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ABSTRACT 

Phased array antennas are widely used in many applications 

and consist of many antennas coupled together to enable 

digital beam-forming. As transmit/receive elements begin to 

degrade and eventually fail the antenna’s beam will distort 

from the desired pattern.  We propose a novel optimization 

algorithm which takes into account not only the current 

state-of-health of the system, but potential future states-of-

health from prognostic observations.  The approach can be 

run entirely off-line (before the start of a mission), so 

requires no additional computational resources or sensors be 

added to the system and does not require the system to be 

able to detect the degradation/failures during a mission.  Our 

main objective is to trade some current optimization 

flexibility for improved system robustness under future 

failures. 

1. INTRODUCTION 

Phased array antennas (Hansen, 2009) are used in many 

domains such as radars, communications, satellites, and 

weather research and many deployed systems exist across 

airborne, ground, maritime and space domains.  They are 

composed of many individual elements and the radiation 

pattern depends on each element’s location, excitation 

magnitude and phase.  As elements degrade and eventually 

fail this affects the ability of the array antenna to produce 

the desired radiation pattern. 

Typically the location of the elements is fixed, however by 

adjusting the excitation magnitude and phase through digital 

beam-forming the radiation pattern (known as the beam) can 

be steered, made broader or narrower, regions of enhanced 

or nulled coverage can be created etc. without any 

mechanical rotation of the antenna.  Array optimization or 

reconfiguration is the process of generating the parameters 

for the excitation magnitude and phase of each element to 

adapt the overall beam to the desired pattern.  Most existing 

approaches are designed for offline use prior to start of a 

mission or task.  They analyze the current state-of-health of 

the system, such as which elements are fully functional and 

which are failed, and then performs the optimization.  In 

instances where failures can be detected during the mission 

these techniques can be rerun to compensate for failures. 

The approach presented here assumes that we do not have a 

way of reliably detecting degradation or failures while in 

operation, however we may have the ability to detect which 

elements are at risk of failing in the near future (e.g. maybe 

they have already begun to degrade or are being heavily 

stressed by current usage).  Additionally some new array 

materials such as GaN may provide prognostic observables 

prior to failures.  We go beyond current techniques by not 

only optimizing over the current state-of-health, but also 

performing a preemptive optimization over potential future 

states-of-health.   

This preemptive optimization is much more robust because 

it allows us to maintain mission specifications of our system 

even in the presence of undetected future failures which 

might occur during the mission.  Overall this will help 

improve the system’s affordability and survivability as 

repairs can be delayed or shifted to more convenient times, 

such as delaying them till access to external test/repair 

equipment is available.  This graceful degradation or self-

healing can lead to important performance improvements. 

2. ARRAY OPTIMIZATION 

An array’s radiation pattern is a function of each element’s 

location, excitation magnitude, and phase.  An example 

beam pattern from a 32 element linear array is depicted in 

Figure 1.  Many techniques exist for determining the 

excitation magnitude and phase parameters for each element 

to control the beam. 

Some beam control may involve steering the beam or trying 

to optimize a cost criteria such as maximum side-lobe level 

(SLL), average SLL, or cumulative difference.  Many 

techniques have been developed over the years to optimize 

the desired beam pattern.  Some of the most common 

include genetic algorithms (Yeo & Lu, 1999), stochastic 

optimization (such as Particle Swarm Optimization - PSO) 
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(Yeo & Lu, 2009)(Boeringer & Werner, 2004)(Khodier & 

Al-Aqeel, 2009), and hybrid approaches (Yeo & Lu, 2005). 

Some approaches have also been developed to handle re-

optimization after element failures (Joler, 2012)(Keizer, 

2007).  These are mostly performed off-line prior to a 

mission.  There have been some attempts at detecting 

failures while the array is in use and doing very efficient 

heuristic compensation (Levitas et al., 1999). 

The radiation pattern can be generated from the array factor 

(AF) given by (Boeringer & Werner, 2004): 
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where N is the number of radiating elements, An are the 

complex element weights for excitation magnitude and 

phase, and d/λ = ½ is the spacing between elements 

normalized by the wavelength. 

Particle Swarm Optimization 

Particle swarm optimization (PSO) is a generic optimization 

approach to iteratively improve the current best solution 

with regard to a given metric and has been used extensively 

for optimizing phased array antennas.  The basic concept is 

that there is a swarm of particles where each is a possible 

solution (i.e. a setting of all elements’ excitation magnitude 

and phase parameters).  These particles move through the 

solution space based on their own local observations and 

also the best known position of the swarm in the overall 

search-space.  This allows it to be guided to regions of 

known good quality while still allowing particles to explore 

unknown regions in search of better solutions.  In practice, 

as the algorithm progresses the particles will move toward 

near-optimal solutions. 

Algorithm 1 presents the pseudo code for PSO.  After 

initialization it iteratively updates each particle’s velocity 

and position; then it computes a cost function to determine 

if the position is better than previously observed positions.  

PSO is therefore general enough that it can optimize over 

various different cost functions.     

The results of PSO are not guaranteed to be optimal, 

however in practice the optimization converges to near 

optimal results fairly quickly and in many instances have 

been shown to outperform other approaches such as genetic 

algorithms (Yeo & Lu, 2009)(Boeringer & Werner, 2004). 

Some typical cost functions used for phased array 

optimization include: 

Maximum side-lobe level (or Peak side-lobe level): the 

largest side peak of the beam pattern relative to the main 

beam 

Average side-lobe level: the average of the side-lobe peaks 

relative to the main beam 

 
Figure 1. Radiation pattern generated from a 32 element linear array. 

 

d
B

Angle



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 
 

3 

Cumulative Difference: the area under the beam pattern 

but above a specified threshold (ignoring the main beam) 

(see portion shaded yellow in Figure 1). 

 

 

3. PREEMPTIVE OPTIMIZATION ALGORITHM 

As elements of the phased array antenna fail the radiation 

pattern will get distorted.  For example the main beam may 

broaden out or the side-lobes may increase above the 

desired threshold.  If you can detect the failure while the 

array is in the field then you can re-optimize the pattern to 

compensate for the distortion or degradation (Keizer, 2007).  

In many systems the engineering cost to add additional 

sensors to reliably detect the failures is prohibitive and 

therefore failures cannot be detected while system is in use 

and external test equipment unavailable.  However in some 

instances we may be able to detect potential future failures, 

such as elements that have not completely failed but have 

partially degraded, or elements which have been heavily 

stressed in the past, or those where we have prognostic 

observations predicting failure onset.   

In this work we propose a new optimization approach which 

not only leverages the system’s current state-of-health, but 

its potential future states.  Current algorithms monitor the 

current state-of-health and assume it is fixed, however in the 

real-world those elements will begin to degrade and 

eventually fail.  If left uncorrected, these can significantly 

affect the performance of the array.  Our novel optimization 

approach works by adapting the cost function used by the 

PSO algorithm. 

For simplicity we will assume either an element is failed or 

not (the algorithm can be extended to handle the case of 

degradation).   

Let F be a list of currently failed elements,  

(e.g.            ). 

Let P be a list of potential future failures,  

(e.g.            ).  

The standard approach to optimization would compute 

PSO(F).  It takes the current state-of-health as input and a 

previously defined cost metric.  The optimization generates 

a set of element parameters optimizing the beam with 

respect to the cost metric.  Failures of elements in F can be 

modeled by setting the excitation magnitude of those 

elements to 0. 

Our approach, PSO_Robust(F, P), takes as input both the 

current state-of-health and a list of potential future element 

failures.  In Algorithm 1, on line (2.a.iii) a cost function f(xi) 

is computed.  The input to this function is a current 

instantiation of all the elements’ parameters (hence with it 

you can compute the radiation pattern such as in Figure 1 

and compute the cost functions previously described).   

We will replace the cost function f(xi) with the following: 
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where |P| is the cardinality of P. 

What the above cost function does is compute the cost under 

the current-state-of-health, f(xi), and under each potential 

future state f(xi, xp=0) under the assumption of single future 

failure.  This function then combines these results using the 

geometric mean.  Other approaches could be used to 

combine the results (e.g. arithmetic mean [average] of the 

costs, weighted combination of current and average of 

potential states, etc.).  We chose to use geometric mean 

because it more heavily weights bad instances than the 

others.  For example under the above scenario where our 

potential future failures are 5, 20, and 30, if all degrade 

evenly it would not matter which cost function we chose, 

but let us assume a failure at 20 or a failure at 30 would 

degrade performance by a small amount but a failure at 5 

would severely impact performance since we already have 

3,4,6&7 failed and losing 5 creates a large clustered failure 

(i.e. no radiation from five consecutive array elements).  If 

xn handles the future case of a failure at 5 better than xm then 

we would like the cost function to measure that, and in 

general we are more worried about worst case single failures 

(as they may potentially happen) more than average case 

results.  This ensures that if that failure happens we will 

maintain our mission specifications under that specific 

condition rather than the average of all future states.   

Algorithm 1. Particle Swarm Optimization (PSO)  

Pseudocode 

1. Initialization  

a. For all particles 

i. Set position uniformly distributed xi = U(blow, 

bup);  

where b defines the search space and low is the 

lower bound and up is the upper bound 

ii. Set velocity vi=U(-|bup-blow|, |bup-blow|) 

iii. Initialize the particle’s best known position (pi) 

b. Initialize swarm’s best known position (g) 

2. Repeat until termination criteria met 

a. For each particle i 

i. Update the velocity (vi,d) for each dimension d 

based on PSO update function 

ii. Update the position xi = xi+vi 

iii. Compute cost function: f(xi) 

iv. If( f(xi) better than f(pi)) 

1. pi = xi; Update the particle’s best known 

position 

v. If( f(xi) better than f(g)) 

1. g = xi; Update the swarm’s best known 

position 

3. Return g, the best solution found 
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This approach does incur a penalty for this improved 

robustness.  The generated radiation pattern under the 

current state-of-health will not be quite as good with respect 

to the cost metric, however if any of the potential failures 

occurs it will maintain a more desirable beam pattern.  

Additionally the metrics can be analyzed a priori to 

determine if failures would result in performance below 

mission specifications.  This improved robustness, at the 

expense of a reduced performance, can be very desirable in 

many application domains such as where online detection of 

failures is infeasible either technically or due to cost of 

additional sensors. 

4. EXPERIMENTAL RESULTS 

We have implemented the above algorithm and performed 

experiments on a linear array, however the approach is 

completely general and could be used for other array 

configurations such as two dimensional arrays.  The results 

we present are using the cumulative difference cost 

function, but we have experimented with other various cost 

functions with similar results. 

Table 1 shows results where the current health of the system 

is fully functional and the only potential future failure is 

element 5.  Running PSO results in a beam pattern where 

the cumulative difference is 49.63, whereas the robust 

version’s difference is 59.92 (lower is better).  These 

correspond with the Max Peak SLL shown on the left, 

where the difference is only .01 dB (-16.46 vs. -16.47).  

However if element 5 does fail the cost metric for the PSO 

optimized beam shoots up to 69.53 compared with only 

40.86 for the robust version.  Similarly this results in a peak 

side-lobe level which is 2.5 dB better. 

Figure 2 depicts the beam patterns of both the standard PSO 

and our robust extension under the case of a fully health 

array and Figure 3 depicts them in the case of an undetected 

or uncompensated failure at element 5.  As can be seen in 

Figure 2 both algorithms have relatively similar main beams 

and peak side-lobe levels, however under future failure of 

element 5 (Figure 3) the side-lobe closest to the main lobe 

jumps dramatically under standard PSO, while the robust 

PSO can still maintain similar performance. 

For a slightly more complex case, we look at Table 2, where 

the current state-of-health has elements 3, 4, 6, & 7 all failed 

and 5, 20, & 30 are potential future failures.  In this case our 

initial penalty for incorporating robustness is only 5.39 

(34.57 vs. 29.19), but under any failure the benefit is fairly 

substantial (119.72, 118.11, and 63.19).  Figures 4-7 show 

the patterns for the current state-of-health of the array as 

well as for each of the 3 potential states of the array.  

Similar to the previous example under the different future 

failures the robust algorithm does in face maintain not only 

a better cumulative cost function (which is what it optimized 

over) but the peak side-lobes also are maintained.  If we 

directly optimize peak SLL we might see even further 

improvements, however our goal was to maintain the entire 

pattern, hence the choice of the cumulative difference 

metric. 

 

 

 

Table 1. Results showing the max peak SLL and 

cumulative difference cost function for standard PSO 

(top) and our robust extension (bottom) under the two 

cases of no failures and element 5 failing. 

 

PSO Max Peak  

SLL 

Cumulative  

Difference  

No Failures -16.47 49.63 

Failures: #5 -14.16 69.53 

 

Robust {5} Max Peak  

SLL 

Cumulative  

Difference  

No Failures -16.46 59.92 

Failures: #5 -16.95 40.86 

(SLL threshold = -20dB, swarm=3000, epochs=100) 

Table 2. Results showing the cumulative cost function from the array pattern computed under the 

failed elements 3, 4, 6, & 7.  The first row shows the penalty paid by incorporating the robustness, 

but in the instances when either 5, 20, or 30 failed there is a substantial benefit. 

 

Failures PSO Robust[3,4,6,7]+{5,20,30} Difference 

3, 4, 6, 7 29.19 34.57 5.39 

3, 4, 6, 7, 5  262.04 142.32 -119.72 

3, 4, 6, 7, 20 352.31 234.20 -118.11 

3, 4, 6, 7, 30 165.95 102.76 -63.19 
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Figure 2. Beam pattern for standard PSO (red) and robust PSO (black-dashed), where there were originally no failed elements 

and the only potential failure used by the robust version was element 5. 

 

 
Figure 3. Beam pattern for standard PSO (red) and robust PSO (black-dashed), where they were optimized with no failed 

elements, but then element 5 did fail.  Our robust extension to PSO was able to maintain lower peak side-lobe levels than 

standard PSO. 

 

 
Figure 4. Beam pattern for standard PSO (red) and robust PSO (black-dashed) where elements 3, 4, 6, and 7 were originally 

failed and elements 5, 20, and 30 were potential future failures. 
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Figure 5. Beam pattern for standard PSO (red) and robust PSO (black-dashed) where elements 3, 4, 6, and 7 were originally 

failed prior to the optimization and element 5 later failed. 

 

 
Figure 6. Beam pattern for standard PSO (red) and robust PSO (black-dashed) where elements 3, 4, 6, and 7 were originally 

failed prior to the optimization and element 20 later failed. 

 

 
Figure 7. Beam pattern for standard PSO (red) and robust PSO (black-dashed) where elements 3, 4, 6, and 7 were originally 

failed prior to the optimization and element 30 later failed. 
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5. CONCLUSIONS 

In this work we propose a novel prognostic approach to do 

preemptive optimization of phased array antennas. When 

determining element parameters for excitation magnitude 

and phase during digital beam-forming we not only 

optimize over the current state-of-health but consider 

potential future states-of-health.  This allows the algorithm 

to trade some current optimization flexibility for improved 

system robustness under future failures which might occur 

during a mission.  This improves the overall system’s 

affordability and survivability as it is more robust to failures 

and repairs can be performed at more optimal times.  This 

technique does assume that potential future failures can be 

determined, however there is evidence that in many systems 

this is true.  Additionally this approach does not require 

additional sensors or engineering to reliably detect failures 

during a mission and does not require systems resources 

while online, as it is performed prior to the start of a mission 

but then has the most effect when failures do occur.  It also 

allows a user to determine whether the system will be able 

to maintain minimum mission specifications even under 

potential failures a priori, allowing them to make a decision 

whether to go ahead with the mission. 
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