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ABSTRACT 

Research techniques of prognostics for gas turbines and 
diesel engines have advanced in recent years. An analysis of 
trends in these techniques would benefit researchers 
assessing growth in the field and planning future research 
efforts. Prognostics research techniques were identified in 
1,734 published papers dated 1997-2016 from both the 
Prognostics and Health Management (PHM) Society and 
papers identified by CiteSeerx that were published at venues 
other than the PHM Society. In order to categorize papers by 
research technique, a taxonomy of prognostics was created. 
Additionally, the papers were categorized into two topics:  
gas turbines and diesel engines. In a large proportion of 
papers, trends in research techniques of prognostics for gas 
turbines and diesel engines reflected improvements in the 
speed of multi-core computer processors, the development of 
optimized learning methods, and the availability of large 
training sets. The variety of prognostics research techniques 
that were identified in this review demonstrated the growth 
in prognostics research and increased use of this knowledge 
in the field. This systematic analysis of trends in research 
techniques of prognostics for gas turbines and diesel engines 
is useful to assess growth and utilization of knowledge in the 
larger field, and to provide a rationale (i.e., strategy, basis, 
structure) for planning the most effective use of limited 
research resources and funding. 

1. INTRODUCTION  

The field of prognostics is a discipline that seeks to estimate 
the impact and predict the trajectory of the state of incipient 
faults (Bernardo, 2014). The study of prognostics is 
complicated by the diversity of applicable techniques, which 
are a collection of mathematical and heuristic techniques 
from the disciplines of statistics, signal processing, computer 
science, operations research, and decision theory (Hall & 

McMullen, 2004). Additionally, it involves multiple 
challenges in understanding and processing sensor data. 
Consequently, it is difficult for researchers and engineers to 
understand, choose, and apply the appropriate techniques to 
address a problem at hand from the growing number of 
research techniques available.  

While not intended to be mathematically rigorous, the 
objective of this paper is to assist researchers and engineers 
in understanding trends in research techniques of prognostics 
for gas turbines and diesel engines. This understanding will 
help them plan the most effective use of limited research 
resources and funding.  

In Section 2, a taxonomy is extended to highlight the 
interrelationships among the diverse set of prognostics 
techniques. In Section 3, the methodology for the analysis of 
trends is explained. Section 4 provides the results of the 
analysis of trends. In Section 5, trends are discussed, 
suggestions for further research are offered, and references 
are provided for the more fundamental texts. Finally, Section 
6 draws conclusions. 

2. TAXONOMY 

In Section 1, the problem of assessing trends in prognostics 
research was introduced. The authors surveyed the corpus 
described in Section 3 of 1,734 titles and abstracts on 
prognostics from the last twenty years (1997-2016); they 
identified 144 individual techniques. To characterize these 
techniques, the taxonomy developed by Hall and McMullen 
(2004) was extended to partition additional techniques and 
algorithms into specific categories. 

The taxonomy defines conceptual categories of techniques 
and groups specific techniques into those categories. As such, 
they are conceptual and not mathematically rigorous. Figure 
1 shows the overview of the prognostics taxonomy, which 
identifies three categories: model-based methods, data-driven 
methods, and ancillary support algorithms.  

While shown as logically distinct, individual techniques in a 
functioning prognostics system would be integrated. 
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Additionally, some individual techniques have characteristics 
of more than one category. For example, neuro-fuzzy models 
could be grouped with neural networks or with fuzzy set 
theory. The trend analysis on individual techniques in Section 
4 would not change if a technique were moved to a different 
category. 

Model-based techniques, the first category shown in Figure 
1, seek to estimate impact and predict the trajectory of the 
state of incipient faults using physics-based, cognitive-based, 
or process models. Cognitive-based models are grouped into 
the subcategories of knowledge-based, event-based, and 
possibilistic models. Techniques utilized for model-based 
methods tend to be probabilistic (e.g. least squares 
optimization), heuristic (e.g., templates, frames, scripts), or 
possibilistic (e.g., fuzzy set theory) 

The second category shown in Figure 1 is comprised of data-
driven techniques, which seek to estimate impact and predict 
the trajectory of the state of incipient faults by either 
characterizing the data (e.g., clustering) or by training a 
model on the appropriate data (e.g., k-nearest neighbor, 
kernel regression, Bayesian networks). 

The third category shown in Figure 1 is comprised of 
ancillary algorithms that support prognostics. These include 
statistical techniques (e.g., regression), data transformation 
techniques (e.g., fast Fourier transform), and data processing 
techniques (e.g., complex event processing). 

The three aforementioned categories are large and contain 
many individual techniques. Therefore, they are expanded in 
subsequent figures. 

 

 
Figure 1. Overview of the prognostics taxonomy 

Extended from Hall and McMullen (2004)  
 

Model-based techniques seek to estimate impact and predict 
the trajectory of the state of incipient faults. As shown in 
Figure 2, there are three categories of model-based 
techniques: process models, physics-based models, and 
cognitive-based models.  

First, process models seek to predict response variables from 
explanatory variables using a model that is not explicitly tied 
to the physical properties of materials or sensors. Techniques 
in this category include classical estimation methods and 
Kalman filtering.  

Second, physics-based models attempt to model sensor-
observable data (e.g., temperature, vibrational spectra) 
accurately and to estimate their impact by matching predicted 
states to the observable data. Techniques in this category 
include sensor models and grain boundary sliding. 

Third, cognitive-based models seek to mimic the inference 
processes of human analysts in recognizing and predicting 
faults. Techniques in this category include rules, logical 
templates, and fuzzy set theory. In various ways, these 
methods are based on a perception of how people process 
observations to arrive at conclusions. 

 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017 

3 

 
 

Figure 2. Model-based techniques for prognostics 
Extended from Hall and McMullen (2004)  

 
Data-driven techniques seek to make inferences based on 
data without utilizing physical models. As shown in Figure 3, 
there are three categories of data-driven techniques: 
parametric, non-parametric, and machine learning. First, 
parametric techniques are probabilistic, which require a priori 
assumptions about the statistical properties (e.g., probability 
distributions) of the data.  

Second, non-parametric techniques do not require a priori 
statistical information. Examples are voting methods and 
entropic techniques.  

Third, machine learning techniques are used to make 
inferences by either characterizing the data (e.g., clustering) 
or by training a model on the appropriate data (e.g., k-nearest 
neighbor, kernel regression, Bayesian networks). 
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Figure 3. Data-driven techniques for prognostics 

Extended from Hall and McMullen (2004)  
 

Ancillary support algorithms are required to support 
prognostics. As shown in Figure 4, there are three categories 
of ancillary support algorithms: computational algorithms, 
signal processing techniques, and numerical algorithms.  

First, computational algorithms process the input data. 
Second, signal processing techniques offer data 
transformations that help satisfy the linearity requirement of 
many models. Third, statistical techniques are utilized to 
form predictive models, increase accuracy, and eliminate 
outliers.
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Figure 4. Ancillary support algorithms for prognostics 

Extended from Hall and McMullen (2004) 
 

3. METHODOLOGY  

The authors obtained titles and abstracts of all 891 scholarly 
papers published in the International Journal of the 
Prognostics and Health Management (PHM) Society and in 
all PHM Society conferences from their start in 2009 through 
2016. Using commercially available text mining software 
(RapidMiner), the authors removed stop words from the set 
of PHM Society titles and abstracts; converted the words to 

lower case; stemmed words; and generated 1-, 2-, and 3-
grams.  

To identify scholarly papers on prognostics from venues 
other than the PHM Society, the authors leveraged PHM 
Society titles and abstracts as a training set for a binary 
classifier: prognostics or not. However, classification 
accuracy suffers in such high dimensional problems 
(Friedman, 1997); therefore, to increase accuracy, the authors 
reduced dimensionality by forming a word vector of n-grams 
that occurred in at least 10% of the PHM Society titles and 
abstracts. This word vector of the key n-grams represented 
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the cluster of prognostics papers to be used two steps later—
binary classification. 

Subsequently, the authors obtained titles and abstracts of 
scholarly papers found in CiteSeerx (Li, Councill, Lee, & 
Giles, 2006) on prognostics published during the last twenty 
years (1997-2016) at venues other than the PHM Society. 
Similar to what they performed on the PHM Society titles and 
abstracts, the authors removed stop words; converted the 
words to lower case; stemmed words; and generated 1-, 2-, 
and 3-grams. Additionally, they formed word vectors from 
the n-grams.  

Binary classification was performed using cosine similarity 
and a fixed decision boundary to identify prognostics papers, 
of which there were 843. Together, the two collections of 
titles and abstracts form a corpus of 1,734 titles and abstracts 
on prognostics from the last twenty years (1997-2016). 

To categorize the set of papers, the authors removed stop 
words from the titles and abstracts; converted them to lower 
case; and stemmed them. Using the taxonomy described in 
Section 2, the authors categorized each paper of the corpus 
by matching the stemmed techniques in the taxonomy to the 
stemmed titles and abstracts.  

The goal of this study was to identify trends in prognostics in 
two specific application areas: gas turbines and diesel 
engines. Papers on gas turbines were identified by querying 
the stemmed titles and abstracts for the terms “turbin”, 
“turbofan”, “turbojet”, “combust turbin”, “turboprop”, 
“turbin engin”, and “apu”. Papers on diesel engines were 
identified by querying stemmed titles and abstracts for the 
terms “diesel”, “reciproc engin”, and “automot engin”. Of the 
1,734 papers, 41 were on diesel engines and 98 were on gas 
turbines. 

The authors drew line charts showing relative incidence of 
individual and rolled-up techniques by topic and by five-year 
intervals. Similarly, they drew corresponding line charts for 
gas turbines and diesel engines. The line charts were 
examined for trends. 

4. RESULTS  

Three trends in the relative incidence of prognostics 
techniques emerged: a recent upward trend in deep learning, 
an established upward trend in particle filters, and an 
established downward trend in neuro-fuzzy models. 

As Figure 5 shows, the corpus contained no incidences of 
deep learning in the first fifteen years (1997-2011). However, 
the most recent five years (2012-2016) showed that 2% of 
papers on all topics and 5% of the papers on gas turbines used 
deep learning. Therefore, the most recent trend for 
prognostics is an upward trend in deep learning. Section 5 
contains takes a deeper look at the factors affecting this trend.  

 
Figure 5. Trend in papers referencing deep learning 

 
From 1997-2001, the corpus contained no incidences of 
particle filters. Then, in the period of 2002-2006, 3% of 
papers on all topics used particle filters, but none on diesel 
engines used particle filters.  Next, from 2007-2011, 5% of 
papers on all topics used particle filters, but none for diesel 
engines were found.  Recently (2012-2016), the relative 
incidence for particle filters has increased, when 7% of 
papers on all topics and 11% of the papers on diesel engines 
used particle filters. Figure 6 shows the established upward 
trend of particle filters for prognostics. 

 
Figure 6. Trend in papers referencing particle filters 

 

The relative incidence of neuro-fuzzy models is shown in 
Figure 7. In 1997-2001, 3% of papers on all topics used 
neuro-fuzzy models, followed by 2% in 2002-2006, 3% in 
2007-2011, and 1% in recent years (2012-2016). The number 
of papers on gas turbines using neuro-fuzzy models drops 
from 25% in 1997-2001 to zero in 2002-2016. Therefore, 
neuro-fuzzy models in prognostics established downward 
trend. 
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Figure 7. Trend in papers referencing neuro-fuzzy models 

5. DISCUSSION 

An important step toward deep learning was the neural 
network research that began in the late 1950s and 1960s with 
the development of perceptrons  (Rosenblatt, 1961) and the 
use of multiple layers of perceptrons (Widrow, Groner, Hu, 
& Smith, 1963) to form neural networks.  The application of 
multi-layer perceptrons was advanced by the development of 
backpropagation algorithms (Hecht-Nielsen, 1989) to train 
the weights connecting the perceptrons from one layer to the 
next.  Lecun, Bottou, Bengio, & Haffner (1998) successfully 
applied multi-layer perceptrons to optical character 
recognition. 

Neural networks have been applied in pattern recognition and 
object classification problems since the development of the 
backpropagation algorithm provided an efficient method for 
supervised training of the neural networks. Neural networks 
have also been used as nonlinear filters and have been trained 
to synthesize the response of nonlinear systems (Nerrand, 
Roussel-Ragot, Personnaz, Dreyfus, & Marcos, 1993).  
Traditional neural networks, however, worked well with 
static data, but were cumbersome for dealing with temporal 
data.  Recurrent neural networks introduced the ability to add 
time (Funahashi & Nakamura, 1993) as a variable into the 
classification process, but most neural network based fault 
classifiers still relied on the use of traditional signal 
processing techniques (ancillary support algorithms, Figure 
4) to extract features that could then be used as inputs to the 
neural network. 

Despite their success in in pattern recognition and fault 
classification, neural networks still suffered from several 
shortcomings. A general lack of computer processing power 
made it difficult to quickly train neural networks, while a lack 
of large training sets with metadata describing operating 
conditions and the occurrence of faults or failures made it 
difficult to automate training. Finally, because of the lack of 
large data sets, neural network classifiers tended to be easily 

over trained.  Unlike competing approaches such as Bayesian 
classifiers and nearest neighbor techniques, which have 
mathematically describable class boundaries in their N-
dimensional feature spaces, neural networks can learn a 
complicated nonlinear boundary between class members 
within the feature space leading to a trained classifier that 
does not generalize well. 

Hinton, Osindero, & Teh (2006) introduced deep learning 
techniques that changed the way neural networks are 
structured and trained. Further advancements were made in 
the late 2000s (Deng et al., 2009) with significant 
demonstrations and applications beginning to appear in 2011.  
Perhaps the most visible early application of deep learning 
was the introduction of IBM’s Watson computer on the TV 
show Jeopardy in 2011.  Applications of deep learning in 
prognostics is following a general trend of more numerous 
and more accurate applications of deep learning in many 
scientific and engineering disciplines. 

The upward trend in applications of deep learning in 
prognostics since 2011 (see Figure 5) and the overall increase 
in the use deep learning techniques in general are the result 
of several factors.  First is the development of faster and more 
powerful multi-core computer processors.  While Watson ran 
on a super computer, deep learning neural networks today run 
on the processing equivalent of laptops or desktop computers, 
with the next frontier being implementation on embedded 
devices and the Internet of Things. A second reason is 
development of optimized architectures and learning 
methods, improving the efficiency of training algorithms. 
Finally, another very significant development is the 
availability of large training sets, i.e. big data. 

Because of improvements in processor speed and algorithm 
efficiency, deep learning neural networks can be applied to 
problems with large amounts of data.  Coincidentally, deep 
learning techniques yield results that are more generalizable 
when they are trained on large data sets.  Initially, deep 
learning techniques were applied to problems such as facial 
recognition, by having the neural networks train on large 
libraries of images that were manually collected and 
categorized. By leveraging the ability to autonomously 
collect large amounts of data on which to train, such as 
through embedded sensors and the Internet of Things, deep 
learning techniques are increasingly being applied to new 
areas without the need for manual data collection. 

One final trend in machinery condition monitoring and 
prognostics that is leading to more applications of deep 
learning is the emergence of large machinery health data sets.  
Many health monitoring applications have traditionally used 
snapshots of high sample rate data (e.g. vibration data) to 
determine the health of the system at a particular time.  A 
recent trend has been to focus on the development of 
prognostic algorithms using low bandwidth sensor data 
(Grosvenor, Prickett, Frost, & Allmark, 2014), such as that 
available on vehicle control and sensor busses.  Such data 
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typically has a low acquisition or collection cost because it is 
already available on an existing platform bus and does not 
require the installation of sensors, wiring, and dedicated data 
acquisition electronics. Instead of small samples of high 
bandwidth data, the development is focused on using large 
sets of low bandwidth data collected across fleets of assets, 
resulting in big health data. Nevertheless, transmitting or 
collecting the data from the assets and connecting it to the 
computers hosting the machine learning programs is still a 
challenge in many application areas. 

6. CONCLUSIONS 

In the field of prognostics, it is increasingly difficult for 
researchers and engineers to understand, choose, and apply 
the appropriate techniques to address a problem at hand from 
the growing number of research techniques available. 
Therefore, a taxonomy was extended to highlight the 
interrelationships among the diverse set of prognostics 
techniques. The taxonomy is hierarchical, consisting of 
categories, subcategories, and 144 individual techniques. 

A methodology was developed to analyze trends in research 
techniques in prognostics from a corpus consisting of 1,734 
titles and abstracts on prognostics from the last twenty years 
(1997-2016) from both the PHM Society and from papers 
identified by CiteSeerx that were published at venues other 
than the PHM Society. Papers in the corpus were categorized 
by research technique using the taxonomy. Additionally, the 
papers were categorized into two topics:  gas turbine and 
diesel engine. 

Three trends in the relative incidence of prognostics 
techniques in research emerged: a recent upward trend in 
deep learning, an established upward trend in particle filters 
and an established downward trend in neuro-fuzzy models. 

In a large proportion of papers, trends in research techniques 
of prognostics for gas turbines and diesel engines reflected 
the improvements in the speed of multi-core computer 
processors, the development of optimized learning methods, 
and the availability of large training sets. 

This systematic analysis of trends in research techniques of 
prognostics for gas turbines and diesel engines is useful to 
assess growth and utilization of knowledge in the field, and 
to provide a rationale (i.e., strategy, basis, structure) for 
planning the most effective use of limited research resources 
and funding. 
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