the most useful tools to solve
pattern recognition problems, where involves analysis of non-
labeled data, or unsupervised learning (Duda, Hart, & Stork,
2001). Over the past decades, thousands of clustering al-
gorithms have been proposed (Jain, 2010). GK algorithm,
unlike many clustering algorithms that employ Euclidian dis-
tance as measure of similarity, employs Mahalanobis-like dis-
tance, which allows the identification of clusters with ellip-
soidal shapes. In this algorithm the distance is defined as fol-
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lows:
d2
ik = (xk − vi)Ai(xk − vi)T (1)

where d2
ik represents the distance between an input data sam-

ple xk = [xk1, ..., xkn], k = 1, ..., N , and the cluster center
vi, i = 1, ..., c, where N is the number of data samples, n is
the number of data dimensions, and c is the number of clus-
ters. The norm-inducing matrix Ai, i = 1, ..., c, defines the
shape and orientation of each cluster in space. An iterative
process is used in the GK algorithm to estimate the param-
eters of the clusters (the cluster center and fuzzy covariance
matrix). This process is finished when a certain convergence
criterion is reached. An extended version of the GK algo-
rithm named evolving GK-like algorithm (eGKL) is proposed
in Filev and Georgieva (2010). This approach estimates the
number of clusters and performs the adaptation of its param-
eters recursively, maintaining the advantages of the GK algo-
rithm. To evaluate the similarity between a new sample data
and one of the existing clusters, the eGKL algorithm employs
the Mahalanobis distance, defined as follows:

D2
ik = (xk − vi)F−1

i (xk − vi)T (2)

where Fi, i = 1, ..., c is a covariance matrix. Thus, the cur-
rent data sample belongs to an existing cluster if the distance
to the cluster center is smaller than the cluster radius. The
eGKL algorithm uses an approach inspired in concepts of sta-
tistical process control to estimate the radius of each cluster.
In this approach, it is assumed that a sample belongs to a clus-
ter if the following relationship holds:

D2
ik < χ2

n,β (3)

where χ2
n,β is the value of a Chi-squared distribution, n is

the degrees of freedom and β is the confidence interval. The
degrees of freedom n correspond to the input space dimen-
sion and confidence interval β is a parameter of the algo-
rithm. This approach has the advantage of avoiding the prob-
lem called “curse of dimensionality” (Hastie, Tibshirani, &
Friedman, n.d.), i.e., the problem of increasing the distance
between two adjacent points with the increase in the input
space dimensionality, since χ2

n,β is proportional to the dimen-
sion of the input data. If the condition given by Eq. (3) is
satisfied, it means that the current data sample belongs to a
cluster, so the cluster parameters are updated. Otherwise, it is
assumed that the current data sample does not belong to any
one of the existing clusters, and a new cluster is created. The
complete procedures of the eGLK algorithm can be seen in
Filev and Georgieva (2010).

2.2. Drift Detection Method

In the literature, several drift detection methods have been
proposed. In general, they can be classified into two cat-
egories: methods that perform adaptive learning at regular
intervals regardless of the occurrence of changes, and meth-

ods that detect changes first and subsequently adapt the learn-
ing to these changes (Sebastião & Gama, 2009). Belonging
to the second category, the DDM algorithm employs a sim-
ple method with direct application. This method is based
on monitoring the number of errors produced by a learning
model during prediction. The method uses the Binomial dis-
tribution to determine the general form of the probability for
the random variable that represents the number of prediction
errors into a sequence of n input data samples. In DDM al-
gorithm, for each k data sample sequences, the error rate is
the probability of the prediction error pk with standard devia-
tion sk =

√
pk(1− pk)/k. According to the Probability Ap-

proximately Correct (PAC) learning model (Mitchell, 1997),
the error rate of the learning algorithm decreases with the in-
crease of input data samples, and if the distribution is station-
ary, a significant increase in the error rate suggests context
changes. In this case, it is assumed that the current model
is inappropriate and should be updated. In DDM algorithm,
while monitoring the error, it defines a warning and a drift
level. When pk + sk exceeds the warning level, the data sam-
ples are stored in memory. However, if pk + sk exceeds the
drift level, it is considered that there is a context change. In
this situation, the model induced by the learning algorithm
should be updated with the data samples stored since the time
that the warning level has been reached. It is possible that the
error increases and, after reaching the warning level, it de-
creases to lower levels. This situation corresponds to a false
alarm, where there is no change of context and, therefore, no
action is required and the data samples stored in the memory
are no longer needed. More details about the DDM method
can be found in Gama et al. (2004).

2.3. Proposed Recursive Clustering Algorithm

The algorithm proposed in this work consists of an unsuper-
vised recursive clustering algorithm with a new mechanism of
clustering update. The algorithm is a recursive version of the
GK algorithm, inspired by the eGKL algorithm, and incorpo-
rating the DDM algorithm. Thus, clustering is performed in
online mode and, if necessary, in real time.

Considering that there is no a priori information about the
clustering structure neither a initial set of input data samples,
the proposed algorithm starts by associating the center of the
first cluster c1 to the first input data sample x1. The cor-
responding covariance matrix F1, the learning rate α1 and
the number of samples associated with the first cluster M1

are defined as follows: c1 = x1; F1 = Finit; α1 =
αinit; M1 = 1, where Finit = γI; I is an identity ma-
trix of n size; γ is a small positive number (default value:
γ = 10−2) and αinit ∈ [0, 1] is the initial learning rate (de-
fault value: αinit = 0.5). If all data samples are processed,
the algorithm stops, otherwise, a new input data sample xk
is obtained and the distance between the data sample and the
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centers of the existing clusters is computed as:

D2
ik = (xk − vi)F−1

i (xk − vi)T (4)

The similarity between the current data sample and the exist-
ing clusters is verified by the similarity condition:

D2
ik < χ2

n,β (5)

where χ2
n,β is the value of a Chi-squared distribution, n is the

degrees of freedom and β is the confidence interval. The de-
grees of freedom n correspond to the input space dimension
and confidence interval β is a parameter of the algorithm. If
similarity condition given by Eq. (5) is met for a cluster, it is
assumed that the current sample belongs to this cluster. The
cluster parameters (center, covariance matrix, learning rate
and number of samples in the cluster) are then updated as fol-
lows:

vq = vq + αq(xk − vq) (6)

Fq = Fq + αq((xk − vq)T (xk − vq)− Fq) (7)

αq =
αinit
Mq

(8)

Mq = Mq + 1 (9)

where q = arg min
i=1,...,c

(D2
ik). If the similarity condition given by

Eq. (5) is not met, it is assumed that the current sample does
not belong to any existing cluster. Then, the algorithm incre-
ments a variable that represents the number of dissimilarities,
Mdis = Mdis + 1, then the error probability and standard
deviation are computed as follows:

p =
Mdis

k
(10)

s =
√
p(1− p)/k (11)

In this algorithm, the p and s values are stored whenever p+s
reach the lowest value during the process, obtaining pmin and
smin. If the following condition is met:

p+ s < pmin + smin (12)

then pmin = p and smin = s. Note that, when algorithm
starts, the p and s values must be initialized as a positive
number, it is suggested set as one for each value. To decide
whether the current data sample xk represents a new cluster
or it is just an outlier, warning and drift conditions are evalu-
ated. The warning condition is verified as:

p+ s > pmin + z1 · smin (13)

where z1 is the warning level (default value: z1 = 2). If
the warning level is reached, then the current data sample
is stored in a window of samples W (data)j , j = 1, ...,m
(where m is the current size of the window) and then, the
drift condition is evaluated. Otherwise, the algorithm pro-
cesses the next input data sample. Drift condition is verified

as:
p+ s > pmin + z2 · smin (14)

where z2 is the drift level (default value: z2 = 3). If the
drift level is reached, a new cluster is created, c = c + 1,
and the center and the covariance matrix of the new cluster
are determined by the samples stored in the data window as
follows:

vc =
1

m

m∑
j=1

W (data)j (15)

Fc = cov (W (data)j) (16)

The remaining parameters of the new cluster (learning rate
and number of samples in the cluster) are initialized as: αc =
αinit; Mc = 1.

In order to avoid redundant cluster formation, during the up-
date, the similarity between clusters is checked. To that end,
distances between the centers of the clusters are computed as
follows:

D2
ij = (vi − vj)F−1

i (vi − vj)T (17)

D2
ji = (vj − vi)F−1

j (vj − vi)T (18)

If one of the following similarity conditions is met for two
existing clusters i and j,

D2
ij < χ2

n,β (19)

D2
ji < χ2

n,β (20)

the clusters are merged. These clusters have a hyper ellip-
soidal shape, defined by a mean vector, a covariance matrix,
and a number of samples associated with each one. The com-
bination of these two clusters produce a new one with param-
eters computed as follows (Kelly, 1994):

Mi = Mi +Mj (21)

vi =
Mi

Mi +Mj
vi +

Mj

Mi +Mj
vj (22)

Fi =
Mi − 1

Mi +Mj + 1
Fi +

Mj − 1

Mi +Mj + 1
Fj+

MiMj

Mi +Mj(Mi +Mj − 1)
(vi − vj)T (vi − vj) (23)

Algorithm 1 summarizes the proposed recursive clustering al-
gorithm.

3. PROPOSED EVOLVING FUZZY CLASSIFIER FOR FAULT
DIAGNOSIS

In many current applications, the use of algorithms for pattern
classification is present, such as fingerprint recognition for se-
curity systems, handwriting recognition on touch screen com-
puters, DNA sequences identification in medical diagnostic
softwares and fault diagnosis in industrial equipments. In this
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Algorithm 1: Recursive Clustering Algorithm with Drift De-
tection
Input: xk, χ2

n,β , Finit, αinit, z1, z2;
Output: vi, Fi;
Read the first data sample x1;
Initialize the first cluster;
for k = 2, 3, ... do

Read xk;
Compute D2

ik for all clusters;
Identify the closest cluster;
if D2

qk < χ2
n,β then

Update the closest cluster;
else

Update the dissimilarity number Mdis;
Compute p and s;
if p+ s < pmin + smin then

Update pmin and smin;
end if
if p+ s > pmin + z1 · smin then

Store xk in the data window W (data)j ;
end if
if p+ s > pmin + z2 · smin then

Create new cluster;
end if

end if
Compute D2

ij and D2
ji for all clusters;

if D2
ij < χ2

n,β or D2
ji < χ2

n,β then
Merge redundant clusters;

end if
end for

context, the problem of pattern classification consists in as-
signing a class or a category for each data sample from a set
of “raw” data (Duda et al., 2001). Pattern classification algo-
rithms based on fuzzy rules have been used in many applica-
tions due to their advantages in relation to classic algorithms
for pattern classification, especially by the good prediction
performance in real problems and good transparency in lin-
guistic rules (Jang, Sun, & Mizutani, 1997), which allows
an easy comprehension of the dependence between pattern
characteristics. The typical architecture of a fuzzy classifier
consists of a set of IF ... THEN fuzzy rules, defined as:

RULEi : IF x1 ISµi1 AND ...AND xn ISµin THEN yi = Li
(24)

where [xk1, ..., xkn] are the input variables or patterns of n
dimensionality; [µi1, ..., µin] are antecedent fuzzy sets of the
ith fuzzy rule; yi is the output; Li is the crisp output corre-
sponding to the class label from the set [1, ...,K], where K
is the number of classes. For each new input data sample xk,
the classification is obtained by assigning to it the label of the
class associated with the rule having the highest activation
degree. The class is determined as follows:

yi = Li∗ (25)

where i∗ = arg max
1<i<R

(τi); R is the number of fuzzy rules and

τi is the activation degree of the ith fuzzy rule, defined by a
t-norm, usually expressed as a product operator:

τi =
n

T
j=1

µij(xj) (26)

where µij are the membership functions of fuzzy sets defined
by Gaussians:

µij = e
− 1

2

(
(xj−vij)

2

σ2
ij

)
(27)

where vij and σ2
ij represent respectively the membership func-

tions center and variance. Usually, to implement this fuzzy
classifier architecture, clustering is performed in the input
and/or output space. Then, rules are created using one-dimen-
sional (or univariate) fuzzy sets, generated from the projec-
tion of the clusters in the axis of each variable. According
to Lemos et al. (2011), this approach can lead to information
loss if there is interaction between variables, and to avoid this,
the authors propose the use of multivariate Gaussian member-
ship functions to represent antecedent fuzzy sets of each rule.
These membership functions are described as:

H(x) = e−
1
2 ((x−v)Σ−1(x−v)T ) (28)

where v is a 1 × n central vector and Σ is a n × n symmet-
ric positive definite matrix. The central vector is defined as
the modal value and represents H(x) typical value and the Σ
matrix denotes the dispersion and representsH(x) spreading.
Thus, each cluster found by the clustering algorithm is asso-
ciated with a fuzzy rule and the multivariate Gaussian mem-
bership function parameters are defined as the parameters of
the corresponding cluster. If multivariate Gaussian member-
ship functions are used, the fuzzy classifier will have a rule
set defined as:

RULEi : IF xk ISAi THEN yi = Li (29)

whereAi is the fuzzy set with multivariate Gaussian member-
ship function of the ith fuzzy rule, with parameters extracted
from the corresponding cluster. In general, more than one
rule can be used to describe a class, e.g, the class can be mul-
timodal. In this case, only one rule cannot be sufficient to
describe all possible variations of the same class. Thus, the
fuzzy classifier aggregates rules outputs associated with the
same class using a s-norm. The result of the aggregation can
be interpreted like rules as follows:

(IFxk ISAi)OR(IFxk ISAj)OR...(IFxk ISAk)THENyi = Li
(30)

This aggregation results in the degree of relevance of each
known class. The classification of each new sample xk is
defined by the class with the highest relevance degree.

Data samples classes are not known a priori in some pattern
classification applications. In these situations it is required
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the use of an unsupervised learning process for classifier im-
plementation. Moreover, in applications where the pattern
classification should be performed in real time, the learning
should be performed using incremental algorithms, process-
ing each data sample once as a data stream. To solve these
problems, the solution is to use a recursive clustering algo-
rithm. We propose in this paper an evolving fuzzy classifier
based on recursive clustering algorithm with drift detection
presented in Section 2.3, which allows the creation of a fuzzy
rule base in online mode and, if necessary, in real time from
input data samples. This approach is different from the ones
employed in traditional fuzzy classifiers, which require some
training (usually supervised) conducted in off-line mode. For
rule base update, the proposed evolving fuzzy classifier uses
the output of the recursive clustering algorithm described in
the previous section. For each new input data sample, if a new
cluster is created, a new fuzzy rule given by Eq. (29) is added
to the rule base, where the cluster parameters are used as pa-
rameters of the multivariable Gaussian membership function
of the antecedents. The rule consequent (the crisp output cor-
responding to the class label) must be defined by experts or
system operators, since in unsupervised learning processes
incoming online samples usually are not pre-labelled. If a
cluster is updated, the corresponding class label is determined
as the consequent of the fuzzy rule with the highest activation
degree, and the user intervention is not necessary. If two clus-
ters are merged by the recursive clustering algorithm, the cor-
responding fuzzy rules are also merged to represent an unique
class. It should be noted that, both the number of rules and
the number of classes are determined during the evolving pro-
cess, and it is not necessary to set these parameters a priori.
Algorithm 2 summarizes the procedures of the classifier.

Algorithm 2: Evolving Fuzzy Classifier
Input: xk;
Output: yk;
Initialize the classifier;
for k = 1, 2, ... do

Read xk;
Execute the recursive clustering algorithm with drift
detection;
if new cluster is created then

Create new fuzzy rule;
Define the new class elicited by expert / system
operator;
yk = label of the new class;

end if
if cluster is updated then

Update the corresponding fuzzy rule;
Find the most active rule;
yk = label of the most active rule;

end if
if clusters are merged then

Merge the corresponding fuzzy rules;
end if

end for

Dynamic 

System 

Evolving 

Fuzzy 

Classifier 

Recursive 

Clustering 

Algorithm 

Operator 
Database 

Output 

Figure 1. Fault diagnosis with the evolving fuzzy classifier.

Figure 1 illustrates the application of the proposed classifier
for fault diagnosis. Data samples are obtained from a dy-
namic system in a continuous stream, usually provided by
sensors that monitor the process. These data might require the
use of pre-processing techniques for feature extraction. The
rule set of the classifier starts empty at the beginning. Rules
are created as the recursive clustering algorithm creates clus-
ters to represent the data stream. Each rule will be related to
a class, and each class will be related to a dynamic system
condition, representing a normal operation or a fault. When
a new rule is created, the system operator is notified and in-
forms the label of the new class that defines it as a normal
operation condition or as a specific fault. All of the necessary
diagnostic information, the fuzzy rules and classes label, are
stored in a unified database and updated while the system is
used. The classifier database will contain a set of fuzzy rules
and classes labels defined after an initial period of operation.
When a new data sample is associated with an existing clus-
ter, the classifier updates the corresponding fuzzy rule and
classifies the dynamic system condition as the label present
in the consequent of the fuzzy rule with the highest activation
degree. It should be noted that, in this situation, user inter-
vention is not required, and the classification of the dynamic
system condition is performed automatically. The main fea-
ture of the classifier proposed in this work is ability to diag-
nose faults in a complex non-stationary dynamic system in
online mode and, if necessary, in real time. The classifier
does not require any a priori information about the dynamic
model neither process historical data. This allows the classi-
fier to construct a rule base in an evolving way and, with the
aid of the operator, to learn to diagnose faults as they occur.
Thus, the proposed classifier is able to adapt to the dynamic
system, making it possible to diagnose faults not previously
known.

4. SIMULATIONS AND RESULTS

The proposed classifier was evaluated for fault diagnosis in an
interacting tank system. The interacting tank system model
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employed in this work was based in the system proposed by
Braga, Jota, Polito, and Pena (1995) and allows to simulate
faults that resembles the faults of real industrial plants. As
illustrated in Fig. 2, the system comprises of a reservoir (TQ-
1) and two passively interconnected tanks (TQ-2 and TQ-3).
Using the interacting tank system model is possible to per-
form fault simulation on the actuators (pneumatic valves and
pumps), at the system components (connection pipes between
tanks) and on the sensors, with different sets of parameters.
The types of faults are detailed in Table 1. In the fault sim-
ulation, the system starts at normal operation, and a fault is
set at half of the simulation interval. Figure 3 shows as an
example the curves of the TQ-2 level, TQ-3 level, TQ-2 input
flow rate and TQ-3 output flow rate in fault simulation (FCV-
1 valve tightness). At the beginning of each simulation, the
system is working under normal operation, and the fault starts
at the half of the period.

Figure 2. Representation of the interacting tank system.

Table 1. Types of faults on interacting tank system.

Index Description
0 Normal operation
1 FCV-1 valve tightness
2 FCV-2 valve tightness
3 BA-1 pump shutdown
4 BA-2 pump shutdown
5 pipe clogging between TQ-1 and TQ-2
6 pipe clogging between TQ-1 and TQ-3
7 pipe clogging between TQ-2 and TQ-3
8 pipe leakage between TQ-2 and TQ-3
9 TQ-3 level sensor fault
10 TQ-3 output flow rate sensor fault
11 TQ-2 input flow rate sensor fault

Different scenarios were used in the fault diagnosis experi-
ments. Each scenario consists in the simulation of sequences
from 3 to 11 randomly selected fault types within a set of
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Figure 3. Fault Simulation: FCV-1 valve tightness.

faults with periods of normal operation between faults. In or-
der to assess the robustness of the proposed classifier to the
presence of noise in the data, for each monitored variable ran-
dom Gaussian noise was added with a zero mean and standard
deviation equal to 1% of the variable nominal value, consid-
ering normal operation of the system. As inputs of the clas-
sifier were provided in an online mode data samples related
to monitored variables of the interacting tank system: TQ-2
level, TQ-3 level, TQ-2 input flow rate and TQ-3 output flow
rate. For each fault sequence, the output classifier was com-
pared to the sequence provided. Whereas the classifier starts
with no fuzzy rule set, the first samples of data should match
the normal operation of the system, i.e., the first rule created
to describe the normal operation. For the experiments, the
parameters of the recursive clustering algorithm were defined
as: χ2

n,β = 9.4877; Finit = 10−2I; αinit = 0.5; z1 =
2; z2 = 3.

Figure 4 show as an example the results of fault diagnosis
in 5 faults scenario simulated scenario, where we can com-
pare the estimated output (classified faults sequence) of the
proposed classifier with the desired output (selected faults se-
quence) from input data samples. Results show that the clas-
sifier was able to correctly diagnose all the interacting tank
system faults. Whereas the presence of noise in the data sam-
ples, the occurrence of false alarms or misclassification (rep-
resented by isolated points on the graph) is low, even in the
scenario with the highest number of possible faults.

The classifier performance evaluation in this work was held in
terms of faults detection and fault classification, as suggested
in Vachtsevanos et al. (2006). Three metrics were calculated
in fault detection evaluation: Probability of Detection (POD),
Probability of False Alarm (POFA) and Accuracy (ACC). Re-
garding fault classification evaluation, the metric Fault Isola-
tion Rate (FIR) was used. Other metrics that were used to as-
sess the performance of the proposed classifier are: Detection
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Figure 4. Desired output and estimated output by proposed
classifier in 5 faults scenario.

Delay Time (DDT), Isolation Delay Time (IDT) and Opera-
tor Intervention Rate (OIR). All results of fault diagnosis ex-
periments with interacting tank system obtained by classifier
proposed in this work were compared to the results obtained
using the evolving fuzzy classifier proposed by Lemos et al.
(2013). For the experiments, the parameters of this alterna-
tive classifier were set to: w = 100, λ = 0.001, α = 0.01,
Tµy = 0.01. According to authors, this combination has been
found experimentally to provide a good balance between the
false alarm rate and the sensibility of the fault detection and
diagnostic approach.

Table 2 summarizes the results for both classifiers using the
fault detection metrics described. The results show that the
classifier proposed in this work has higher levels of fault de-
tection rates and accuracy in all scenarios, and no occurrence
of false alarm. These results prove the efficiency of the al-
gorithm in detecting simulated faults in the interacting tank
system. Despite its lower fault detection rates and lower ac-
curacy, the classifier proposed by Lemos et al. (2013) also not
showed any false alarms.

Table 3 summarizes the results for both classifiers using the
faults classification metrics described. The results show that
the classifier proposed in this work presented higher fault iso-
lation rate in all scenarios. In all scenarios the operator inter-
vention on faults classification was very low. These results
shows the ability of the classifier to automatically diagnose
almost all faults after the first occurrence, and it also reveals
their ability to learn. Note that, in general, the classifier pro-
posed by (Lemos et al., 2013) had a lower performance in

faults classification than the proposed classifier and it needed
more operator interventions.

Table 4 summarizes the results for both classifiers using the
time metrics in fault detection and classification. A compar-
ison between the average values for fault detection time and
fault isolation time demonstrates that faults classification is
faster after the first occurrence of each type of fault, since
the classifier database already has the fuzzy rules and labels
for all types of detected faults, not requiring an operator in-
tervention. The results of the experiments with the classi-
fier proposed by Lemos et al. (2013) demonstrated a faster
response than the classifier proposed in this work, which is
related to different update mechanisms in the clustering algo-
rithms used in each one of the classifiers.

Table 2. Faults detection performance.

Scenario Proposed
POD (%) POFA (%) ACC (%)

3 faults 99.38 0.00 99.67
5 faults 99.25 0.00 99.63
7 faults 99.53 0.00 99.67
9 faults 99.12 0.00 99.56

11 faults 99.20 0.00 99.60
Scenario Lemos et al. (2013)

POD (%) POFA (%) ACC (%)
3 faults 89.35 0.00 94.67
5 faults 83.04 0.00 91.75
7 faults 82.27 0.00 91.10
9 faults 79.78 0.00 89.89

11 faults 76.02 0.00 88.01

Table 3. Faults classification performance.

Scenario Proposed Lemos et al. (2013)
FIR (%) OIR (%) FIR (%) OIR (%)

3 faults 99.55 0.05 94.67 0.28
5 faults 96.76 0.04 91.88 0.29
7 faults 94.24 0.03 90.30 0.30
9 faults 92.69 0.03 89.86 0.31

11 faults 91.43 0.03 88.01 0.31

Table 4. Fault detection and classification time.

Scenario Proposed Lemos et al. (2013)
DDT (s) IDT (s) DDT (s) IDT (s)

3 faults 0.065 0.003 0.015 0.003
5 faults 0.753 0.680 0.017 0.003
7 faults 1.482 1.321 0.021 0.004
9 faults 1.936 1.826 0.018 0.004
11 faults 2.327 2.204 0.018 0.004

To evaluate the robustness of the proposed classifier in the
presence of outliers in the data, another experiment was con-
ducted. In this experiment, a 5 faults scenario was simulated.
Outliers were inserted in the data samples, i.e., some sam-
ples were corrupted with high variance noise. Even in the

8
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presence of outliers, the fault diagnosis results for this ex-
periment shows that the proposed classifier was able to cor-
rectly detect and diagnose all faults considered. This result
shows that the classifier was able to correctly distinguish be-
tween outliers and valid data samples. The results of this ex-
periment are presented in Table 5 and Table 6. Analysing
these tables, one can note that the proposed classifier has vir-
tually the same performance in fault diagnosis with absence
or presence of outliers, and also not showed occurrence of
false alarm. This experiment showed the greater robustness
of the classifier proposed in this work when compared with
the classifier proposed by Lemos et al. (2013), since the latter
showed major differences in fault detection and fault classifi-
cation rates in scenarios with and without outliers.

Table 5. Faults detection performance with outliers.

Scenario Proposed
POD (%) POFA (%) ACC (%)

without outliers 99.25 0.00 99.63
with outliers 99.26 0.00 99.63

Scenario Lemos et al. (2013)
POD (%) POFA (%) ACC (%)

without outliers 83.78 0.00 91.75
with outliers 79.00 0.00 89.51

Table 6. Fault classification performance with outliers.

Scenario Proposed Lemos et al. (2013)
FIR (%) OIR (%) FIR (%) OIR (%)

without outliers 96.73 0.04 91.88 0.30
with outliers 96.34 0.04 89.00 0.32

5. CONCLUSION

An evolving fuzzy classifier for fault diagnosis of dynamic
systems was presented in this work. The proposed classi-
fier is composed by a set of fuzzy rules created and updated
based on recursive clustering algorithm. A new mechanism
for cluster updating based on a drift detection method is em-
ployed, where the update of the cluster depends not only of
the similarity measure, but also on the data context monitor-
ing. As suggested by the simulation results, this feature gives
the proposed classifier robustness to outliers and noise. An
interacting tank system model was used for evaluation of the
classifier proposed in this work. The classifier was able to
detect and classify all faults with a high performance, even
in the presence of outliers and noise. The high fault isola-
tion rate and low false alarm rate obtained in all simulated
scenarios showed that the recursive clustering algorithm with
drift detection method was able to efficiently distinguish data
samples representing clusters of invalid data. Moreover, the
proposed classifier was able to automatically diagnose almost
all faults, requiring operator intervention on a small percent-

age of cases. This demonstrates the advantage of the con-
tinuous and incremental learning of the classifier over other
classifiers that require retraining whenever an unknown type
of fault is found. The classifier proposed in this work has as
advantages: the ability to learn from faults in online mode and
in real time; the ability to adapt to cope with changes in the
dynamic system; and robustness to the presence of outliers
and noise in the input data. Summarizing, the proposed clas-
sifier has showed to be a promising alternative for application
in fault diagnosis where other methods prove to be inefficient
or less advantageous, because of the characteristics of such
systems. In a future work, we will investigate the application
of the proposed algorithm in the real time fault diagnosis and
prognosis of industrial machines and equipments.
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