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ABSTRACT

A direct method of measuring corrosion on a structure us-
ing a micro-linear polarization resistance (µLPR) sensor is
presented. The new three-electrode µLPR sensor design pre-
sented in this paper improves on existing LPR sensor tech-
nology by using the structure as part of the sensor system,
allowing the sensor electrodes to be made from a corro-
sion resistant or inert metal. This is in contrast to a two-
electrode µLPR sensor where the electrodes are made from
the same material as the structure. A controlled experiment,
conducted using an ASTM B117 salt fog, demonstrated the
three-electrode µLPR sensors have a longer lifetime and bet-
ter performance when compared to the two-electrode µLPR
sensors. Following this evaluation, a controlled experiment
using the ASTM G85 Annex 5 standard was performed to
evaluate the accuracy and precision of the three-electrode
µLPR sensor when placed between lap joint specimens made
from AA7075-T6. The corrosion computed from the µLPR
sensors agreed with the coupon mass loss to within a 95%
confidence interval. Following the experiment, the surface
morphology of each lap joint was determined using laser mi-
croscopy and stylus-based profilometry to obtain local and
global surface images of the test panels. Image processing,
feature extraction, and selection tools were then employed to
identify the corrosion mechanism (e.g. pitting, intergranular).

Douglas Brown et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Recent studies have exposed the generally poor state of our
nation’s critical infrastructure that has resulted from wear
and tear under excessive operational loads and environmen-
tal conditions. The British Standards Institution’s Publicly
Available Specification for the optimized management of
physical assets defines asset management as the “systematic
and coordinated activities and practices through which an or-
ganization optimally and sustainably manages its assets and
asset systems, their associated performance, risks and expen-
ditures over their life cycles for the purpose of achieving
its organizational strategic plan.” The motivation for effec-
tive asset management is driven by owners’ desire for higher
value assets at less overall costs, thus extracting the maximum
value from their assets (Herder & Wijnia, 2011). Condition-
based maintenance aims to maximize asset value by extend-
ing the useful life of assets through mitigation of unnecessary
maintenance actions performed during schedule-based main-
tenance strategies (Huston, 2010). By providing maintenance
engineers with information regarding the health of the struc-
ture, maintenance can be performed on a basis of necessity
unique to each asset, as opposed to schedule-based predic-
tions formed on statistical trends of operational reliability.
These systems must be low-cost and simple to install with
a user interface designed to be easy to operate.

To reduce the cost and complexity of such a system for mon-
itoring corrosion in an avionics environment, a generic inter-
face node using low-powered wireless communications has
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Figure 1. AN110 installed on a C-130H

been developed. This node can communicate with a myriad
of common sensors used in SHM. In this manner a structure
such as a bridge, aircraft, or ship can be fitted with sensors
in any desired or designated location and format without the
need for communications and power lines that are inherently
expensive and complex to route. Data from these nodes is
transmitted to a central communications personal computer
for data analysis. An example of this is provided in Figure 1
showing an embedded AN110 SHM system installed on a C-
130H aircraft.

The micro-linear polarization resistance (µLPR) sensor pre-
sented in this paper improves on existing LPR technology by
using the structure as part of the sensing system. The sensor
includes three electrodes, where each electrode is fabricated
on a flexible substrate to create a circuit consisting of gold-
plated copper. The first two electrodes, or the counter and ref-
erence electrodes, are configured in an interdigitated fashion
with a separation distance of 8mil. The flex cable contains
a porous membrane between the pair of electrodes and the
structure. A third electrode, or the working electrode makes
electrical contact to the structure through a 1mil thick elec-
trically conductive transfer tape placed between the electrode
and structure. The reference and counter electrodes are elec-
trically isolated from the working electrode and physically
separated from the surface of the structure by 1mil. The flex
cable can be attached to the structure with adhesives or in the
case of placement in a butt joint or lap joint configuration, by
the mechanical forces present in the joint itself. Corrosion is
computed from known physical constants, by measuring the
polarization resistance between the electrolytic solution and
the structure. Further improvements are realized by narrow-

ing the separation distance between electrodes, which mini-
mizes the effects due to solution resistance. This enables the
µLPR to operate more effectively outside a controlled aque-
ous environment, such as an electrochemical cell, in a broad
range of applications (eg. civil engineering, aerospace, petro-
chemical).

The remainder of the paper is organized as follows. Section 2
provides background information on different corrosion sens-
ing technologies, LPR theory, and the new 3-electrode µLPR
sensor design. Section 3 describes the experimental proce-
dure used to evaluate the new sensor design through a con-
trolled ASTM G85 Annex 5 cyclic salt fog test. Section 4
presents the results of experimental testing comparing the
corrosion rate computed from µLPR sensor data with mea-
sured mass loss. Also presented are correlations between fea-
tures, exposure time, and µLPR sensor measurements. Fi-
nally, the paper is concluded in Section 5 with a summary of
the findings and future work.

2. BACKGROUND

Corrosion sensors can be distinguished by the following cat-
egories, direct or indirect and intrusive or non-intrusive. Di-
rect corrosion monitoring measures a response signal, such
as a current or potential, resulting from corrosion. Exam-
ples of common direct corrosion monitoring techniques are:
corrosion coupons, electrical resistance (ER), electrochemi-
cal impedance spectroscopy (EIS), and linear polarization re-
sistance (LPR) techniques. Whereas, indirect corrosion mon-
itoring techniques measure an outcome of the corrosion pro-
cess. Two of the most common indirect techniques are ul-
trasonic testing and radiography. An intrusive measurement
requires access to the structure. Corrosion coupons, ER, EIS,
and LPR probes are intrusive since they have to access the
structure. Non-intrusive techniques include ultrasonic testing
and radiography.

Each of these methods have advantages and disadvantages.
Corrosion coupons provide the most reliable physical evi-
dence possible. Unfortunately, coupons usually require sig-
nificant time in terms of labor and provide time averaged data
that can not be utilized for real-time or on-line corrosion mon-
itoring (Harris, Mishon, & Hebbron, 2006). ER probes pro-
vide a basic measurement of metal loss, but unlike coupons,
the value of metal loss can be measured at any time, as fre-
quently as required, while the probe is in situ and permanently
exposed to the structure. The disadvantage is ER probes re-
quire calibration with material properties of the structure to
be monitored. The advantage of the LPR technique is that
the measurement of corrosion rate is made instantaneously.
This is a more powerful tool than either coupons or ER where
the fundamental measurement is metal loss and some period
of exposure is required to determine corrosion rate. The dis-
advantage to the LPR technique is that it can only be suc-
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cessfully performed in relatively clean aqueous electrolytic
environments (Introduction to Corrosion Monitoring, 2012).
EIS is a very powerful technique that can provide a corrosion
rate and classification of the corrosion mechanism. EIS mea-
sures the magnitude and phase response of an electrochemical
cell. Physical parameters, such as the polarization resistance,
solution resistance, and double-layer capacitance, can be de-
rived from these responses, which provides more information
than just LPR alone. The disadvantage with EIS is that it
uses sophisticated instrumentation that requires a controlled
setting to obtain an accurate spectrum. In fielded environ-
ments, EIS is highly susceptible to noise. Additionally, in-
terpretation of the data can be difficult (Buchheit, Hinkebein,
Maestas, & Montes, 1998). Ultrasonic testing and radiog-
raphy can be used to detect and measure (depth) corrosion
through non-destructive and non-intrusive means (Twomey,
1997). The disadvantage with the ultrasonic testing and ra-
diography equipment is the same with corrosion coupons,
both require significant time in terms of labor and can not
be utilized for real-time or on-line corrosion monitoring. As
this paper is focused on a three-electrode µLPR sensor, the
remainder of the background will focus on LPR.

2.1. LPR Theory

Corrosion occurs as a result of oxidation and reduction re-
actions occurring at the interface of a metal and an elec-
trolyte solution. This process occurs by electrochemical half-
reactions; (1) anodic (oxidation) reactions involving dissolu-
tion of metals in the electrolyte and release of electrons, and
(2) cathodic (reduction) reactions involving gain of electrons
by the electrolyte species like atmospheric oxygen, O2, H2O,
or H+ ions in an acid (Harris et al., 2006). The flow of elec-
trons from the anodic reaction sites to the cathodic reaction
sites creates a corrosion current. The electrochemically gen-
erated corrosion current can be very small (on the order of
nanoamperes) and difficult to measure directly. Application
of an external potential exponentially increases the anodic
and cathodic currents, which allows instantaneous corrosion
rates to be extracted from the polarization curve. Extrapo-
lation of these polarization curves to their linear region pro-
vides an indirect measure of the corrosion current, which is
then used to calculate the rate of corrosion (Burstein, 2005).

The electrochemical technique of LPR is used to study corro-
sion processes since the corrosion reactions are electrochem-
ical reactions occurring on the metal surface. Modern cor-
rosion studies are based on the concept of mixed potential
theory postulated by Wagner and Traud, which states that the
net corrosion reaction is the sum of independently occurring
oxidation and reduction reactions (Wagner & Traud, 1938).
For the case of metallic corrosion in presence of an aqueous
medium, the corrosion process can be written as,

M+ zH2O
f↔
b

Mz++
z
2

H2 + zOH−, (1)

where z is the number of electrons lost per atom of the metal.
This reaction is the result of an anodic (oxidation) reaction,

M
f↔
b

Mz++ ze−, (2)

and a cathodic (reduction) reaction,

zH2O+ ze−
f↔
b

z
2

H2 + zOH−. (3)

It is assumed that the anodic and cathodic reactions occur at a
number of sites on a metal surface and that these sites change
in a dynamic statistical distribution with respect to location
and time (Kossowsky, 1989). Thus, during corrosion of a
metal surface, metal ions are formed at anodic sites with the
loss of electrons and these electrons are then consumed by
water molecules to form hydrogen molecules. The interac-
tion between the anodic and cathodic sites as described on the
basis of mixed potential theory is represented by well-known
relationships using current (reaction rate) and potential (driv-
ing force). For the above pair of electrochemical reactions (2)
and (3), the relationship between the applied current Ia and
applied potential, Ea, follows the Butler-Volmer equation,

Ia = Icorr

[
e2.303(Ea−Ecorr)/βa − e−2.303(Ea−Ecorr)/βc

]
, (4)

where βa and βc are the anodic and cathodic Tafel parameters
given by the slopes of the polarization curves ∂Ea/∂ log10 Ia
in the anodic and cathodic Tafel regimes, respectively and
Ecorr is the corrosion, or open circuit potential (Bockris,
Reddy, & Gambola-Aldeco, 2000). The corrosion current,
Icorr, cannot be measured directly. However, a priori knowl-
edge of βa and βc along with a small signal analysis tech-
nique, known as polarization resistance, can be used to in-
directly compute Icorr. The polarization resistance technique,
also referred to as linear polarization, is an experimental elec-
trochemical technique that estimates the small signal changes
in Ia when Ea is perturbed by Ecorr ± 10mV (G102, 1994).
The slope of the resulting curve over this range is the polar-
ization resistance,

Rp ,
∂Ea

∂ Ia

∣∣∣∣
|Ea−Ecorr |≤10mV

. (5)

ASTM standard G59 outlines procedures for measuring po-
larization resistance. Potentiodynamic, potential step, and
current-step methods can be used to compute Rp (G59, 1994).
The potentiodynamic sweep method is the most common
method for measuring Rp. A potentiodynamic sweep is con-
ducted by applying Ea between Ecorr±10mV at a slow scan
rate, typically 0.125 mV/s. A linear fit of the resulting Ea vs.
Ia curve is used to compute Rp. Note, the applied current, Ia,
is the total applied current and is not multiplied by the elec-
trode area so Rp as defined in (5) has units of Ω. Provided that
|Ea−Ecorr|/βa � 1 and |Ea−Ecorr|/βc � 1, the first order

3



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

(a) (b)

(c) (d)

Figure 2. The (a) two-electrode µLPR sensor, (b) three-electrode µLPR sensor, (c) two-electrode µLPR sensor identifying
each sensor element when mounted to a substrate, and (d) three-electrode µLPR sensor identifying each sensor element when
attached using the structure as the third electrode.

Taylor series expansion ex u 1+ x can be applied to (4) and
(5) to arrive at the Stern-Geary equation,

Icorr =
B?

Rp
, (6)

where,

B? =
βaβc

2.303(βa +βc)
. (7)

Knowledge of Rp, βa, and βc enables direct determination of
Icorr at any instant in time. The corrosion rate, Rloss, can be
found by applying Faraday’s law,

Rloss (t) =
Bloss

Rp (t)
, (8)

where,

Bloss =
B?

FAsen

(
AW

z

)
, (9)

such that F is Faraday’s constant, z is the number of electrons
lost per atom of the metal during an oxidation reaction, Asen
is the effective area of the sensor, and AW is atomic weight.
The total mass loss, Mloss, due to corrosion can be found by
integrating (8),

Mloss (t) =
ˆ t

t0
Rloss (τ)dτ. (10)

Finally, since Rp is not measured continuously (10) needs to
be discretized for the sample period Ts,

Mloss (t)
∣∣∣∣
t=NTs

= Ts

N

∑
k=1

Rloss (kTs) . (11)

2.2. Sensor Design

The two-electrode µLPR design consists of a sensor with
interdigitated electrodes photo-etched from 2mil aluminum
shim-stock material with a thickness and separation distance

of 12mil. In this configuration one of the electrode pairs acts
as the counter electrode (cathode) and the other as the work-
ing electrode (anode). The sensor is designed to corrode in
the same environment as the structure, effectively measuring
the corrosivity of the environment. An image of the two-
electrode µLPR sensor is provided in Figure 2(a). An illus-
tration showing the two-electrode µLPR sensor mounted to
the structure is shown in Figure 2(c).

Improving on the two-electrode design, the three-electrode
µLPR is fabricated on a flexible Kapton substrate where each
electrode is coated with a noble metal. The first two elec-
trodes, counter and reference electrodes, are fabricated us-
ing 0.5 oz. copper with an electroless nickel immersion gold
(ENIG) finish and an overall thickness of 1mil. The counter
and reference electrode pair is configured in a interdigitated
geometric layout with a separation distance of 9mil. The flex
cable contains an insulating porous scrim material between
the pair of electrodes and the structure. A third electrode,
made from the same ENIG finish, is placed in close proxim-
ity to the counter and reference electrodes; electrical contact
is made with the structure by placing a 1mil thick electrically
conductive transfer tape between the electrode and structure.
This allows the structure to serve as the working electrode
for the sensor measurement. The flex cable, shown in Fig-
ures 2(b) and (d), can be attached to the structure through the
use of adhesives or in the case of placement in a butt joint or
lap joint configuration, the holding force is provided by the
joint itself.

3. EXPERIMENTAL PROCEDURES

3.1. Tafel Measurements

ASTM standard G59 outlines the procedure for measuring
the Tafel slopes, βa and βc. First, Ecorr is measured from
the open circuit potential. Next, Ea is initialized to E corr-
250mV. Then, a potentiodynamic sweep is conducted by in-
creasing Ea from Ecorr−250mV to Ecorr +250mV at a slow
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Figure 3. AA7075-T6 lap joint assembly.

scan rate, typically 0.125 mV/s. Finally, a Tafel curve is plot-
ted for Ea vs. log10 Ia. Values for βa and βc are estimated
from the slopes of the linear extrapolated anodic and cathodic
currents.

3.2. Sample Preparation

Lap joint samples were made using two 6” by 3” panels made
from AA7075-T6 with a thickness of 1/8”. These panels were
secured together with six polycarbonate fasteners. Before as-
sembly of the lap joint each panel was cleaned with a 35 min
immersion into a constantly stirred solution of 50 g/L Turco
4215 NC-LT at 65◦C. After completing this alkaline cleaning
the panels were rinsed with deionized water and immersed
into a 70% solution of nitric acid solution for 5min at 25◦C.
The samples were then rinsed again in the deionized water
and air dried. Weights were recorded to the nearest fifth
significant figure and the samples were stored in a desicca-
tor. Once the panels were prepared and massed, two µLPR
sensors were installed between the panels. At this point the
six polycarbonate bolts were torqued down evenly to 2N ·m.
This lap joint assembly is shown in Figure 3. After assem-
bling the lap joints, the samples were evenly coated with 2
mils of epoxy-based paint and 2 mils of polyurethane on all
exposed surfaces. These coatings were allowed to fully seal
over a 24 hour period at 35◦C before testing.

3.3. Comparing Two vs. Three Electrode Design

A preliminary experiment was performed to highlight the
benefits between a two-electrode µLPR sensor made from
AA7075-T6 and a three-electrode µLPR sensor made from
nickel. This experiment was performed by placing four two-
electrode µLPR and four three electrode µLPR sensors into a
beaker filled with a B117 salt solution modified to a pH of 5.5.
A stirbar was used to constantly mix the solution. The sensors
were placed inside the beaker around a plastic cylindrical fix-
ture. The two and three-electrode µLPR sensors were evenly
spaced in an alternating arrangement. Approximately every
4 days, the coupons were removed, cleaned, massed and then

Figure 4. Panels shown in the corrosion chamber prior to the
experiment.

returned to the beaker to resume the experiment.

3.4. Accelerated Lap Joint Testing

Corrosion tests were performed in a cyclic corrosion cham-
ber running the ASTM G85 Annex 5 test. This test consisted
of two one-hour steps. The first step involved exposing the
samples to a salt fog for a period of one-hour at 25◦C. The
electrolyte solution composing the fog was 0.05% sodium
chloride and 0.35% ammonium sulfate in deionized water.
This step was followed by a dry-off step, where the fog was
purged from the chamber while the internal environment was
heated to 35◦C. Each panel was positioned at a 60° angle
with the flex tape facing downward, as not to allow a direct
pathway for condensate to travel into the lap joints. Elec-
trical connections for the µLPR sensors were made to an
AN110 positioned outside the chamber by passing extension
cables through a bulkhead. Temperature, relative humidity,
and µLPR data were acquired at 1min intervals.

3.5. Sample Cleaning

Samples were removed from the environmental chamber and
disassembled. Following disassembly, the polyurethane and
epoxy coatings on the aluminum panels were removed by
placing them in a solution of methyl ethyl ketone. After im-
mersion for 30min the panels were removed and rinsed with
deionized water. These panels were again alkaline cleaned
with a 35min immersion into a constantly stirred solution of
50 g/L Turco 4215 NC-LT at 65◦C. This was followed by a
deionized water rinse and immersion into a 90◦C solution of
4.25% phosphoric acid containing 20 g/L chromium trioxide
for 10min. Following the phosphoric acid treatment, panels
were rinsed with deionized water and placed into a 70% ni-
tric acid solution for 5min at 25◦C. Panels were then rinsed
with deionized water, dipped in ethanol, and dried with a heat
gun. This cleaning process was repeated until mass values for
the panels stabilized. These values were then compared with
mass loss values calculated from the µLPR data.
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4. RESULTS

4.1. Comparing Two vs. Three Electrode Design

The Tafel constants were acquired while the panels were
undergoing a wetting cycle. The Tafel constants were ac-
quired and plotted as applied voltage vs. the logarithm of
applied current magnitude, shown in Figure 5. From this
plot the Tafel constants were computed as, βa = 0.40 V/dec

and βc = 0.15 V/dec. The corrosion constant, Bloss, was com-
puted using (9) with the material properties for AA7075-T6
and sensor properties defined in the nomenclature. Note,
the Tafel slope is an intensive parameter and does not de-
pend on the electrode surface area. If the Tafel constants
cannot be extrapolated, is not uncommon to approximate
βa and βc ≈ 0.15 V/dec.

The total corrosion for each sensor was computed by applying
(10) to integrate the corrosion rate with respect to time. For
the first 300 hours of the experiment, both sensors produce
comparable results. However, at 300 hours the overall LPR
reading began to drop and the variance between sensor read-
ings started to increase, as shown in Figures 6(a) and (b). This
may result from a reduction in the effective surface area of the
electrodes as a result of the corrosion process. As more cor-
rosion begins to accumulate, the fingers become less and less
effective. In contrast, the 95% confidence band for the three-
electrode µLPR sensor remained relatively constant through-
out the experiment, shown in Figure 6(c) and (d).

4.2. Lap Joint Testing Results

After selecting the three electrode µLPR for further evalu-
ation, a set of four lap joints were assembled. These assem-
blies were tested over a maximum period of 286 hours, where
the environment inside the chamber was cyclically varied in
temperature and humidity according to ASTM G85 Annex 5
to promote corrosion. Panels were removed at 133, 209, 286,
and 286 hours into the experiment, respectively. Plots of the
measured temperature and humidity vs. time are provided in
Figure 8. The corrosion rate, shown in Figure 7, was com-
puted from Rp measurements using (8) along with Bloss com-
puted during the previous experiment. The total corrosion,
shown in Figure 9(a), was computed for each panel by apply-
ing (10) to integrate the corrosion rate with respect to time.
The error bars correspond to the standard deviation observed
at the time when the mass loss was computed. Finally, the
measured and computed corrosion from the µLPR measure-
ments were compared in a scatter plot, shown in Figure 9(b).
The error bars in the y-direction correspond to observation er-
ror. These results indicate the measured corrosion correlated
with the computed corrosion to within 95% confidence (two
standard deviations of the observation error).

4.3. Lap Joint Imaging Feature

Microscopic images were acquired over a field size of
37mm× 37mm at a magnification of 108x using the LEXT
OLS4000 3D Laser Measuring Microscope. Comprehensive
images of each panel was created by stitching together ad-
jacent images. The rivet holes and numbers were manually
changed to be white so they wouldn’t be confused with cor-
roded regions. To get the features a 2D median filter was
applied followed by thresholding (using a threshold of 0.2)
to get a binary image. The area for each object (each black
region is considered to be an object) in the binary image was
calculated. The sum of objects with an area larger than 50
pixels (this was to avoid counting dark regions caused by the
grain boundaries as pits) was taken to be the area of the cor-
roded region. The percent area of the corrosion was calcu-
lated as,

Parea = 100% · Acorr

Aimage−Arivets
, (12)

where Acorr is the area of the corroded region, Aimage is the
area of the image, and Arivets is the area of the rivets. Fig-
ure 11 shows the original images of each panel along with
a binary image for the specimens removed 133 hours, 209
hours and 286 hours into the experiment. Figure 10 shows
plots of (a) Parea vs. time and (b) Parea vs. computed corro-
sion.

5. CONCLUSION

A new µLPR sensor design was presented for direct corro-
sion monitoring in structural health management (SHM) ap-
plications. The new design improves on existing technolo-
gies by: (1) using the structure as part of the sensor measure-
ment; (2) improving sensor lifetime by making the electrodes
from a non-corrosive material; and (3) improving on sensor
performance by reducing the separation distance between the
working, reference, and counter electrodes. Corrosion tests
were performed in a cyclic corrosion chamber running ASTM
G85-A5 salt fog test. The results indicate the µLPR sensor
data correlated with the measured mass loss to within 95%
confidence (two standard deviations of the observation error).
This demonstrates the µLPR sensor can accurately measure
the change in the corrosion rate as a function of time for a
given electrolyte condition. Future work includes:

• Demonstrate µLPR sensor accurately measures the cor-
rosion rate as a function of solution conductivity.

• Establish the µLPR sensor can accurately measure cor-
rosion in atmospheric conditions where corrosion rates
are lower than in an “accelerated corrosion chamber”.

• Investigate the surface morphology of the coupons using
a scanning electron microscope (SEM) and correlate the
measured corrosion rate as a function of corrosion be-
havior as determined by the µLPR sensor data over time.
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Figure 5. Tafel plot of the µLPR sensors.
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Figure 6. Corrosion vs. time for (a) four two-electrode µLPR sensor made from AA7075-T6, (b) the corresponding aver-
age with a 90% confidence interval, (c) corrosion vs. time for a three-electrode µLPR sensor made from nickel and (d) the
corresponding average with a 95% confidence interval.
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Figure 8. Plots of (a) temperature and (b) relative humidity
vs. time.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

Time [hr]

C
o
rr
o
si
o
n
[m

g
]

bCbC

bCbC

bCbC

bCbC

Panel 1
Panel 2
Panel 3
Panel 4
Measurement
Error

bC

(a)

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

Measured Corrosion [mg]

C
o
m
p
u
te
d
C
o
rr
o
si
o
n
[m

g
]

bCbC
bCbC

bCbC

bCbCNorm
Measurement
Error

bC

(b)

Figure 9. Plot of (a) computed corrosion vs. time and (b)
measured vs. computed corrosion.
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Figure 10. Percent area of corrosion vs. (a) time and (b)
computed corrosion.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Original panel image with rivets and numbers removed for (a) 133 hours, (b) 209 hours, and (c) 286 hours of
exposure time. Also shown is a binary image after filtering showing the percent area of corrosion for (d) 133 hours at 0.113%,
(e) 209 hours at 0.244%, and (f) 286 hours at 0.93%.
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NOMENCLATURE

βa V/dec 0.40 anodic Tafel constant
βc V/dec 0.15 cathodic Tafel constant
τ s - time variable
dτ s - time step
k - - sample index
t s - time
t0 s - initial time
z - 3 electron loss
Acorr cm2 - % area of corrosion
Aimage cm2 - % area of image
Arivets cm2 - % area of of rivets
Asen cm2 4.233×10−2 sensor area
AW g/mol 2.899×101 atomic weight
B? V/dec 4.95×10−2 constant
Bloss Ω·g/cm2/s 1.170×10−4 constant
Ea V - applied potential
Ecorr V - corrosion potential
Ia A/cm2 - applied current
Icorr A/cm2 - corrosion current
F C/mol 9.649×104 Faraday’s constant
Mloss g/cm2 - mass loss
N - - total samples
Parea - - Percent area of corrosion
Rloss g/cm2/s - corrosion rate
Rp Ω - polarization resistance
Ts s 60 sample period

REFERENCES

Bockris, J. O., Reddy, A. K. N., & Gambola-Aldeco, M.
(2000). Modern electrochemistry 2a. fundamentals
of electrodics (2nd ed.). New York: Kluwer Aca-
demic/Plenum Publishers.

Buchheit, R. G., Hinkebein, T., Maestas, L., & Montes,
L. (1998, March 22-27). Corrosion monitoring of

concrete-lined brine service pipelines using ac and dc
electrochemical methods. In Corrosion 98. San Diego,
Ca.

Burstein, G. T. (2005, December). A century of tafel’s equa-
tion: 1905-2005. Corrosion Science, 47(12), 2858-
2870.

G102, A. S. (1994). Standard practice for calculation of cor-
rosion rates and related information from electrochem-
ical measurements. Annual Book of ASTM Standards,
03.02.

G59, A. S. (1994). Standard practice for conducting potentio-
dynamic polarization resistance measurements. Annual
Book of ASTM Standards, 03.02.

Harris, S. J., Mishon, M., & Hebbron, M. (2006, October).
Corrosion sensors to reduce aircraft maintenance. In
Rto avt-144 workshop on enhanced aircraft platform
availability through advanced maintenance concepts
and technologies. Vilnius, Lithuania.

Herder, P., & Wijnia, Y. (2011). Asset management: The
state of the art in europe from a life cycle perspective
(T. van der Lei, Ed.). Springer.

Huston, D. (2010). Structural sensing, health mon-
itoring, and performance evaluation (B. Jones &
W. B. S. J. Jnr., Eds.). Taylor and Francis.

Introduction to corrosion monitoring. (2012,
August 20). Online. Available from
http://www.alspi.com/introduction.htm

Kossowsky, R. (1989). Surface modification engineering
(Vol. 1). Boca Raton, Florida: CRC Press, Inc.

Twomey, M. (1997). Inspection techniques for detecting cor-
rosion under insulation. Material Evaluation, 55(2),
129-133.

Wagner, C., & Traud, W. (1938).
Elektrochem, 44, 391.

BIOGRAPHIES

Douglas W. Brown is the Senior Systems Engineer for
Analatom, Inc. He received the bachelor of science degree in
electrical engineering from the Rochester Institute of Tech-
nology and his master of science and doctor of philosophy
degrees in electrical engineering from the Georgia Institute
of Technology. Dr. Brown has ten years of experience de-
veloping and maturing Prognostics & Health Management
(PHM) and fault-tolerant control systems in avionics appli-
cation. He is a recipient of the National Defense Science
and Engineering Graduate (NDSEG) Fellowship and has re-
ceived several best-paper awards for his work in PHM and
fault-tolerant control.

Richard J. Connolly is the Senior Research Engineer for
Analatom, Inc. He completed his bachelor of science and
doctor of philosophy degree in chemical and biomedical en-
gineering at the University of South Florida. Dr. Connolly is

10



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

a fellow of the National Science Foundation and is regarded
as an expert in interfacing of engineering devices with skin.
He has extensive experience in bioelectrics, electrochemistry,
and data analysis. Much of this experience was gained while
performing bioelectric data collection on human and animal
models. During his tenure at Analatom he has overseen test-
ing and validation of the µLPR technology for aerospace and
civil engineering applications.

Bernard Laskowski is the President and Senior Research
Scientist at Analatom since 1981. He received the licen-
tiaat and doctor of philosophy degrees in physics from the
University of Brussels in 1969 and 1974, respectively. Dr.
Laskowski has published over 30 papers in international
refereed journals in the fields of micro-physics and micro-
chemistry. As president of Analatom, Dr. Laskowski has
managed 93 university, government, and private industry con-
tracts, receiving a U.S. Small Business Administration Ad-
ministrator’s Award for Excellence.

Margaret Garvan received her master of science degree in
electrical and computer engineering (ECE) from the Georgia
Institute of Technology, and bachelor of science in electrical
engineering from the University of Florida. She is currently a
Ph.D. candidate and graduate research assistant at the Geor-
gia Institute of Technology. Her research is focused on intel-
ligent machine learning, and methodologies for diagnostics
and prognostics for structural health monitoring.

Honglei Li received her master of science degree in electrical
and computer engineering (ECE) from the Georgia Institute
of Technology, and in Instrumental Engineering from Shang-
hai Jiao Tong University respectively. She is currently a grad-
uate research assistant at Intelligent Control Systems Labora-
tory, working on her doctoral degree in ECE at the Georgia
Institute of Technology. Her current research is focused on
intelligent machine learning, methodologies for prognostics
and structural health monitoring and health management, as
well as asset life-cycle and risk management.

Vinod S. Agarwala Dr. Vinod S. Agarwala is a recently re-
tired from the U.S. Civil Service as a Navy senior staff sci-
entist and Esteemed Fellow of Naval Air Systems Command,
Patuxent River, MD. He received a bachelor of science de-
gree in Physics, Chemistry and Mathematics, two masters of
science degrees, and a doctor of philosophy degree in Chem-
istry and Metallurgy from Banaras Hindu University (India)
and Massachusetts Institute of Technology (USA). He has 35
years of distinguished civil service with major contributions
in aircraft research and development technologies; he was
awarded Department of The Navy Superior Civilian Service
Medal. From 2006 - 2008, he was Associate Director at the
U. S. Office of Naval Research Global - London, UK. There
he served as an international agent for U.S. Navy with a mis-
sion to encourage international collaboration in Science and
Technology through priority R&D in support of U.S. Naval
forces.

George Vachtsevanos is a Professor Emeritus of Electrical
and Computer Engineering at the Georgia Institute of Tech-
nology. He was awarded a B.E.E. degree from the City Col-
lege of New York in 1962, a M.E.E. degree from New York
University in 1963 and the Ph.D. degree in Electrical En-
gineering from the City University of New York in 1970.
He directs the Intelligent Control Systems laboratory at the
Georgia Institute of Technology where faculty and students
are conducting research in intelligent control, neurotechnol-
ogy and cardiotechnology, fault diagnosis and prognosis of
large-scale dynamical systems and control technologies for
Unmanned Aerial Vehicles. His work is funded by govern-
ment agencies and industry. He has published over 240 tech-
nical papers and is a senior member of IEEE. Dr. Vachtse-
vanos was awarded the IEEE Control Systems Magazine Out-
standing Paper Award for the years 2002-2003 (with L. Wills
and B. Heck). He was also awarded the 2002-2003 Georgia
Tech School of Electrical and Computer Engineering Distin-
guished Professor Award and the 2003-2004 Georgia Insti-
tute of Technology Outstanding Interdisciplinary Activities
Award.

11


