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ABSTRACT

Prognostic approaches based on particle filtering employ phys-
ical models in order to estimate the remaining useful life (RUL)
of systems. To this aim a set of particles is used to first esti-
mate the degradation state of the system and then to predict
the distribution of the RUL through simulation. The computa-
tional complexity of this approach is a function of the number
of particles used in the state estimation and of the time each
particle needs to simulate the RUL. It is therefore clear that
enhancing the computational performance of this approach
requires reducing the number of particles. In this paper we
investigate the applicability and suitability of the particle flow
particle filter for particle-filtering-based prognostics. The es-
timation of the remaining driving range (RDR) of an electric
vehicle is used as the case study to illustrate the improvement
in computational performance of the proposed approach in
comparison to the standard particle filter.

1. INTRODUCTION

Model-based prognostic approaches have gained in impor-
tance during the last decade due to their versatility and ease of
implementation in practical engineering applications. From
the methodologies available in the literature, a model-based
framework using particle filters (PF) has emerged as a solid
solution for many prognostics applications. Particle-filtering
based approaches for prognostics employ physics-based mod-
els in order to estimate the remaining useful life (RUL) of
systems or components. To this aim a set of discrete weighted
samples, known as particles, is used to first estimate the degra-
dation state of the system or component and then to predict
a distribution of the RUL by propagating the set of particles
forward in time through simulation until an established fail-
ure threshold is reached. The computational complexity of
this approach is a function of the number of particles used in
the state estimation and of the time each particle needs to sim-
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ulate the RUL. It is therefore clear that enhancing the com-
putational performance of this approach requires minimizing
the number of particles used without sacrificing the accuracy
of both the estimation of the degradation state and the predic-
tion of the RUL distribution. An approach that aims to solve
this issue is introduced by (Daigle & Goebel, 2010). This
approach is based on the Unscented Transform (UT) (Julier
& Uhlmann, 2004), in which the particles are chosen de-
terministically instead of using a random sampling method.
Although this method is more computationally efficient than
standard particle filters, the UT may only be applied to non-
linear systems where all sources of noise are Gaussian; other-
wise this approach should not be used. In this paper we inves-
tigate the use and the suitability of a well known variation of
the particle filter based on particle flow and optimal transport
methods. The main idea behind this approach is to reduce the
number of particles needed in the particle filter by introduc-
ing a particle flow, in which the particles are progressively
transported without needing to randomly sample from any
distribution. This allows us to optimally move the particles
to the correct locations according to the Bayes’ rule, reduc-
ing in this way the number of particles needed and thereby the
computational effort in both the estimation and the prediction
step. To the best of our knowledge the present study is the
first in applying the the particle flow particle filter in model-
based prognostics. This paper evaluates the use of the parti-
cle flow, which until now has been just investigated in filter-
ing problems of nonlinear systems (Daum & Huang, 2008),
with the aim of presenting a computationally efficient alter-
native to state of the art simulation-based approaches, namely
UKF (Daigle & Goebel, 2010) and PF (Orchard & Vachtse-
vanos, 2010) based approaches, for reducing the number of
simulations and therefore the simulation time in the predic-
tion step of model-based prognostics. We use the remaining
driving range (RDR) estimation of an electric vehicle (Oliva,
Weihrauch, & Bertram, 2013) as the case of study for illus-
trating and validating the enhancement in the computational
performance of the presented approach in comparison to the
standard particle filter.
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The remainder of this paper is organized as follows. Sec-
tion 2 formulates the RUL estimation problem in the context
of particle filters. Section 3 explains in detail the theoreti-
cal foundations of the particle flow particle filter (PFPF) and
afterwards presents the steps needed for its implementation
within the prognostics framework presented in section 2. In
section 4 the case of study used for validating the proposed
approach is described. Section 5 presents the experimental
and simulation results. Finally, section 6 concludes the find-
ings of this work and provides an outlook on our future work.

2. PARTICLE-FILTERING BASED RUL ESTIMATION

This section is concerned with formulating the RUL estima-
tion problem and briefly explains the particle-filtering-based
framework for prognostics employed in this work.

2.1. Problem Statement

Consider the following nonlinear system represented, in a
discrete-time form by

xk = f (xk−1,uk,vk,wk)
yk = h (xk,uk,nk,wk) ,

(1)

where xk is the state vector, wk is the parameter vector, vk
is the process noise vector, uk is the input vector, yk is the
output vector and nk is the measurement noise vector. The
terms f(·) and h(·) stand for the state and output function,
respectively. The system exhibits a degradation which ac-
cumulates in time until a deterministic degradation threshold
T(x) is reached, at which the system fails. The degradation
of the system is attributed to the environment and to the oper-
ation conditions. The RUL estimation problem is concerned
with first estimating the degradation state of the system and
then to predict its future operation conditions in order to de-
termine the distribution of the time at which the performance
of the system fails to fulfill its tasks, i.e. the time at which
the threshold is exceeded. Thus, T(x) = 1 if the system fails
and T(x) = 0, otherwise. The RUL is a random variable
that is influenced by many sources of uncertainty. The lack
of knowledge about the state variables, the noise presented
in the measurements or the randomness of the operation en-
vironment, are some of the factors that largely contribute to
the uncertainty of the RUL. Therefore, properly predicting
the RUL requires accounting for these sources of uncertainty.
In the context of particle filters the RUL estimation proceeds
basically in two phases, namely the state estimation (I) and
the RUL prediction (II), as shown in Fig. 1. For the sake of
clarity, Fig. 1 depicts the RUL estimation of just one particle.

In the first phase the PF recursively approximates the poste-
rior probability p(xk|Yk) of the state variables by a set ofNx
weighted particles Sk =

{
xik, w

i
k

}Nx
i=1

. Here xik is the set of
particles representing the state space, wik are the associated
importance weights and Yk = y0:k is the set of all mea-

surements done until time k. Each particle is sampled from
an a priori estimation of the state space and it is propagated
through the function f(·) in the prediction step. Then, the
value of each particle is updated from measurements through
the output function h(·) in the measurement update step. In
this step the weight of each particle is updated according to
the likelihood of a new measurement given the particle. Af-
terwards the resampling step occurs. The idea behind this
step is to duplicate those particles with large weights and to
eliminate those with small weights.
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Figure 1. Particle-filtering based RUL estimation approach.

In this way the so called particle degeneracy (Daum & Huang,
2011) can be overcome. Particle degeneracy, i.e the situa-
tion in which all but few particles have negligible weights
leads to a poor approximation of the state variables and, since
most weights are close to zero, valuable computational ef-
fort is wasted by updating insignificant particles. Finally, the
probability distribution of the state variables at time k is ap-
proximated by

p(xk|Yk) ≈ 1

Nx

Nx∑
i=1

wikδ
(
xk − xik

)
(2)

where δ(·) describes the Dirac delta function located at xik.
The posterior state estimate establishes the starting point for
the second phase, in which the particle filter is employed for
predicting the RUL at given time kp. To this aim the posterior
estimate p(xkp |ykp) is set as initial condition.

By assuming that the set of particles Sk accurately represents
the unknown states at the time of prediction, it is possible to
approximate the probability density function of system states
at any time kp +m in the future by means of the law of total
probabilities (Orchard & Vachtsevanos, 2010)

p̂
(
xkp+m|x̂kp:kp+m−1

)
≈

Nx∑
i=1

wikp+m−1p̂
(
x̂ikp+m|x̂ikp+m−1

)
. (3)
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To account for the fact, that during the prediction the shape
of the states probability distribution may change, due to noise
and process nonlinearities, Eq.(3) requires the set of weights
to be updated at each iteration. However, during the predic-
tion step no new measurements, which could serve for updat-
ing the weights, can be acquired. This implies that an update
procedure for the particle weights, as it would happen in a
typical filtering problem, cannot be carried out. This issue is
addressed by assuming the weights as invariant from the time
kp to kp +m. This assumption is justified by considering the
uncertainty added by model inaccuracies or by the ignorance
about future operation conditions to be large in comparison to
the uncertainty which comes from considering constant par-
ticle weights. In this way, the set of weighted particles Skp
is simply propagated forward into the future by simulating
the behavior of the system as reaction to a future operation
condition, until the determined failure condition is reached.

Once all particles have reached this point, i.e. Tikp = 1, the
RULikp of each particle is determined and combined with its
weight wikp to approximate p

(
RULkp |Ykp

)
as follows

p
(
RULkp |Ykp

)
≈

Nx∑
i=1

wikpRULikp . (4)

The RUL prediction, as formulated in Eq.(4), requires propa-
gating the set of particles through a single hypothesized pre-
dicted profile of the future operation conditions of the system.
However, such a propagation accounts just for the uncertainty
introduced in the state estimation step but it does not consider
the uncertainty related to the predicted operation profile. Tak-
ing this uncertainty into account would require propagating
the set of particles through multiple predicted profiles, and
not through a single one. Thus, the computational complexity
of such a prediction becomes a function of Nx×Nu (Daigle,
Saxena, & Goebel, 2012), where Nu is the number of pre-
dicted operation profiles. The set of weighted particles is
then propagated through multiple profiles until all particles
along all predicted profiles, have reached the threshold, i.e.
Tijkp = 1. Here j represents each predicted operation profile.
Accordingly, the probability distribution p

(
RULkp |Ykp

)
is

approximated by

p
(
RULkp |Ykp

)
≈ 1

Nu

Nu∑
j=1

Nx∑
i=1

wikpRULijkp . (5)

It must be noted that all predicted profiles are equally weighted
by means of 1

Nu
.

3. PARTICLE FLOW PARTICLE FILTER

From the previous section it can be inferred that the com-
putational performance of the particle-filter-based RUL esti-
mation approach can be enhanced through the reduction of

the particles employed during the estimation step and there-
fore during the prediction step. However, this cannot be done
straightforward specially in those systems where the dimen-
sionality of the state space is high. This problem becomes
more significant in a joint state/parameter estimation since
the dimensionality of the state space can increase consider-
ably. In this paper we aim to investigate the suitability of an
approach for reducing the number of particles needed in the
estimation of the state space without sacrificing the accuracy
of the state estimation.

Standard particle filters might reduce the computational per-
formance of the prognostics algorithm during the estimation
step by wasting computational resources during the propaga-
tion of those particles with negligible weights. Furthermore,
since either particles with very low weight or duplicated parti-
cles have to be propagated forward in time until they reach the
predefined threshold, additional resources might be wasted
during the prediction step of the prognostics framework.

The approach presented in this paper aims to overcome the
aforementioned issues by implementing an update schema,
which progressively transforms the prior p (xk|Yk−1) into
the posterior state estimate p (xk|Yk) by smoothly moving
the particles in an optimal manner as new measurements be-
come available without needing to employ any resampling al-
gorithm. This is achieved by solving a differential equation to
determine the flow of particles in the state space as they mi-
grate from the prior to the posterior distribution. In a generic
Bayesian framework, the posterior p (xk|Yk) is obtained in
the prediction step by a single computation of the Bayes’ rule
given by

posterior︷ ︸︸ ︷
p (xk|Yk) =

prior︷ ︸︸ ︷
p (xk|Yk−1)

likelihood︷ ︸︸ ︷
p (yk|xk)∫

R
p (xk|Yk−1) p (yk|xk) dxk︸ ︷︷ ︸

normalization factor

. (6)

By denoting a new set of density functions given by

ψ (xk,λ|Yk) = p (xk|Yk)
g (xk,λ|Yk−1) = p (xk|Yk−1)

(7)

it is possible to compute ψ (xk,λ|Yk) in a B-fold recursive
manner by progressively introducing the likelihood density,
here denoted as l (yk|xk), such that the prior g (xk,λ|Yk−1)
gradually deforms into g (xk,λ|Yk−1) l (yk|xk). This can be
achieved by using a homotopy of the form

posterior︷ ︸︸ ︷
ψ (xk,λ|Yk) =

prior︷ ︸︸ ︷
g (xk,λ|Yk−1)

likelihood︷ ︸︸ ︷
l (yk|xk,λ)

λ

Kk,λ︸︷︷︸
normalization factor

, (8)
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where λ ∈ [0, 1] is the progression parameter and the term
l (yk|xk,λ)

λ is understood as an incremental likelihood. Thus,
Eq. (8) represents the prior when λ = 0 and the posterior
when λ = 1. The number of iterations in the recursion,
namely B, depends on the step size ∆λ, which determines
the rate at which λ0→1. The way l (yk|xk,λ)

λ is incremen-
tally incorporated into the Bayes’ update step can be seen in
the Algorithm 1. For the sake of clarity, from now on we ex-
press the states variables as xλ instead as xk,λ. This is due
to the fact that the evolution of the probability distribution as
λ0→1 always occurs at the discrete time step k. In order to
avoid numerical issues the log-density of Eq. (8) is applied
yielding to

Ψ (xλ) = G (xλ) + λL (xλ)− logKλ, (9)

where the posterior is given by Ψ (xλ) = logψ (xλ|Yk), the
prior is represented by G (xλ) = log g (xλ|Yk−1) and the
likelihood is L (xλ) = log l (yk|xλ). The evolution of the
probability distribution given by Eq. (9) in the pseudo-time is
known as log-homotopy (Daum & Huang, 2008). As it can
be seen in Fig. 2, the task of this homotopy is to move the
particles through a sequence of densities from the prior to the
posterior as λ continuously increases from zero to one.

0.8 1 1.2 1.4 0.95 0.71 0.48 0.24

State x→ ← Pseudo-time λ

PD
F
→

(λ = 1)
posterior

prior
(λ = 0)

Figure 2. Evolution of the probability distribution from the
prior at λ = 0 to the posterior at λ = 1.

As it can be observed in Fig. 3, it becomes necessary to find
a flow dx

dλ that dictates the motion of particles as they move
following the log-homotopy given by Eq. (9).

To this aim we differentiate Eq. (9) with respect to λ

∂Ψ (xλ)

∂λ
= L (xλ)− d

dλ
logKλ. (10)

Replacing the left hand side of Eq. (10) by the logarithm iden-
tity

∂Ψ (xλ)

∂λ
=

1

ψ (xλ)

∂ψ (xλ)

∂λ
(11)

and multiplying both sides by ψ (xλ) yields to

∂ψ (xλ)

∂λ
= ψ (xλ)

[
L (xλ)− d logKλ

dλ

]
. (12)

A way to find the desired flow dx
dλ is by considering that the

particles move, as λ0→1, obeying the following stochastic dif-
ferential equation (SDE)

dxλ = ζ (xλ) dλ+ η (xλ) dξλ, (13)

where xλ is the particle position at given time k and pseudo-
time λ, ζ (xλ) can be understood as a vector field that induces
the motion of particles from the prior to the posterior distri-
bution, η (·) is a multiplicative noise matrix and ξλ is a noise
resulting from the randomness of process.

By considering dx
dλ to be given by ζ (xλ), the desired particle

flow can be obtained by using the conditional probability den-
sity ψ (xλ) together with the forward Kolmogorov equation,
also known as the Fokker-Planck-Kolmogorov (FPK) equa-
tion. In this context the FPK equation is employed to relate
the flow dx

dλ of a particle with the evolution of ψ (xλ) as λ0→1

under the influence of drift and diffusion processes.

The FPK equation can be written as

∂ψ (xλ)

∂λ
=

drift︷ ︸︸ ︷
−tr

[
∂

∂xλ
(ζ (xλ)ψ (xλ))

]
+

+

diffusion︷ ︸︸ ︷
1

2
tr

[
∂

∂xλ

(
Q (xλ)

∂ψ (xλ)

∂xλ

)]
,

(14)

where Q (xλ) = η (xλ)ηT (xλ) is the process covariance
matrix and tr (·) states for the trace of (·).

Reformulating Eq. (14) in a more proper way yields

∂ψ (xλ)

∂λ
= −tr

[
ψ (xλ)

∂ζ (xλ)

∂xλ
+ ζ (xλ)

T ∂ψ (xλ)

∂xλ

]
+

+
1

2
div

(
Q (xλ)

∂ψ (xλ)

∂xλ

)
= −ζ (xλ)

T ∂ψ (xλ)

∂xλ
− ψ (xλ) tr

(
∂ζ (xλ)

∂xλ

)
+

+
1

2
div

(
Q (xλ)

∂ψ (xλ)

∂xλ

)
,

(15)

where div (·) states for the divergence of (·). As it can be
seen, Eq. (12) and Eq. (15) are equivalent. Thus, equating
them and by dividing both sides by ψ (xλ) we can write
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Figure 3. Particle flow at different values of λ.

L (xλ)− d logKλ

dλ
= −ζ (xλ)

T 1

ψ (xλ)

∂ψ (xλ)

∂xλ
+

−tr

(
∂ζ (xλ)

∂xλ

)
+

+
1

2ψ (xλ)
div

(
Q (xλ)

∂ψ (xλ)

∂xλ

)
,

(16)

under the assumption that ψ (xλ) is nowhere vanishing. The
desired particle flow is found by solving Eq. (16) wrt. ζ (xλ).

To this aim we first compute the gradient wrt. xλ. This yields
to a system of partially differential equations (PDEs) with the
same number of unknowns and equations given by

∂L (xλ)

∂xλ
= −ζT (xλ)

∂2Ψ (xλ)

∂x2
λ

− ∂Ψ (xλ)

∂xλ

∂ζ (xλ)

∂xλ
+

− ∂

∂xλ

[
tr

(
∂ζ (xλ)

∂xλ

)]
+

+
∂

∂xλ

[
1

2ψ (xλ)
div

(
Q (xλ)

∂ψ (xλ)

∂xλ

)]
.

(17)

There are many methods to solve the system of PDE’s given
by Eq. (17) (Daum & Huang, 2010). In this work we employ
the approach presented by (Daum & Huang, 2013) in which it
is assumed that both the process noise matrix Q (xλ) and the
vector field given by ζ (xλ) are chosen such that sum of the

last three terms of Eq. (17) is zero. In this manner the system
of PDE’s is drastically simplified yielding to the following
equation

∂L (xλ)

∂x
= −ζT (xλ)

∂2Ψ (xλ)

∂x2
λ

(18)

As stated by (Daum & Huang, 2013), if it is assumed that
∂2Ψ(xλ)
∂x2

λ
is non-singular, the solution of Eq. (18) for ζ (xλ)

can be computed as

ζ (xλ) = −
[
∂2Ψ (xλ)

∂x2
λ

]−1 [
∂L (xλ)

∂xλ

]T

. (19)

The task now is to compute the terms of the right hand side of
Eq. (19). First, the Hessian ∂2Ψ(xλ)

∂x2
λ

can be obtained in closed
form by differentiating twice Eq. (9) wrt. xλ

∂2Ψ (xλ)

∂x2
λ

=
∂2G (xλ)

∂x2
λ

+ λ
∂2L (xλ)

∂x2
λ

. (20)

In this work we use a hybrid approach for computing Eq. (20)
in which the Hessian ∂2G(xλ)

∂x2
λ

is approximated by

∂2G (xλ)

∂x2
λ

≈ −Ŝ−1
Nx
, (21)

where ŜNx is the sample covariance matrix (SCM) of the
prior distribution computed from the set of Nx particles. The
SCM offers an unbiased estimate of the true covariance ma-
trix. However, it has to be noted that if the number of particles
employed is smaller than the number of states to be estimated
the SCM may suffer from high variance. To overcome this is-
sue the Kronecker product expansion can be used to estimate
the covariance matrix in high dimensional spaces (Tsiligkaridis
& Hero, 2013).

If it is assumed that the prior g (·) is represented by a Gaus-
sian distribution, then the approximation given by Eq. (21) is
exact. For practical purposes the likelihood function l (·) can
be assumed to follow an univariate or a multivariate Gaussian
distribution depending on the dimension of the output vector.
Accordingly, L (xλ) is expressed as

L (xλ) = −N
2

log (2π)− 1

2
log |R|− 1

2
zT
k,λ

R−1zk,λ, (22)

where zk,λ = (yk − h (xλ)) and R is the covariance ma-
trix of the measurement noise. Computing the gradient of
Eq. (22) wrt. xλ gives

∂L (xλ)

∂xλ
=

[
∂h (xλ)

∂xλ

]T

R−1zk,λ

= Ĥ (xλ)
T
R−1 (yk − h (xλ)) ,

(23)

where Ĥ (xλ) is the linearized output matrix around xλ. Com-
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puting the Hessian ∂2L(xλ)
∂x2

λ
might be computationally expen-

sive. We instead approximate it by computing the expected
Hessian by means of the Monte Carlo approximation method
as follows

∂2L (xλ)

∂x2
λ

≈ E

[
∂2L (xλ)

∂x2
λ

]
≈ − 1

Nx

Nx∑
i=1

[
∂zk,λ (xλ)

∂xi
λ

]T

R−1 ∂zk,λ (xλ)

∂xi
λ

,

(24)

whereE [·] is the expected value with respect to the likelihood
function. After having computed ∂L(xλ)

∂xλ
and ∂2L(xλ)

∂x2
λ

both
Eq. (19) and Eq. (20) can be evaluated in order to obtain the
particle flow. As it can be seen, evaluating Eq. (20) requires
computing the inverse of ŜNx , which can lead to numerical
problems if ŜNx is close to be singular. To overcome this
issue we apply the matrix inversion lemma known as Wood-
bury’s formula in order to invert Eq. (20) as follows[

∂2Ψ (xλ)

∂x2
λ

]−1

= −ŜNx+

− ŜNxλ
∂2L (xλ)

∂x2
λ

(
I − ŜNxλ

∂2L (xλ)

∂x2
λ

)−1

ŜNx . (25)

Algorithm 1 summarizes the steps needed for implementing
the presented particle flow particle filter for state estimation.
It is worth noting that the rate at which λ0→1 is determined by
the step size ∆λ. Numerical experiments presented by (Daum
& Huang, 2013) have shown that employing a fixed step size,
such as in the case of the Euler method, works properly just
if the number of particles is high. Therefore, to reduce the
number of particles employed a variable ∆λ has to be used.
A proper strategy is to use a very small value of ∆λ at the be-
ginning and to gradually increase it as λ → 1, which makes
sense, since the uncertainty a the beginning of the measure-
ment update step is higher. We therefore use an exponentially
increasing step size (George & Powell, 2006) given by

∆λ = 1− 1

nb
, (26)

where n is the number of iteration and b ∈
(

1
2 , 1
]
. In the case

of initial transient conditions the a small value of b can lead to
a slower learning rate of the step size. The value of b should
be chosen according to the desired rate of convergence of the
step size.

4. CASE STUDY

For validating the applicability of the particle flow particle
filter for prognostics we chose the remaining driving range

(RDR) estimation of an electric vehicle (Oliva et al., 2013).
In this context, the RDR estimation is concerned with predict-
ing the power demand of the electric vehicle and identifying
the distance that it can drive with the energy stored in its bat-
tery before recharging is required. To this aim we consider
the battery state of charge (SOC) to be the indicator that de-
termines the threshold condition.

Algorithm 1 Particle flow particle filter for state estimation

Initialization
Draw a set of particles

{
xi0
}Nx
i=1

from the prior p (x0)
for k = 1 to∞ do

State prediction
Propagate the particles through the system equation:
xik|k−1 = f

(
xik−1,uk,vkn;wk

)
Initialize the pseudo-time λ = 0

Set
{
xik,λ

}Nx
i=1

=
{
xik|k−1

}Nx
i=1

Measurement update:
Propagate the particles through the output equation:
yik|k = h

(
xik,uk,nk,wk

)
while λ ≤ 1 do

Compute ŜNx from
{
xik,λ

}Nx
i=1

Calculate the state estimation from
{
xik,λ

}Nx
i=1

x̂k,λ = 1
Nx

∑Nx
i=1 x

i
k,λ

Linearize h (·) around x̂k,λ to compute Ĥ
for i = 1 to Nx do

Compute the flow ζ
(
xik,λ

)
for each particle

Set
dxik,λ

dλ = ζ
(
xik,λ

)
Move the particles according their respective flow:

xik,λ = xik,λ + ∆λ
dxik,λ

dλ
end for
Increment the pseudo-time λ← λ+ ∆λ

end while
Update the state estimation:
x̂k = 1

Nx

∑Nx
i=1 x

i
k,λ

end for

Accordingly, the threshold is expressed as T(SOC). Thus,
T(SOC) = 1 if SOCmin (the minimum allowable state of
charge) is reached and T(SOC) = 0, otherwise. The SOCmin

is usually dictated by the battery management system (BMS)
of the electric vehicle in order to protect the battery cells from
a possible total charge depletion.

4.1. Battery Model

We employ the model of a Li-ion cell shown in Fig. 4. The
model combines the Kinetic Battery Model (Manwell & Mc-
Gowan, 1994) for capturing the nonlinear effects in the bat-
tery capacity, such as the recovery and the rate capacity effect,
with a second order equivalent circuit based model which

6
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captures the dynamic response of the Li-ion cell. Further-
more, the combined model demands low computational ef-
fort, which makes it suitable for real-time applications. Even
though the KiBaM was initially developed for lead acid bat-
teries, it has been shown to be suitable for modeling the ca-
pacity behavior of Li-ion cells (Jongerden & Haverkort, 2009).

ik

Ro(·)

Rs(·) Rl(·)

Cs(·) Cl(·)

VOC(SOC)

Kinetic Battery Model Circuit-based Battery Model

ik SOC
−
+

Vbatt

1− c c

w2 w1d
h1h2

ik

Figure 4. Combined battery model.

The Kinetic Battery Model abstracts the chemical processes
of the battery discharge to its kinetic properties. The model
assumes that the total charge of the battery is distributed with
a capacity ratio 0 < c < 1 between two charge wells. The
first well contains the available charge and delivers it directly
to the load. The second well supplies charge only to the first
well by means of the parameter d. The rate of charge that
flows from the second to the first well depends on both d and
on the height difference between the wells (h2 − h1). If the
first well is empty, then the battery is considered to be fully
discharged. By applying load to the battery, the charge in the
first well is reduced, which leads to an increment in the height
difference between both wells. After removing the load, cer-
tain amount of charge flows from the second well to the first
well until the height of both wells is the same. In this way the
recovery effect is taken into account by the model. The rate
capacity effect is also considered in this model. For high dis-
charge currents, the charge in the first well is delivered faster
to the load in comparison to the charge that flows from the
second well. In this scenario there is an amount of charge that
remains unused. The consideration of this effect is especially
important for applications in electric vehicles, since the un-
used charge might eventually increase the driving range. The
KiBaM yields two difference equations which describe the
change of capacity in both wells in dependence of the load
ik, the conductance d and the capacity ratio c:

w1,k+1 = a1w1,k + a2w2,k + b1ik, (27)

w2,k+1 = a3w1,k + a4w2,k + b2ik, (28)

where

(
a1 a2

a3 a4

)
= e

 −dc d
1−c

d
c − d

1−c

∆t

(
b1
b2

)
=

∆t∫
0

e

 −dc d
1−c

d
c − d

1−c

ϑ
dϑ

(
1
0

)
.

The term ∆t is the sampling time used in the discretization of
the model. The battery SOC is given by

SOCk =
w1,k

cCn3600
, (29)

where Cn is the nominal capacity of the battery. The right-
hand-side equivalent circuit of Fig. 4 is compounded of three
parts, namely, the open circuit voltage VOC, a resistance Ro
and two RC networks.

The voltage VOC changes at different SOC levels, as depicted
in Fig. 5. The ohmic resistance Ro captures the I-R drop,
i.e., the instantaneous voltage drop due to a step load cur-
rent event. The RsCs and RlCl networks capture the volt-
age drops due to the electrochemical and the concentration
polarization, respectively. In Fig. 4 the dependency of these
parameters on the temperature and on the SOC is represented
by the term (·).

0 0.2 0.4 0.6 0.8 1

3

3.5

4

SOC [ ] →

V
O

C
[V

]
→

Figure 5. VOC − SOC relationship.

This part of the model yields two difference equations which
describe the transient response of the battery:

vs,k+1 = e−
∆t

RsCs vs,k +
(
−Rse−

∆t
RsCs +Rs

)
ik, (30)

vl,k+1 = e
− ∆t
RlCl vl,k +

(
−Rle−

∆t
RlCl +Rl

)
ik. (31)

Accordingly, the state vector of the battery model is given by

xk =
[
w1,k w2,k vs,k vl,k

]T
. (32)

The output yk of the system, represented by the terminal volt-
age Vbatt,k, is then computed as follows

yk = Vbatt,k(SOC) = VOC(SOC)+Roik+vl,k+vs,k. (33)

5. RESULTS AND DISCUSSIONS

This section evaluates the particle flow particle filter in both
accuracy and computational performance in the estimation of
the RDR of an electric vehicle. To measure the accuracy of
the RDR estimation we employ the relative accuracy (RA)
and the alpha-lambda (α − λ) metric (Saxena, Celaya, Saha,
Saha, & Goebel, 2009). In the context of the RDR estimation

7
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the RA is given by

RAkp = 100

1−

∣∣∣RDR∗kp − RDRkp

∣∣∣
RDR∗kp

 , (34)

where RDR∗kp is the ground truth RDR at time kp and RDRkp

is the estimated RDR at that time. The α − λ metric serves
to evaluate whether the estimated RDR lies withing specified
bounds.

5.1. Experimental results

The first set of experiments aims to test the suitability of the
PFPF in prognostics on the one hand, and to compare its per-
formance in contrast to the PF, on the other hand. To this aim
the load profile shown in the top part of Fig.6 is applied to a
Li-ion cell until the pre established SOCmin is reached. For
this experiment a cell with a nominal capacityCn = 2.15 Ah,
a nominal voltage Vnom = 4.2 V and a SOCmin = 0.15 is
used. The load profile is computed by scaling down the theo-
retical load of an electric vehicle driving the standard UDDS
(Urban Dynamometer Driving Schedule) drive cycle. In this
way it is possible to directly relate the load with the speed of
the vehicle and therefore to compute the RDR.

First, the accuracy of the SOC estimation is investigated. To
this aim both filters run in parallel and recursively estimate
the SOC. The bottom part of Fig.6 depicts the results of the
state estimation. As it can be seen, both filters are very ac-
curate while estimating the SOC. The main difference lies on
the number of particles used. For the estimation shown just
10 particles are employed by the PFPF, whereas the PF needs
100 in order to estimate the SOC with the same accuracy as
the PFPF. This is by no means a claim of improvement of
the particle filter for state estimation, but a suggestion that
the PFPF successfully manage to estimate states in nonlinear
systems with many less particles.

After having proved the applicability of the PFPF for esti-
mating the SOC, the second step is to validate the accuracy
and the computational performance of the RDR estimation.
To this aim a series of predictions are carried out at different
stages of the discharge process every 500 s. Since for this
experiment the future load profile of the battery is assumed
to be known, the error presented in the RDR estimation is at-
tributed to the model inaccuracy and to the SOC estimation
error. A RDR prediction proceeds by simulating the evolu-
tion of the battery SOC, from a given time kp, as a response
to the predicted load and by determining the point in the fu-
ture, at which the SOCmin is reached. The initial state val-
ues at the time of prediction are dictated by the value of the
particles obtained from the state estimation step. This pro-
cedure is repeated for all particles. The RDR distribution is
then computed by means of Eq.(4). As it can be appreciated
in Fig.7, the RDR prediction shows a high RA, with the ex-
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Figure 6. a) Load profile derived from the UDDS drive cycle.
b) SOC estimation with the PFPF and the PF.
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Figure 7. RDR estimation with a) PFPF and b) PF.
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ception of the first prediction and the predictions carried out
near the end of discharge of the battery. This first deviation
is due to the fact that the state estimation in both cases is ini-
tialized by uniformly spreading the particles among the entire
state space, which causes the estimation to deviate from the
real value. Once the filters converge to the real SOC, the RA
increases remarkably. As it can be seen, the RA decreases
towards the end of discharge at kp = 45 and kp = 50. This
phenomenon is attributed to the abrupt voltage drop that the
battery exhibits at around SOC = 5%, as it is shown in Fig. 5.
The battery model doesn’t accurately capture the behavior of
the terminal voltage in this region, which causes the filter al-
gorithm to slightly diverge from the real SOC. Since the un-
certainty presented in the filtering step is the only uncertainty
considered in this case study, a reduction in the accuracy of
the state estimation directly causes a reduction in the RA.

Table 1 presents the RA and the time needed to complete
a prediction, here referred as tcpu, for different prediction
times. As it can be noted, in average the tcpu of those pre-
dictions done with the PFPF are three times faster than those
carried out with the PF.

Table 1. RDR prediction performance.

Urban
RA [%] tcpu [s]

kp PFPF PF PFPF PF
1 72.83 87.05 3.16 3.91
5 100.0 100.0 0.327 1.078
10 99.48 99.48 0.305 0.927
15 98.72 99.44 0.287 0.808
20 97.82 99.33 0.273 0.730
25 96.06 97.22 0.253 0.671
30 95.25 95.67 0.235 0.568
35 95.88 95.98 0.222 0.479
40 94.33 94.53 0.206 0.407
45 88.26 91.41 0.109 0.324
50 76.75 77.80 0.176 0.241

5.2. Simulation results

A series of simulations is carried out in order to incorporate
the uncertainty introduced by the randomness of the driv-
ing environment into the RDR estimation. To this aim the
methodology previously presented in together with the model
of an electric vehicle is used to compute power demand as re-
sponse to a predicted driving profile, i.e., speed, acceleration
and slope profile. The approach for predicting the driving
profiles is however out of the scope of this work. The reader
is referred to (Oliva et al., 2013) for a detailed explanation
about the methodology employed for estimating the RDR.

The RDR prediction proceeds similarly as in the previous
section with the difference that in this case each particle is
simulated through 50 different predicted driving profiles, i.e,
Nu = 50. In this case 10 particles are employed by the PFPF
and 50 by the PF in order to obtain similar accuracy in the
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Figure 8. PFPF based RDR estimation in different driving
scenarios a) city b) rural areas c) highway.

state estimation. As it is shown in Fig.8, the RDR prediction
is carried out under three different driving scenarios, namely
in the city and rural areas and on the highway.

The simulation results show that the PFPF is also suitable for
estimating the RDR even in situations where the future driv-
ing load is unknown and that it reduces the computational
complexity of the entire prognostics process. In table 2 both
the RA and the tcpu for all scenarios is presented. As it can be
observed, even though the PF employ more particles than the
PFPF, the accuracy in the RDR prediction is in general not
better. Furthermore, a noticeable improvement in the compu-
tational performance is appreciated in respect to the experi-
mental results. Although, the PF uses just half of the parti-
cles as before, the tcpu is now 4 to 5 times larger than the tcpu
required by the PFPF in all scenarios.
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Table 2. RDR prediction performance under different driving scenarios.

Driving scenario
Urban Rural Highway

RA [%] tcpu [s] RA [%] tcpu [s] RA [%] tcpu [s]

kp PFPF PF PFPF PF PFPF PF PFPF PF PFPF PF PFPF PF
1 74.78 88.48 18.21 88.19 76.91 89.00 6.83 23.06 71.56 89.82 3.19 20.50
3 94.19 79.07 16.46 79.83 92.52 87.32 4.06 19.12 97.39 88.00 3.28 17.04
5 93.42 90.54 15.41 72.53 93.42 89.44 3.68 17.03 96.30 87.75 3.10 14.91
7 91.97 90.19 14.64 68.39 93.37 87.13 3.22 15.51 96.91 91.76 2.83 13.79
9 91.80 89.93 13.38 63.40 93.29 88.44 2.88 13.50 98.93 86.91 2.79 13.63

11 89.96 90.37 12.52 57.09 88.52 88.27 2.50 11.46 99.64 94.96 2.64 12.68
13 88.87 91.22 11.37 50.06 89.85 92.74 2.09 9.70 98.73 91.97 2.53 12.18
15 88.60 90.46 10.27 44.70 87.76 77.08 1.81 7.54 98.90 81.45 2.26 11.85
17 88.56 90.59 9.00 38.98 63.20 81.49 1.33 5.39 97.27 74.13 2.11 10.82
21 89.40 89.43 6.65 28.37 – – – – 93.16 81.11 1.88 8.16
25 95.75 89.43 3.88 16.27 – – – – – – – –

6. CONCLUSIONS AND FUTURE WORK

In this work a methodology for enhancing the computational
performance of a particle-filtering-based prognostics approach
is presented. The reduction in computational complexity is
achieved by reducing the number of particles needed in the
state estimation and thereby reducing the number of simula-
tions needed to determine the RUL of the system. The re-
duction of particles is carried out by applying a deterministic
flow, which migrates the particles through the state space in
an optimal manner from the prior to the posterior state esti-
mate. The advantage of such a migration allows us to employ
less particles in contrast to the standard particle filter, since
the particles are moved to the correct location obeying to the
Bayes’s rule. Such a particle reduction is highlighted during
the prediction step, due to less simulations are needed for de-
termining the distribution of the RUL.

The proposed methodology is afterwards illustrated and val-
idated by means of the RDR estimation problem, in which
is desired to determine the distance that can be driven by an
electric vehicle with the energy stored in the battery pack at
given points in time. Both experimental and simulation re-
sults show that the particle flow particle filter successfully
reduces the computational burden associated with the estima-
tion of the RUL in nonlinear systems.

Even though the presented approach exhibits both good com-
putational performance and estimation accuracy, it is worth
mentioning that the experiments carried out are based just on
state estimation. That is, no joint or dual state/parameter es-
timation is done. This is justified by the assumption that the
parameters of the battery model degrade very slow within the
time span of a trip. However, a more proper implementation
of the RDR estimation problem requires estimating the pa-
rameters together with the states in order to account for the
aging effect of the battery. We therefore aim to investigate
in the future the applicability and performance of the particle
flow particle filter for a joint state/parameter estimation.
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