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ABSTRACT

We introduce Random Projection Filter Bank (RPFB) as a
general framework for feature extraction from time series
data. RPFB is a set of randomly generated stable auto-
regressive filters that are convolved with the input time se-
ries. Filters in RPFB extract different aspects of the time se-
ries, and together they provide a reasonably good summary of
the time series. These features can then be used by any con-
ventional machine learning algorithm for solving tasks such
as time series prediction, and fault detection and prognosis
with time series data. RPFB is easy to implement, fast to
compute, and parallelizable. Through a series of experiments
we show that RPFB alongside conventional machine learning
algorithms can be effective in solving data-driven fault detec-
tion and prognosis problems.

1. INTRODUCTION

The modular approach to data-driven fault detection and
prognosis of time series data has two components: A fea-
ture extraction module that summarizes the time series into a
feature vector, and a machine learning module that uses the
extracted features to solve the decision problem, e.g., classify
the fault. Ideally, the first module should compactly sum-
marize all important aspects of the time series while having
a small computational footprint. Several methods have been
proposed for feature extraction from time series data. Tradi-
tionally, they can be categorized as (i) time domain methods,
e.g., fixed-window history-based estimator and autoregres-
sive modeling [Kakade et al., 2016; Ge et al., 2007], and (ii)
frequency domain methods, e.g., short-time Fourier trans-
form and envelope analysis [Nayak & Panigrahi, 2011]. Re-
cently, numerous deep learning-based approaches have also
been proposed for feature extraction of time series for various
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prognosis and health management problems, e.g., Deutsch &
He [2016].

This paper proposes Random Projection Filter Bank (RPFB)
as a generic module for extracting features from time series
data. RPFB is a set of randomly generated stable autoregres-
sive (AR) filters whose convolution with the input time se-
ries provide features to the second module, i.e., the machine
learning module. The use of AR filters, which have an infinite
impulse response, allows RPFB to capture information from
the distant past of the input time series. This is in contrast
with more conventional approaches such as considering only
a fixed window of the past time steps, which may not capture
all relevant information from the time series. Each filter in an
RPFB extracts different aspects of the time series. Together,
they provide a reasonably good summary of the time series.
RPFB is easy to implement, is fast to compute, and can be
parallelized.

RPFB is a general framework for feature extraction from time
series data. As opposed to domain-specific feature extrac-
tion methods that have been developed for particular prog-
nosis applications (e.g., for capacity estimation of Lithium-
Ion batteries by Zhang & Guo [2015] or bearing prognosis
by Kim et al. [2016]), RPFB can work on a range of appli-
cations and decision problems. We empirically show this by
evaluating it on several synthetic and real-world datasets. We
have also theoretically studied RPFB elsewhere [Farahmand
et al., 2017]. We emphasize that the main goal of this paper is
to introduce RPFB as a simple, yet powerful, method for fea-
ture extraction that can easily be used with any conventional
machine learning approach such as (kernelized) ridge regres-
sion, Support Vector Machines, Random Forest, etc. [Hastie
et al., 2001; Bishop, 2006] to solve various prediction, diag-
nosis, and prognosis problems with the time series data.

Section 2 defines the fault detection and prognosis with time
series data and discusses the difficulty of using a fixed-
window history-based approach. Section 3 proposes RPFB
for feature extraction from time series. Section 4 compares
RPFB with a fixed window-size approach for several syn-
thetic and standard datasets in the Prognosis and Health Mon-
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itoring (PHM) community. The synthetic problem is the next-
step prediction task for an AutoRegressive Fractionally Inte-
grated Moving Average (ARFIMA) process, which has a long
memory. This is an example of a time series prediction prob-
lem. For the fault detection, we use the bearing vibration
dataset provided by Machinery Failure Prevention Technol-
ogy (MFPT) Society.1 For the fault prognosis problem, we
solve the Remaining Useful Life (RUL) problem using the
Turbofan Engine Degradation Simulation dataset. Finally, the
Li-Ion battery charge-discharge dataset is used as an example
of the battery capacity predicting problem. These datasets are
both provided by Prognostics Data Repository of NASA.2

2. FAULT DETECTION AND PROGNOSIS WITH
TIME SERIES DATA

Consider a sequence (X1, Y1), . . . , (Xt, Yt) of dependent
random variables with X ∈ X and Y ∈ Y . Depending on
how we define X and Y , we can describe different learning
problems.

To start, suppose that Yt = f∗(Xt)+εt, in which f∗ is an un-
known function of the current value of Xt and εt is indepen-
dent of the history X1:t = (X1, . . . , Xt) and has a zero ex-
pectation, i.e., E [εt] = 0. Finding an estimate f̂ of f∗ using
data is the regression (or classification) problem depending on
whether Y ⊂ R (regression) or Y = {0, 1, . . . , c − 1} (clas-
sification). The difference of this scenario with more con-
ventional scenarios in the supervised learning and statistics
is that here the input data does not satisfy the usual indepen-
dence assumption anymore.

Problems in diagnosis or prognosis are closely related to the
above-mentioned general setup. Suppose thatXt is the sensor
observations from a device at time t, e.g., a vibration sensor
in an elevator or voltage of a battery. Moreover, assume that
there exists a set D ⊂ X such that whenever x ∈ D, the de-
vice is in its faulty mode. This can be formulated by choosing

f∗(x) = I{x ∈ D} =

{
+1 x ∈ D
0 x /∈ D

(1)

Fault Detection

For the fault detection problem, the goal is to find a function
f̂ that approximates f∗(x) = I{x ∈ D}. Since we do not
know the set D a priori, we would like to estimate it using
dataset in the form of

Dm =
{

(Xi,1, Yi,1 = 0), (Xi,2, Yi,2 = 0), . . . ,

(Xi,Ti−1, Yi,Ti−1 = 0), (Xi,Ti , Yi,Ti = +1)
}m
i=1

,

(2)

1Available from www.mfpt.org/faultdata/faultdata.htm.
2Available from ti.arc.nasa.gov/tech/dash/pcoe/
prognostic-data-repository.

which is a dataset consisting of m independent sequences all
ended up being in the faulty mode. This dataset is provided
by an expert who has decided when the device entered in its
faulty state. In this dataset, Ti is the stopping time, which is
a random variable that indicates the first time the device be-
comes faulty. Here it is assumed that the recording of data
stops as soon as a faulty state is reached, but we are not lim-
ited to this representation and a similar framework can be de-
signed for more general cases too.

This problem can be seen as a classification problem. An
estimator might be found by casting the problem as the reg-
ularized empirical risk minimization problem with the 0/1
loss:

f̂ ← argmin
f∈F

m∑
i=1

Ti∑
t=1

I{f(Xi,t) 6= Yi,t}+ λJ(f), (3)

in which F is a function (hypothesis) space, J(f) is the reg-
ularizer (or penalizer), and λ > 0 is the regularization coef-
ficient. A flexible choice for F is the family of reproducing
kernel Hilbert spaces (RKHS) [Shawe-Taylor & Cristianini,
2004; Steinwart & Christmann, 2008]. If we choose to work
with an RKHS, a suitable regularizer is the squared norm of
the RKHS, i.e., J(f) = ‖f‖2F . Other types of function spaces
and estimators can also be used. For example, one may use a
deep neural network to representF [Goodfellow et al., 2016].

Notice that the 0/1-loss function is non-convex, so one in
practice uses convex surrogates such as the the hinge loss:

f̂ ← argmin
f∈F

m∑
i=1

Ti∑
t=1

(1− f(Xi,t)Yi,t)+ + λJ(f). (4)

Prognosis

A common problem in prognosis is to estimate the RUL of a
device. For estimating the RUL, we may use a dataset in the
following form:

Dm =
{

(Xi,1, Yi,1 = Ti − 1), (Xi,2, Yi,2 = Ti − 2), . . . ,

(Xi,Ti−1, Yi,Ti−1 = 1), (Xi,Ti
, Yi,Ti

= 0)
}m
i=1

.

(5)

Finding an estimator that returns the RUL based on the cur-
rent reading can be seen as a regression problem:

f̂ ← argmin
f∈F

m∑
i=1

Ti∑
t=1

|f(Xi,t)− Yi,t|2 + λJ(f) (6)

The use of symmetric loss function such as the least squares
loss implicitly assumes that the cost of over-estimating and
under-estimation of the RUL is the same. For some applica-
tions, this might not be the case. Therefore, we can define the
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loss of predicting y by y′ = f(x) as follows:

l(y′, y) =

{
c1(y′ − y)2 y′ ≥ y
c2(y′ − y)2 y′ < y

(7)

with c1, c2 > 0 as two constants, c1 in general being different
from c2, that are determined by the relative cost of over- or
under-estimation of the RUL. More generally, we may use
any loss function l : Y ×Y → [0,∞), e.g., l(y1, y2) = |y1 −
y2|2, and have the estimator as the solution of the following
(regularized) risk minimization problem:

f̂ ← argmin
f∈F

m∑
i=1

Ti∑
t=1

l(f(Xi,t), Yi,t) + λJ(f). (8)

2.1. History-Dependent Learning Problems

More generally, Yt is a function of the history X1:t =
(X1, . . . , Xt), possibly contaminated by an independent
noise:

Yt = f∗(X1:t) + εt, (9)

where εt is independent of X1:t and has a zero expectation,
i.e., E [εt] = 0. As in the previous case, f∗ is an unknown
function and we would like to estimate it. The special case of
f∗(X1:t) = f∗(Xt) is the same as the previous setting.

To learn an estimator by directly using the history X1:t is
challenging as it is a time-varying vector with an ever increas-
ing dimension. There are several approaches to deal with this
issue. A standard approach is to use a fixed-window history-
based estimator, which shall be explained next (cf. Kakade et
al. [2016] for some recent theoretical results). The RPFB is
an alternative approach that we describe in Section 3.

In the fixed-window history-based approach, we only look at
a fixed window of the immediate past values of X1:t. That
is, we use samples in the form of Zt , Xt−H+1:t with a
finite integer H that determines the length of windows within
the whole history. The regularized least-squares regression
estimator would then be

f̂ ← argmin
f∈F

m∑
i=1

Ti∑
t=1

|f(Xi,t−H+1:t))− Yi,t|2 + λJ(f),

(10)

which should be compared to (6). The formulation for clas-
sification is similar with the difference in the choice of loss
function, e.g., (1− f(Xi,t−H+1:t)Yi,t)+ for the hinge loss..

One problem with this approach is that for many stochastic
processes, a fixed-sized window of length H is not enough
to capture all information about the process. As an exam-
ple, consider a simple MA(1) univariate random process (e.g.,

X = R):

Xt = U(t) + bU(t− 1) = (1 + bz−1)Ut, (11)

in which z−1 is the time-delay operator (cf. Z-transform, Op-
penheim et al. 1999), i.e., z−1Xt = Xt−1. Suppose that Ut
(t = 1, 2, . . . ) is an unobservable random process that drives
Xt. For example, it might be an independent and identically
distributed (i.i.d.) Gaussian noise, which we do not observe
(so it is our latent variable).

If we want to predict Yt = Xt+1 given the previous observa-
tions X1:t, we write

Ut =
Xt

1 + bz−1
=
∑
k≥0

(−b)kXt−k, (12)

so

Xt+1 = Ut+1 + bUt = Ut+1 +
b

1 + bz−1
Xt. (13)

This means that Xt is an autoregressive process AR(∞). The
prediction of Xt+1 requires the value of Ut+1, which is un-
available at time t, and all the past values X1:t. Since Ut+1

is unavailable, we cannot use it in our estimate, so this is the
intrinsic difficulty of prediction. On the other hand, the val-
ues of X1:t are available to us and we can use them to pre-
dict Xt+1. But if we use a fixed window of the past values
(i.e., only use Xt−H+1:t for a finite H ≥ 1), we would miss
some information that could potentially be used. This simple
example shows that even for a simple MA(1) process with
unobserved latent variables, a fixed-horizon window is not a
complete summary of the stochastic process.

More generally, suppose that we have a univariate linear
ARMA process:

A(z−1)Xt = B(z−1)Ut, (14)

with A and B both being polynomials in z−1.3 The ran-
dom process Ut is not available to us, and we want to de-
sign a predictor (filter) for Xt+1 based on the observed val-
ues X1:t. Suppose that A and B are of degree more than 1,
so we can write A(z−1) = 1 + z−1A′(z−1) and B(z−1) =
1 + z−1B′(z−1).4

Assuming thatA andB are both invertible, we use (14) to get

Ut = B−1(z−1)A(z−1)Xt. (15)

Also we can write (14) as

(1 + z−1A′(z−1))Xt+1 = (1 + z−1B′(z−1))Ut+1

= Ut+1 +B′(z−1)Ut. (16)

3We assume that A and B both have roots within the unit circle, i.e., they are
stable.

4The fact that both of these polynomials have a leading term of 1 does not
matter in this argument.
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By (16) and (15), we have

Xt+1 = Ut+1 +

[
B′(z−1)A(z−1)

B(z−1)
−A′(z−1)

]
Xt

= Ut+1 +
B′(z−1)−A′(z−1)

B(z−1)
Xt. (17)

When the unknown noise process Ut has a zero mean (i.e.,
E [Ut] = 0), the estimator

X̂t+1(X1:t) =
B′(z−1)−A′(z−1)

B(z−1)
Xt, (18)

is unbiased, i.e.,

X̂t+1(X1:t) = E [Xt+1|X1:t] . (19)

In words, the estimate X̂t+1(X1:t), which is a function of
all previous observations X1:t, is an unbiased estimate for
Xt+1. If we know the distribution of Ut+1 (e.g., it is a zero-
mean Gaussian), we can infer the distribution of Xt+1 using
X̂t+1(X1:t) as its mean.

If we knew the model of the dynamical system (A andB), we
could design the filter (18) to provide an unbiased prediction
for the future values of Xt+1. If the learning problem is such
that it requires us to know an estimate of the future observa-
tions of the dynamical system, this scheme would allow us to
design such an estimator.

The challenge here is that we often do not know A and B
(or similar for other types of dynamical systems). Estimating
A and B for a general dynamical system is a difficult task.
The use of maximum likelihood-based approaches is prone
to local minimum since U is not known, and one has to use
EM-like algorithms, cf. White et al. [2015] and references
therein. Here we suggest a simple alternative based on the
idea of projecting the signal onto the span of randomly gen-
erated dynamical systems. This would be RPFB, which we
describe next.

3. RANDOM PROJECTION FILTER BANK

The idea of RPFB can be understood if we write

B′(z−1)−A′(z−1)

B(z−1)
=
p(z−1)

q(z−1)
(20)

for two polynomials p and q, both in z−1. Suppose that
deg(q) = deg(B) = m and deg(A) = α. So deg(p) =
max{α − 1,m − 1} = n. Assume that q has roots
z1, . . . , zm ∈ C without any multiplicity. This means that
q(z−1) can be written as

q(z−1) =

m∏
i=1

(z−1 − zi). (21)

We have two cases of either n < m or n ≥ m. We focus on
the first case and describe the RPFB, and the intuition behind
it. Afterwards we will discuss the second case.

Case 1: Suppose that n < m, which implies that α− 1 < m.
We may write

p(z−1)

q(z−1)
=

m∑
i=1

bi
1− ziz−1

, (22)

for some choice of bis. This means that we can write (17) as

Xt+1 = Ut+1 +
B′(z−1)−A′(z−1)

B(z−1)
Xt

= Ut+1 +

m∑
i=1

bi
1− ziz−1

Xt. (23)

That is, if we knew the set of complex poles Zp =
{z1, . . . , zm} and their corresponding coefficients Bp =
{b1, . . . , bm}, we could provide an unbiased estimate ofXt+1

based on X1:t. From now on, we assume that the underlying
unknown system is a stable one, i.e., |zi| ≤ 1.

The idea of random projection filter bank is based on ran-
domly generating many simple dynamical systems, i.e., fil-
ters. We then approximate the true dynamical system as a
linear combination of these randomly generated filters. If the
number of filters is large enough, the approximation would be
accurate.

To be more precise, we cover the set of {z ∈ C : |z| ≤ 1}
with N (ε) random points Nε = {Z ′1, . . . , Z ′N (ε)} such that
for any zi ∈ Zp, there exists a Z ′ ∈ Nε with |zi − Z ′(zi)| <
ε. Roughly speaking, we require N (ε) = O(ε−2) random
points to cover the unit circle.

We then define the RPFB as the following set of filters de-
noted by φ(z−1):

φ(z−1) : z−1 7→

(
1

1− Z ′1z−1
, . . . ,

1

1− Z ′N (ε)z
−1

)
.

(24)

With a slight abuse of notation, we use φ(X) to refer to
the (multivariate) time series generated after passing a sig-
nal X = (X1, . . . , Xt) through the set of filters φ(z−1). We
use [φ(X)]t to refer to the t-th component of the signal.

The intuition of why this is a good construction is that when-
ever |z1 − z2| is small, the behaviour of the filter

1

1− z1z−1
(25)
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is similar to5

1

1− z2z−1
. (26)

So whenever Nε provides a good coverage of the unit circle,
there exists a sequence (b′j) such that the dynamical system

p′(z−1)

q′(z−1)
= φ(z−1)b′ =

N (ε)∑
j=1

b′j
1− Z ′jz−1

(27)

behaves similar to unknown p
q (22).

Note that since this is a linear model, parameters b′ can be es-
timated using ordinary least-squares regression, ridge regres-
sion, Lasso, etc. For example, the ridge regression estimator
for b′ is

b̂← argmin
b

m∑
i=1

Ti∑
t=1

|[φ(Xi)]tb−Xi,t+1|2 + λ ‖b‖22 . (28)

Under proper conditions, we would have b̂ → b′. After ob-
taining b̂, we define

X̃(X1:t; b̂) =

N (ε)∑
j=1

b̂j
1− Z ′jz−1

X1:t,

which is an estimator of X̂(X1:t), i.e., X̂(X1:t) ≈
X̃(X1:t; b̂).

Case 2: Suppose that n ≥ m, which implies that α− 1 ≥ m.
We may write

p(z−1)

q(z−1)
= R(z−1) +

ρ(z−1)

q(z−1)
, (29)

where ρ and R are obtained by Euclidean division of p by
q, i.e., p(z−1) = R(z−1)q(z−1) + ρ(z−1) and deg(R) ≤
α− 1−m and deg(ρ) < m. We can write

p(z−1)

q(z−1)
=

α−1−m∑
j=0

νjz
−j +

m∑
i=1

bi
1− ziz−1

. (30)

This is similar to Case 1, except that we have additional lag
terms. As before, if we knew the set of complex poles and
their corresponding coefficients, as well as the coefficients
of the residual lag terms νj , we could provide an unbiased
estimate of Xt+1 based on X1:t. But since we do not know
them, we randomly generate random filters. In this case, the

5This is shown rigorously in a theoretical paper submitted to the Neural In-
formation Processing Systems (NIPS) conference [Farahmand et al., 2017].

Algorithm 1 Random Projection Filter Bank

// Dm = {(Xi,1, Yi,1), . . . , (Xi,Ti , Yi,Ti)}mi=1: Input data
// l : Y × Y → R: Loss function
// F : Function space
//N : Number of filters in the random projection filter bank
Draw Z ′1, . . . , Z

′
n uniformly within the unit circle

Define filters φ(z−1) =
(

1
1−Z′1z−1 , . . . ,

1
1−Z′Nz−1

)
for i = 1 to m do

Pass the i-th time series through all the random filters
φ(z−1), i.e., X ′i,1:Ti

= φ(z−1) ∗Xi,1:Ti
.

end for
Solve the regularized empirical risk minimization

f̂ ← argmin
f∈F

m∑
i=1

Ti∑
t=1

l(f(X ′i,t), Yi,t) + λJ(f).

return f̂

feature set would be

φ(z−1) : z−1 7→([
1, z−1, .., z−(α−1−m)

]
,

1

1− Z ′1z−1
, ..,

1

1− Z ′N (ε)z
−1

)
,

(31)

which consists of a history window of lengthα−1−m and the
random projection filters, cf. (24). In this case the regressor
should estimate both bis and νis in (30).

RPFB is not limited to time series prediction with linear com-
bination of filtered signals. One may use the generated fea-
tures as the input to any other estimator too. RPFB can be
used for other problems such as classification with time se-
ries as well.

Algorithm 1 shows how RPFB can be used alongside a reg-
ularized empirical risk minimization algorithm. The inputs
to the algorithm are the time series data, the loss function
to be optimized, the function space F (e.g., linear, RKHS,
etc.), and the number of filters N in the RPFB. The dataset
Dm = {(Xi,1, Yi,1), . . . , (Xi,Ti , Yi,Ti)}mi=1 consists of m
time series, each of them possibly have a different length Ti.
The labels Yi,t depends on the decision problem. For exam-
ple, in the time series prediction, Yi,t = Xi,t+1.

The first step is to create the RPFB by randomly selecting N
stable autoregressive filters. In order to avoid dealing with
complex numbers, whenever we choose a complex pole, we
also include its complex conjugate too. So the pair defines
a second-order AR filter with complex conjugate pairs, and
it has a real-valued output. We then pass each time series
in the dataset through the filter bank in order to create fil-
tered features X ′i . The dimension of features is the same
as the number of filters in RPFB, i.e., N . As illustrated in
Figure 1, the filtered features are created by the convolu-
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Random'Projec-on'Filter'Bank'

Figure 1. RPFB: Output signals are created by the convo-
lution of the input time series with different filters’ impulse
response.

tion of input time series and filters’ impulse responses, i.e.,
X ′i,1:Ti

= φ(z−1) ∗Xi,1:Ti
. Here ∗ is the convolution opera-

tor and φ(z−1) should be interpreted as the impulse response
of the filters.6

Finally, taking into account the decision problem (e.g., re-
gression, classification, etc.) and function space, we apply
conventional machine learning algorithms to estimate f̂ . The
use of the regularized empirical risk minimizer as the estima-
tor is only one of the possible choices. One may use other
estimators too with the features obtained by RPFB, e.g., K-
Nearest Neighbourhood, Smoothing Kernel, Decision Trees,
etc. [Hastie et al., 2001; Bishop, 2006].
Remark 1. It should be noted that when the number of filters
in an RPFB, N , is not large, the unit circle is not covered
with a high resolution, i.e., the resolution of the coverage is
ε = O( 1√

N
) with a high probability. For small N , the perfor-

mance depends on whether the randomly selected points hap-
pen to be near the actual poles or not. This causes a high vari-
ance in the performance of the RPFB-based estimator. As N
increases, the coverage becomes denser, and the performance
improves. We will observe these in our empirical studies in
this paper. These arguments are precisely stated and proven
by Farahmand et al. [2017].

As its name suggests, RPFB is related to the random projec-
tion method [Vempala, 2004; Baraniuk et al., 2010]. Ran-
dom projection can be used to reduce the dimension of a
vector space while preserving important properties of the in-
put data. For example, it can be shown that random pro-
jection approximately preserves the distances between data
points, under certain conditions, e.g., if they all belong to a
low-dimensional manifold [Baraniuk & Wakin, 2009]. RPFB
is also related to Random Kitchen Sink [Rahimi & Recht,
2009] for approximating potentially infinite-dimensional re-
producing kernel Hilbert space (RKHS) with a finite set of
randomly selected features. RPFB can be thought of as the

6In the description of the algorithm we have not determined the initial states
of the AR filters in RPFB. In our experiments, we simply select the zero
initial state for all filters, but other initializations are possible too.

dynamical system (or filter) extension of these methods. It is
also related to the methods in the Reservoir Computing liter-
ature [Lukoševičius & Jaeger, 2009] such as Echo State Net-
work and Liquid State Machine, in which a recurrent neural
network with random weights provides a feature vector to a
trainable output layer. The difference of RPFB with the meth-
ods in reservoir computing is that we are not considering a re-
current neural network as the underlying excitable dynamical
system, but only a set of simple AR filters.

4. EXPERIMENTS

4.1. Time Series Prediction: ARFIMA Time Series

To study the effectiveness of the RPFB approach, we start
with the next-step time series prediction problem of an
AutoRegressive Fractionally Integrated Moving Average
(ARFIMA) process. ARFIMA is stochastic process with a
long memory, i.e., it has a long-range of dependency [Hosk-
ing, 1981]. Such time series have been studied and appeared
in different fields such as hydrology (river flow) and economy
(currency exchange rates). The ARFIMA(p, d, q) process yt
is defined as

Φ(z−1)Xt = Θ(z−1)(1− z−1)−dUt. (32)

The operators Φ(z−1) = 1 −
∑p
i=1 φiz

−i and Θ(z−1) =
1 +

∑q
i=1 θiz

−i are the autoregressive and moving average
operators, respectively. The fractional part of ARFIMA is
due to the fractional differencing operator (1 − z−1)−d with
−0.5 < d < 0.5, which has the following binomial expan-
sion:

(1− z−1)−d =

∞∑
j=0

Γ(j + d)

Γ(j + 1)Γ(d)
z−j =

∞∑
j=0

ηjz
−j . (33)

The output of the ARFIMA process is driven by a white noise
sequence (Ut) with zero mean and variance σ2.

We aim to find a hypothesis f̂ to estimate Xt+1 given values
of the time series in the previous time steps, i.e., X1:t. In our
experiments, we compare two sets of features: fixed-window
history features and features generated by passing the time
series through the RPFB. We study the effect of the number of
features on the prediction error, for both types of the features.

For the fixed-window history-based features, we apply a slid-
ing window with length H on X1:t, that is, we use the feature
vector Zi = Xi−H+1:i for i = H, . . . , T . We can obtain
different number of features by changing H .

For RPFB, we first create a filter bank by randomly choosing
N stable poles of degree 1 (real poles) or degree 2 (complex
poles) in the general form of Z ′j = rejθ, cf. (24).7 More
specifically, we randomly choose r from a uniform distribu-

7When picking a complex pole, we pick its conjugate too to make the output
of the filter real valued.
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tion over [0, 1] and θ from a uniform distribution over [0, 2π].8

Afterwards, the time seriesX1:t is passed through all such fil-
ters resulting in the desired feature set. Denoting the impulse
response of filter corresponding to the pole Z ′j by hZ′j (t), the
output signal (filtered X1:t) is X ′j,1:t = hZ′j (t) ∗X1:t where
∗ is the convolution operation. The RPFB feature vector at
time i is

Zi =
(
X ′1,i, · · ·X ′N,i

)
i = 1, . . . , t. (34)

For both feature types, we use ridge regression with the ex-
tracted features as its input to estimate the next-step value of
the time series, i.e., Xt+1.

To qualitatively observe the behavior of these two estimators,
we first generate a time series with the length of T = 10000
using the following ARFIMA process:

Xt = (1− z−1)0.4
(1 + 0.99z−1)

(1− 0.6z−1)
Ut, Ut ∼ N(0, 1). (35)

We train the ridge regression estimator, for both fixed
window-based and RPFB features, with the data from this
time series. In both cases we use two filters, i.e., H = 2
for fixed-window and N = 2 for RPFB. Figure 2 shows the
truth and predicted signals for both feature types for the same
ARFIMA process (the prediction is on a test set that is not
used for training).

One can see that the ridge regression applied to the RPFB
features, for this particular randomly chosen random poles,
performs the next-step prediction task reasonably well even
with 2 filters. As discussed earlier, when the number of filters
is small, there would be a high variance in performance with
respect to the random choice of filters. So it is possible that
for another random choice of filters, the performance would
be worse or even better.

We now study the effect of the number of filters (N for RPFB
and H for window-based) on the performance. Since the per-
formance of RPFB is a random variable because of its depen-
dence on the random choice of filters, we report the average
performance over 20 random set of filters. More specifically,
we generate 20 independent ARFIMA processes (with the
same T = 10000 as before). For each time series, we inde-
pendently generate 40 random filters. We then choose a sub-
set of these random filters with the size of N (1 ≤ N ≤ 40)
and train the ridge regression estimator using the extracted
features using the filters defined by that subset. The subset of
filters are selected in an increasing manner, that is, the set of
filters with N1 is included in the set of filters with N2 when
N1 < N2. This is to ensure that as we increase the number of
features, we also increase the size of the filter space defined

8Note that this does not induce a uniform distribution over the whole unit
circle, but induces a distribution that has a higher density closer to zero.
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Figure 2. (ARFIMA synthetic time series) - Next-step predic-
tion using ridge regression on RPFB and fixed window (win-
dow size=filter No = 2).

by RPFB. For the window-based approach, the randomness
is only due to the randomness of the time series.

Figure 3 shows the average prediction error for 20 differ-
ent ARFIMA processes as a function of number of features
(we use the same axis for N and H). The error bars show
one standard error around the empirical average. The perfor-
mance of both method gradually improves as the number of
features increases, and saturates slightly above the prediction
error of 1, which is the minimum achievable error (note that
in predicting Xt+1, we have a noise Ut+1 that has a normal
distribution with a variance of 1. As argued just after (13) in
Section 2.1, this is the intrinsic difficulty of prediction).

For the small number of filters in RPFB (N = 1, 3), the er-
ror bars for the performance of RPFB are large, as expected.
As the number of features N are increased, not only the av-
erage error of RPFB decreases, but also its variance, which is
due to the random choice of filters, decreases too. RPFB out-
performs the window-based approach for most values of the
number of features. This synthetic example is reassuring as
it shows that RPFB is effective in modeling time series data
with an analytical model (ARFIMA) without actually trying
to directly estimate the parameters of the model.

4.2. Fault Detection: Condition Monitoring for Bearings

Reliable operation of rotating equipments (e.g., turbines) de-
pends on the condition of their bearings. Detecting when a
bearing is faulty and requires maintenance is of crucial im-
portance. We consider a bearing vibration dataset provided
by Machinery Failure Prevention Technology (MFPT) Soci-
ety in our experiments.9

The dataset consists of three time series including a baseline
(good condition bearing/class 0), an outer race fault (class

9Available from www.mfpt.org/faultdata/faultdata.htm.
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Figure 3. (ARFIMA time series) MSE prediction error using
RPFB and fixed-window feature sets for different number of
features.
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Figure 4. (Bearing Dataset) Classification error on the test
dataset using RPFB and fixed-window feature sets.

1), and inner race fault with various loads (class 2). For this
problem the goal is to find a function f̂ that predicts the class
label of a given vibration time series X1:t = (X1, ..., Xt).
We compare fixed-window history-based vs. RPFB feature
extraction methods using several standard classification algo-
rithms.

Figure 4 shows the classification error while applying Logis-
tic Regression (LR), Support Vector Machine (SVM) with
RBF kernel, and Random Forest (RF) on both feature sets,
with varying feature size N = {5, 33, 55, 90, 147, 242, 399}.
For the RPFB, the error bars show one standard error around
the average classification error over 10 independent RPFB
feature sets. For this dataset, SVM offers the best perfor-
mance for both feature sets, with the error rate of 0.0658 ±
0.0304 for N = 399 for the RPFB and 0.113 for the fixed-
window feature sets forN = 147. We also observe that SVM
with RPFB features performs better than the window-based
one for the whole range of features number. It is noticeable

that the average classification error of SVM with RPFB fea-
tures becomes 10.5% for N = 90. The window-based ap-
proach never reaches this low value of error, even with the
much larger number of features N = 399.

4.3. Fault Prognosis: Predicting Remaining Useful Life
for Turbofan Engine Degradation

Remaining Useful Life (RUL) is defined as the remaining
time until a component will no longer operate properly at
a particular time of operation. Generally RUL is a random
quantity and its accurate prediction is essential for condition-
based maintenance and prognosis. Here we consider the sim-
ulated dataset for sensor measurements of gas turbine engines
provided by the Prognostics Center of Excellence at NASA
Ames Research Center [Saxena & Goebel, 2008]. The dataset
consists of time series of 24 different sensor measurements
for 100 different simulated engines, until the failure criterion
was reached. For this problem the goal is to find a function
f̂ that approximates the RUL of an engine using sensor mea-
surements. For each engine i = 1, . . . , 100, we have the End
of Life (EoL) time Ti. Thus, as discussed in Section 2, we
create the dataset

D100 =
{

(Xi,1, Yi,1 = Ti − 1), (Xi,2, Yi,2 = Ti − 2), . . . ,

(Xi,Ti−1, Yi,Ti−1 = 1), (Xi,Ti
, Yi,Ti

= 0)
}100
i=1

,

(36)

where Xi,j is the vector of sensor measurements for engine i
at the time step j, i.e., Xi,j = [X1

i,j , ..., X
24
i,j ] in which Xk

i,j

denotes measurement of sensor k of engine i at the jth time
step. The value Yi,j indicates the RUL of engine i at the time
step j. This problem can be seen as a regression problem with
RUL as the target values.

We investigate the efficiency of RPFB compared to the fixed-
window features. For extracting features using RPFB, first a
filter bank consisting of randomly chosen (stable) degree-one
and degree-two AR filters is created. Then, for engine i, the
time series of all sensor measurements are separately passed
through the filter bank, i.e. X ′ki,1:Ti

= hZ′(t) ∗ Xk
i,1:Ti

, k =
1, . . . , 24 for all filters, identified by Z ′, in the filter bank.
Then the feature vector at the specific time step j for engine i
is

Zi,j =
(
X′1i,j, · · ·X′Ni,j

)
, (37)

in which X′ki,j includes all 24 filtered signals of engine i at
time step j passing through the kth filter in the RPFB with N
filters. Thus, the length of the RPFB feature vector for this
example equals to 24×N .

For the fixed window history approach, we use a sliding win-
dow with lengthH for all sensors, that is, for engine i the fea-
ture vector Zi,j = (Xi,j−H+1, · · ·Xi,j) for j = H, . . . , Ti.
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Similarly, the length of the fixed-window feature vector is
24×H .

We then apply several standard regression algorithms over
both feature sets and investigate their performance. We con-
sider randomly chosen 66 engines as the training dataset and
the rest 34 of them as the test dataset. Since the performance
using RPFB features depends on the randomly chosen poles
for the simple AR filters, we apply multiple independently se-
lected RPFBs and pass the whole dataset through them. We
report the average prediction error on the test dataset for dif-
ferent number of features over all such RPFBs. We also report
the standard errors.

To measure the prediction error, we compare the Root Mean
Square (RMS) of the prediction error considering equal num-
ber of features using both fixed-window and RPFB feature
sets in the test dataset, i.e.,

Jemp =

√√√√∑34
i=1

∑Ti

j=H(Yi,j − Ŷi,j)2∑34
i=1

∑Ti

j=H 1
. (38)

Figure 5 shows the prediction error for the RUL of engines
in the test dataset using different regression methods (ran-
dom forest, ridge regression and kernel ridge regression with
RBF kernel) applied to both sets of features. For the RPFB
features, the average RMS error over 10 randomly chosen
RPFBs is depicted. The error bar shows one standard error. It
is observed that the performance depends on both the number
of features and the type of estimator. The best prediction error
is obtained by the kernel-based ridge regression with RPFB
features, which achieves the prediction error of 21.45±1.085
for N = 90.

It should be noted that when one uses a fixed-window-based
feature extraction method, the RUL cannot be predicted from
the start of the time series. If the window size isH , one has to
wait at least for the firstH time steps of the time series before
being able to construct the window-based features to be used
by the predictor. That is why the error is computed from time
step H onwards in (38). This is, however, not a limitation for
RPFB as the convolution of a filter is well-defined even from
the beginning of a time series. Consequently, even if a fixed-
window approach with a large H outperforms the RPFB, it
suffers from this limitation, i.e., the larger the length of the
window H , the later from the start of the time series one can
start predicting.

4.4. Time Series Prediction: Predicting Battery Capacity

The performance of an electrochemical battery cell is heav-
ily affected by ambient environmental condition as well as
its discharge profile. There are two major phenomena that
strongly influence a battery’s behavior as well as its EoL: (i)
battery losses some of its capacity with increasing load cur-
rent, known as rate capacity effect [Doyle & Newman, 1997];
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Figure 5. (Turbofan Engine dataset) Prediction error on the
test dataset using RPFB feature sets and fixed-window feature
sets.

(ii) battery regains portion of its capacity after some rest time,
known as recovery effect [Martin, 1999]. The main indicator
of the battery’s State of Health (SOH) and RUL is its actual
capacity value, which decreases over the working time of the
battery. Due to this non-linearities in battery behavior, pre-
dicting the battery capacity is a challenging task. Here we
consider a battery dataset provided by the Prognostics Cen-
ter of Excellence at NASA Ames Research Center [Saha &
Goebel, 2007]. The dataset consists of a set of 34 Li-ion bat-
teries that were run through three different operational pro-
files (charge, discharge and impedance) at different ambient
temperatures (4, 24, 44 deg. C). The charging of the batter-
ies was carried out in a constant current mode at 1.5A until
the battery voltage reached 4.2V. It then continued in a con-
stant voltage mode until the charge current dropped to 20mA.
The discharge of batteries was at different currents and modes
(including fixed discharge loads of 1A, 2A and 4A, as well as
0.05Hz square wave loading profile of 4A amplitude and 50%
duty cycle) until the battery voltage fell to a predefined value.
In some cases the experiments were continued until batteries
reached a 20% or 30% fade in their rated capacity, while for
other cases it is not the stopping criteria.10

Our goal is to predict the battery capacity using the avail-
able measurements during charge and discharge profile. The
measurements include battery temperature, load current and
voltage, charger’s current and voltage, battery’s terminal volt-
age and output current during charge and discharge profiles.
For each battery we consider the average voltage, current and
temperature in charge and discharge profile along with the
ambient temperature as the input vector. We use 32 batteries
in the dataset and consider randomly selected 21 of them as
the training dataset and the rest as the test dataset. For this

10These descriptions are quoted from the documents provided by Saha &
Goebel [2007].
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Figure 6. (Battery dataset) Prediction error on the test dataset
using RPFB feature sets and fixed-window feature sets.

problem, we create the dataset as follows:

D32 =
{

(Xi,1, Yi,1 = Ci,1), (Xi,2, Yi,2 = Ci,2), . . . ,

(Xi,Ti
, Yi,Ti

= Ci,Ti
)
}32
i=1

. (39)

Where Xi,j denotes average (charger/load) voltage, current
and temperature measurements for battery i during the jth
charge-discharge cycle, Yi,j is the capacity of battery in Amp-
hrs during the jth discharge cycle, and Ti is the number of
cycles that experiments carried out for battery i. For different
groups of batteries we have different Tis within the range of
24 to 196 cycles. We use various types of regression estima-
tors to predict the capacity value, using either RPFB or fixed-
window as the input features. As a performance metric, we
compare the RMS of the predication error on the test dataset.
For RPFB, we use 10 independently generated RPFB and re-
port the average performance, as well as the standard error,
over various RPFB sizes. The set of filters N are 2, 5, 8, 12,
and 15. We use the same sizes for the window size H .

Figure 6 shows the average prediction error for batteries in the
test dataset when we use different estimators (random forest,
ridge regression and kernel ridge regression with RBF ker-
nel). The error bars show one standard error over different
RPFBs. We observe that the Kernel Ridge with RPFB fea-
ture results in the least prediction error of 0.0967 ± 0.0146
for N = 12.

5. CONCLUSION

This paper introduced Random Projection Filter Bank
(RPFB) as a general framework for feature extraction of time
series data. Compared to other commonly using methods
for feature extraction from time series, such as Short-Time
Fourier Transform and deep learning methods, RPFB is com-
putationally cheaper and easier to implement. Through a set
of experiments in Section 4, we have shown RPFB’s capabil-
ity for solving various time series prediction, fault detection,

and prognosis problems. As a future work, we would like
to consider how the physical properties of a particular prob-
lem can be used to generate more problem-specific random
features.
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