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ABSTRACT 

It has been established that corrosion is one of the most 

important factors causing structural deterioration, loss of 

metal, and ultimately decrease of product performance and 

reliability. Corrosion monitoring, accurate detection and 

interpretation are recognized as key enabling technologies to 

reduce the impact of corrosion on the integrity of critical 

aircraft and industrial assets. Interest in corrosion 

measurement covers a broad spectrum of technical 

approaches including acoustic, electrical and chemical 

methods. Surface metrology is an alternative approach used 

to measure corrosive rate and material loss by obtaining 

surface topography measurement at micrometer levels. This 

paper reports results from an experimental investigation of 

pitting corrosion detection and interpretation on aluminum 

alloy panels using 3D surface metrology methods, image 

processing and data mining techniques. Sample panels of 

AA 7075-T6, an aluminum alloy commonly used in aircraft 

structures, were coated on one side with a corrosion-

protection coating and assembled in a lap-joint 

configuration. Then, a series of accelerated corrosion testing 

of the lap-joint panels were performed in a cyclic corrosion 

chamber running ASTM G85-A5 salt fog test. Panel surface 

characterization was evaluated with laser microscopy and 

stylus-based profilometry to obtain global and local surface 

images/characterization. Promising imaging and surface 

features were extracted and compared between the uncoated 

and coated panel sides, as well as on the uncoated sides 

under different corrosion exposure times. In the evaluation 

process, image processing, information processing and other 

data mining techniques were utilized. Information 

processing involves the steps of feature or Condition 

Indicator extraction and selection. The latter step addresses 

the problem of selecting those features that are maximally 

correlated with the actual corrosion state, for the purpose of 

corrosion detection, localization, quantification and state 

estimation. The results, verified by mass loss data, 

confirmed the contention that pits at the panel surfaces 

formed as a result of electrochemical corrosion attack, and 

showed that deteriorating pitting corrosion attack correlates 

with increasing corrosion exposure times. This study is a 

first step in the process of understanding, assessing and 

responding to the pitting corrosion and ultimately 

preventing material failure to insure aircraft structural 

integrity.  

1. INTRODUCTION 

Every year, corrosion is responsible for billions of dollars 

loss in structural deterioration, loss of metal, and ultimately 

decreased product performance and reliability. Pitting 

corrosion is one of the most prevalent forms of localized 

corrosion, a dangerous phenomenon because of its rapid 

damage growth rate, and the difficulty to detect it and 

predict its evolution. The pitting attack is highly localized 

and is usually in the form of holes that can penetrate 

inwards extremely rapidly and ultimately damage the 

structure by either perforating the material or developing 

into cracking due to stress corrosion (Rao & Rao, 2004). It 

is thus essential to insure the critical assets’ integrity and 

operational safety by condition-based monitoring, early 
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detection, interpretation and prediction of pitting attack. 

Many research efforts have been reported in the past 

addressing this critical issue (Frankel, 1998; Szklarska-

Smialowska, 1999; Huang & Frankel, 2006; Pereira, Silva, 

Acciari, Codaro & Hein, 2012). However, undeniably, well-

recognized global corrosion measurements, such as weight 

loss and wall thickness reduction, cannot offer an 

appropriate and trustworthy way to interpret the pitting 

corrosion due to its localized attack nature. To address the 

need for accurate detection, interpretation and prediction of 

pitting corrosion, this paper proposes the use of surface 

metrology methods together with image and information 

processing techniques that take advantage of accurate and 

thorough testing evidence. 

1.1. Motivation 

Detection, localization and quantification of corrosion in 

complex structures over large, partially accessible areas are 

of growing interest in the aerospace industries. Traditionally, 

conventional ultrasonics and eddy current techniques have 

been used to precisely measure the thickness reduction in 

aircraft structures. However, the scanning may become 

impossible when the area of inspection is inaccessible. Upon 

this need, there has been a number of undergoing research 

using guided wave tomography technique to screen large 

areas of complex structure for corrosion detection, 

localization (Clarke, 2009) and defect depth mapping 

(Belanger, Cawley & Simonetti,  2010). However, due to 

the nature of ultrasonic guided wave, this technique is 

vulnerable to environmental changes, especially to 

temperature variation and surface wetness occurrence (Li, 

Michaels, Lee, & Michaels, 2012), and the precision of 

corrosion defect depth reconstruction is restricted by sensor 

network layout, structure complexity, and other factors, 

which limits the scope of the field application.   

On the other hand, in the field of surface metrology, there 

are various techniques for quantitative characterization of 

surface topology, generally categorized into contact and 

non-contact measuring methods, which are promising 

techniques for corrosion, especially localized corrosion 

detection and characterization. The traditional contact 

profilometry has the merits of reliable measurement and low 

cost, and the disadvantage of low speed, and resolution and 

applicable surface limitation. On the contrary, the optical 

non-destructive metrology has the merits of high speed, 

high profiling resolution and non-destructiveness, and the 

disadvantage of high scatter noise and high cost.  

1.2. Methodology 

In this paper, we take advantage of both contact and non-

contact surface metrology techniques to obtain 2D and 3D 

images/profiles for accurate characterization of pitting 

corrosion attack in AA7075-T6 aluminum alloy panels; 

extract and select promising morphologic and texture 

features from images, as well as profile features from 

surface measurements. Note that both global and local 

metrology measurements and image/profile data analysis 

approaches are adopted here for the purpose of accurate 

detection, localization and interpretation of pitting corrosion. 

To facilitate early detection of corrosion attack, initial 

testing procedures, data acquisition and feature extraction 

focus on global approaches, i.e., the whole panel area is 

viewed as the target for data collection and analysis. After 

the corrosion detection, localized studies are adopted where 

imaging studies, for example, focus on small areas of the 

global image where corrosion initiation is suspected, 

localized, or prone to spread more rapidly than other areas. 

The highlight of this work is the utilization of 3D surface 

metrology testing tools and novel image/information 

processing methods to study the features of interest for 

corrosion analysis. 

The remainder of the paper is organized as follows. Section 

2 introduces the procedures of accelerated corrosion testing. 

Section 3 describes the facilities and procedures of 3D 

surface metrology testing for imaging/ characterization data 

acquisition. Section 4 introduces the methodologies used in 

corrosion data mining, including image pre-processing, 

feature extraction and feature selection. Section 5 presents 

the analysis results for pitting corrosion detection, 

localization and interpretation. Section 6 concludes the 

paper with a summary of future work.  

 

2. ACCELERATED CORROSION TESTING 

2.1. Testing Preparation 

New aluminum alloy AA7075-T6 and AA2024-T3 samples 

were cut to dimension of 6’×3’×1’ and uniquely marked 

with stencil stamps close to the edge of both faces of the 

sample.  A sample panel is shown in Figure 1. The samples 

were then cleaned using an alkaline cleaner, TURCO 4215 

NC-LT – 50 g/L for 35 min at 65°C. Afterwards, the 

samples were rinsed with Type IV reagent grade deionized 

water and immersed in a solution of 20% (v/v) nitric acid 

for 15 minutes.  The samples were then rinsed again in the 

deionized water and air dried.  The weights were recorded to 

the nearest fifth significant figure and the samples were 

stored in a desiccator.  After massing, the samples were 

assembled in a lap-joint configuration as shown in Figure 2, 

and coated with 2 mils of epoxy-based primer and 2 mils of 

polyurethane. 
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Figure 1. Corrosion panel sample on the uncoated side with 

6 through rivet holes, AA 7075-T6. 

 

Figure 2. AA7075-T6 and AA2024-T3 lap joint assembly. 

 

2.2. Cyclic Corrosion Testing 

Corrosion tests were performed in a cyclic corrosion 

chamber running a modified B117 salt-fog test, specifically, 

the ASTM G85-A5 test.  This test consisted of two one hour 

steps.  The first step involved exposing the samples to a salt 

fog for a period of one hour at 25ºC.  The electrolyte 

solution composing the fog was 0.05% sodium chloride and 

0.35% ammonium sulfate in deionized water.  This step was 

followed by a dry-off step, where the fog was purged from 

the chamber while the internal environment was heated to 

35ºC.  Electrical connections for the flex sensors were made 

to an AN110 positioned outside the sealed chamber by 

passing extension cables through the bulkhead in the 

chamber.  Temperature and relative humidity were acquired 

at 1-minute intervals.   

At the conclusion of this experiment, lap joints were 

removed from the environmental chamber and disassembled.  

Following disassembly, the polyurethane and epoxy 

coatings on the aluminum panels were removed by placing 

them in a solution containing methyl ethyl ketone.  After a 

30-minute immersion the panels were removed and rinsed 

with deionized water.  These panels were again alkaline 

cleaned with a 35-minute immersion into a constantly 

stirred solution of 50 g/l Turco 4215 NC-LT at 65°C.  This 

was followed by a deionized water rinse and immersion into 

a 90ºC solution of 85% phosphoric acid containing 400 g/l 

chromium trioxide for 10 minutes.  Following phosphoric 

acid treatment, the panels were rinsed with deionized water 

and placed into a 20% nitric acid solution for 5 minutes at 

25ºC.  Plates were then rinsed with deionized water, dipped 

in ethanol, and dried with a heat gun.  This cleaning process 

was repeated until mass values for the panels stabilized. 

These values were then compared with values predicted 

from the results from surface metrology image processing. 

This experiment ran over a period of 286 hours, where the 

environment inside the chamber was varied in temperature 

and humidity to promote corrosion. Panels 1-3 were 

removed 133, 209 and 286 hours from the experiment, 

respectively, preparing for the surface metrology testing. 

Detailed explanation of the accelerated corrosion testing is 

introduced in a complementary paper. 

 

3. 3D SURFACE METROLOGY FOR CORROSION 

ANALYSIS 

Surface metrology is the measurement of small-scale 

features on surfaces, which can be realized through contact 

or non-contact instruments as introduced before. Here, we 

utilize state-of-the-art laser microscopy and stylus-based 

profilometry surface measurement equipment to obtain 2D 

and 3D images and characterization data of corroded 

surfaces and extract from them relevant information that 

assists in corrosion detection and interpretation.  

In this preliminary work, for the illustration of methodology, 

our study focuses on the corrosion behavior of AA 7075-T6 

panels of 3 different corrosion exposure times. AA2024-T3 

panels from the corresponding lap joints will be examined in 

the future work. In this testing, we use a confocal laser 

microscope and a stylus-based profilometer together to 

achieve a thorough examination of the corroded panels with 

rivet holes. The Olympus LEXT OLS4000 3D Laser 

Confocal Microscope, as shown in Figure 3(a), is designed 

for nanometer level imaging, 3D surface characterization 

and roughness measurement. Magnification ranges from 

108x to 17,280x. The Bruker's Dektak 150 Stylus 

Profilometer, as shown in Figure 3(b), is a traditional 2D 

tactile profilometer. With the programmable map scan 

capability and the post-processing software, it allows for 

large area 3D topography coverage. The combination of the 

two surface metrology tools facilitates both localized and 

global characterization of a corroded panel at various 

resolution scales.  

The surface metrology testing scheme is summarized as 

below:   

1) Global characterization: 

• The laser microscope can provide large area 2D 

microscopy imaging by stitching adjacent images. 

• The stylus profilometer can provide large flat area 

(i.e., surface without rivet holes) 3D map scan imaging. 

A schematic of the area the profilometer covers in a 3D 

map scan for a typical panel is shown in Figure 4.  
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(a)                                                            (b) 

Figure 3. Surface metrology measuring tools: (a) Olympus 

LEXT OLS4000 3D Laser Confocal Microscope, (b) Bruker 

Dektak 150 Stylus Profilometer. 

 
Figure 4. The area (in red) the profilometer covers in a 3D 

map scan. 

2) Local characterization: 

• After the corrosion detection and localization, the 

laser microscope can provide a close look at the 3D 

topography of the analyzed surface areas.  

First, for corrosion detection and quantification, global 

characterization was performed through both the 

microscope and the profilometer for each panel 

corresponding to a specific corrosion exposure time: while 

the microscope provided whole-panel 2D imaging, the 

stylus profilometer provided contact 3D map scan of the 

general central region without rivet holes. Next, local 3D 

characterization of areas of interest was conducted through 

the microscope. The further surface analysis was performed 

based on the local 3D characterization and a list of surface 

parameters was calculated for further processing.  

4. CORROSION DATA MINING 

An important and essential component of the corrosion 

detection and interpretation architecture involves 

image/characterization data pre-processing and data mining 

aimed to extract and select useful and relevant information 

from raw data. In the proposed architecture, the most 

important components supporting the implementation of the 

framework are feature extraction and selection. Features are 

the foundation for the fault/corrosion detection and 

interpretation scheme. Feature extraction and selection 

processes are optimized to extract only the information that 

is maximally correlated with the actual corrosion state. 

Appropriate performance metrics, such as correlation 

coefficients, Fisher’s Discriminant Ratio (FDR), et al. can 

be utilized to assist in the selection and validation processes. 

Figure 5 shows the overall data mining scheme. Image pre-

processing, feature extraction and selection are highlighted 

leading to their utility in pitting corrosion detection, 

localization, interpretation, and eventually prediction of 

corrosion states. 

 
Figure 5. Corrosion data mining scheme. 

4.1. Image Pre-processing 

Image/data pre-processing involves filtering and preparing 

the data for further processing. Figure 6 shows a typical 

sequence of pre-processing steps of corrosion images from 

surface metrology testing. In the first step, de-noising, 

discrete stationary wavelet transform (SWT) is applied, and 

then histogram equalization is performed for contrast 

enhancement followed by applying a threshold to identify 

the regions of interest in the image. In this framework, 

image processing techniques are utilized to pre-process the 

global panel images as well as the local pitting area images, 

in preparation for the feature extraction step introduced in 

Section 4.2. First, globally, for each panel, successive 2D 

microscopic images were taken and stitched together to 

obtain the entire panel image. In the whole panel image pre-

processing, the rivet-hole areas and artifacts (e.g., stencil-

stamp marked numbers) were manually whitened so they 

would not be confused with corroded regions. Then, in order 

to identify the pitting corrosion attacked areas, a 2D median 

filter was applied followed by thresholding (with a threshold 

of 0.2) to obtain at a binary image. Second, locally, each 

suspected pitting area was identified from the whole panel 

image, and a closer microscopy examination was conducted. 

An example of a local pit identification process is as shown 

in Figure 7. To identify the pit(s) from the background, the 

area of each object (i.e., a black region representing a 

corroded region) in the binary image was calculated. The 

sum of objects with the area larger than 50 pixels was 

defined as the total area of the pitting corroded regions. 

Note that the identification threshold of 50 pixels was set to 

avoid mistaking dark regions caused by the grain boundaries 

as pits.  

Pre- processing 

Feature Extraction 

 Feature Selection 

Detection, Interpretation 
and Prediction 
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Figure 6. Corrosion image pre-processing. 

 

Figure 7. Local pit identification via image processing. Left: 

Original localized pit image; Right: Pit identified from the 

background with the pit edge (in blue) identified by image 

processing algorithm. 

4.2. Feature Extraction  

There are several characterization features to quantify the 

pitting corrosion attack, e.g. corroded area percentage, 

average pit depth measurement, maximum pit depth 

measurement, pitting density (pits/mm
2
), and remaining 

wall thickness due to pitting. In addition, image processing 

techniques can be used to extract morphological and texture 

features to facilitate pitting corrosion interpretation. The 

following outlines the features extracted from 2D corrosion 

images and 3D characterization data, which may facilitate 

the corrosion detection and interpretation: 

1) Corroded Area Percentage 

The pitting corroded area percentage is calculated as  

                  (
  

     
)                       (1) 

where    is the area of the corroded region,     is the area 

of the image and    is the area of the rivets.  

2) Imaging Texture Features using Gray Level Co-

occurrence Matrix  

2D imaging texture features such as contrast, correlation, 

energy and homogeneity, as expressed in Eqs. (2-5), are 

calculated using the normalized gray level co-occurrence 

matrix (GLCM) denoted as p(i, j). The (i, j) value of the 

GLCM of an image I has the value of how often a pixel with 

value i occurs horizontally adjacent to a pixel with value j in 

image I. The contrast as in Eq. (2) returns a measure of the 

intensity contrast between a pixel and its neighbor over the 

whole image.  For a constant image, the contrast is 0. The 

correlation as in Eq. (3) returns a measure ranging between -

1 and 1 represents how correlated a pixel is to its neighbor 

over the whole image. The energy as in Eq. (4) is calculated 

as the sum of the squared elements in the GLCM. For a 

constant image, the energy is 1. The homogeneity as in Eq. 

(5) is a measure of the closeness of the distribution of 

elements in the GLCM to the GLCM diagonal.  

 

         ∑ |   |                                  (2) 

             ∑
      (    )      

    
                       (3) 

       ∑        
                                  (4) 

            ∑
      

  |   |                                (5) 

3) Morphological Features  

Morphological features can be extracted from 2D pitting 

images to characterize the shape of the pitting attacked 

surface area. Features such as roundness, solidity, 

eccentricity, major axis length and minor axis length are 

calculated as expressed in Eqs. (6-10): 

           
   

                                 (6) 

where A is the area of the region and p is the perimeter of 

the region. 

          
    

          
                           (7) 

where ConvexArea is the area of the convex hull of the 

region.  

For an ellipse defined by  
  

   
  

    , the eccentricity, 

major axis length and minor axis length are calculated as 

              √  
  

                           (8) 

                                           (9) 

                 ).                      (10) 

4) Surface Roughness 

Surface roughness is a measure of the texture of a surface. It 

is quantified by the vertical deviations Z(x,y) of a real 

surface from its ideal form. If these deviations are large, the 

surface is rough; if they are small the surface is smooth. 

Roughness is typically considered to be the high frequency, 

short wavelength component of a measured surface. The 3D 

surface roughness features are listed in Table 1.  

 

 

Thresholding Contrast 

enhancement 

Imaging de-noising 

using Discrete SWT 
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Table 1. Surface roughness parameters and their expressions. 

 

Name Symbol Equation 

Maximum 

Height 
            

Maximum 

Peak 

Height 

                   

Maximum 

Valley 

Depth 

                   

Arithmetic 

Mean 

Height 

   
   

 

 
∬ |      |     

Root Mean 

Squared 

Height 

   

   √
 

 
∬|      |      

Skewness     
    

 

  
 

 

 
∬            

Kurtosis     
    

 

  
 

 

 
∬ |      |      

 

5) Other Characterization Features 

Other pit characterization features include the corroded area 

geometric features (e.g., surface area, circumference), 2D 

pit profile (line) features (e.g., pit width, pit depth, pit 

profile cross-sectional area), 3D pit profile features (e.g., pit 

volume), et al. 

4.3. Feature Selection via Performance Metrics 

After a sufficient number of image/characterization features 

are extracted, feature selection can be conducted to 

determine the smallest subset of features that satisfies given 

performance criteria. Performance metrics such as 

correlation coefficient and Fisher discriminant ratio (FDR) 

can be applied to assess the feature quality. Optimization 

and Principle Component Analysis (PCA) tools can be used 

for this purpose. Then a list of “best” features can be 

selected based on the feature performance. Here we use 

correlation coefficient and FDR to gauge the image features: 

1) Correlation Coefficient 

The correlation coefficient is defined as 

     
               

    
                               (11) 

where, X and Y are two random variables with expected 

values    and    and standard deviations    and   . The 

estimate of the correlation coefficient can be expressed as  

     
∑     ̅      ̅ 

∑     ̅  ∑     ̅  
                              (12) 

where  ̅ and  ̅ are the sample means of X and Y.  

2) Fisher Discriminant Ratio (FDR) 

Fisher's linear discriminant is a classification method that 

projects high-dimensional data onto a line and performs 

classification in this one-dimensional space. The projection 

maximizes the distance between the means of the two 

classes while minimizing the variance within each class. 

This defines the Fisher criterion, or FDR, which is 

maximized over all linear projections. The FDR of two 

classes is given as 

     
        

  
    

                                (13) 

where   represents a mean,   represents a variance, and the 

subscripts denote the two classes.  

5. RESULTS AND DISCUSSION 

In this paper, we assume that in the accelerated corrosion 

testing, the corrosion protection coating prevents the 

corrosion attack up to the maximum hours of corrosion 

exposure (i.e., 286 hours), and thus we use the measurement 

from panel coated sides as “baselines”, and compare to the 

one from the panel uncoated sides.  

5.1 Corrosion Characterization Features 

Preliminary global inspection through the profilometer 3D 

map scan indicated that the corroded panels were pretty flat 

without noticeable low-frequency surface irregularities, and 

thus the surface features can be mostly captured by 

roughness. Therefore, we can omit waviness for this 

application.  Thus, smoothness and spike removal filters 

were generally applied at the raw profile measurement from 

the profilometer and the microscope. Figure 8 (a) and (b) 

provide the 2D microscopic images of the local pitted panel 

areas of the same size and magnification in Panel 1 and 2, 

and Figure 8 (c) and (d) illustrate typical pit cross-sectional 

profiles from Panel 1 and 2 respectively, with (d) 

corresponding to the colored line marked in (b). Figure 9 

shows a 3D topology image of an area of connected pitting 

in Panel 2. Table 2 lists the 2D pit profile measurement of 

the colored lines in Figure 8 (b) and Figure 9, of which the 

pit height represents the maximum pit depth.  

   
                      

(a)                                            (b) 
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(c) 

 

 
(d) 

Figure 8. 2D characterization of pitted panel areas (642 × 

644 µm
2
) on the uncoated side of (a) Panel 1, and (b) Panel 

2; pit cross-sectional profile measurement (in µm) of (c) a 

general pit in Panel 1 (with the highlighted cross-sectional 

area of 240.43µm
2
), and (d) the colored line in (b), Panel 2. 

 
Figure 9. 3D characterization of a pitted panel area (2561 × 

1278 µm
2
) on the uncoated side of Panel 2, with the 

corresponding cross-sectional profile measurement as listed 

in Table 2. 

 

Table 2. Corresponding 2D pit profile measurement (in µm) 

of the colored lines in Figure 8(b) and Figure 9, Panel 2. 

 

Measurement Figure 8 (b)  Figure 9 

Width (µm) 369.432 848.483 

Height(µm) 3.164 19.895 

Length(µm) 369.445 848.717 

 

Except for the 2D pit profile features such as pit width and 

pit depth, geometric features such as pitting surface area and 

circumference (as shown in Figure 11 and Table 4) and pit 

volume (as shown in Figure 10 and Table 3) can also 

provide solid measures for local pitting severity, of which 

pit volume is of importance, due to the irregular growth 

pattern of pitting corrosion. In Figure 10 and Figure 11, a 

surface height threshold was manually chosen respectively, 

in order to calculate the corroded surface area and the 

underneath pitting volume. In Figure 11, as calculated from 

Table 4, the pitting affected surface area was in total of 

258,380.787 µm², or 3.94% of the entire examined surface 

area. 

Detailed analysis of the above pitting characterization 

results revealed some interesting findings. First, 

morphological analysis of the pits in Panel 1 and Panel 2 

indicated that, the nucleated pits, as those general non-

visible ones in Panel 1, usually took regular morphological 

forms, such as hemi-spherical, near-hemispherical and near-

conical shapes as indicated in Figure 8 (a) and (c). As the 

corrosion exposure time increased, a few nucleated pits 

evolved into irregular shapes with the pit dimension 

increased, as indicated in Figure 8 (b) and (d). From a side-

by-side comparison in Figure 8 (a) and (b), it is noted that, 

in Panel 2, even though some nucleated pits evolved into 

bigger and irregular pits, the majority of the pit population 

were still in a regular shape with similar dimensions as the 

nucleated pits in Panel 1. Second, as noted from Table 2, a 

prevalent phenomenon among the big visible pits in Panel 2 

and 3 was that, a pit’s width was usually significantly larger 

than its depth, which suggests that the metal dissolution rate 

was higher at the pit wall than at the pit bottom. In summary, 

from localized pitting characterization analysis of all three 

panels, it is concluded that on Panel 1, a number of 

nucleated pits formed, but generally few big visible pits 

existed; from Panel 1 to 2, as the corrosion exposure time 

increased from 133 hours to 209 hours, there emerged a few 

visible pits assuming irregular shapes, very likely with a 

much bigger width than depth; from Panel 2 to 3, as 

exposure time further increased to 286 hours, more and 

more large visible pits formed, located most likely close to 

panel edges, rivet hole edges and surface irregularies. Note 

that, due to the nature of the accelerated corrosion testing, 

three panels, instead of one, were exposed to three different 

corrosion emersion times respectively. Thus, an individual 

pit characterization growth cannot be observed in this study. 

Instead, 3D microscopic characterization studies of a 

number of random pits were conducted in each panel. It is 

indicated from the results of the three panels that, even 

though there was a big scatter of the characterization data of 

the visible pits on Panel 2 and 3, the number of big visible 

pits and the connected pitting areas increased with exposure 

time. 

     
Figure 10. Surface height thresholding procedure to obtain 

the 3D pitting characterization as shown in Table 3 for a 
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pitted panel area (1278 × 1281 µm
2
) on the uncoated side of 

Panel 2. 

 

Table 3. Corresponding 3D pitting characterization 

measurement of the area in Figure 10. 

 

Cross-sectional Area(µm
2
) 

(of the red line in Figure 10)  

103,366.090 

Surface Area (µm
2
) 192,043.495 

Volume (µm
3
) 1,101,417.185 

 

 

 
 

Figure 11. Pitted panel area (2553 × 2568 µm
2
) on the 

uncoated side of Panel 2, with the corresponding 6-pit 

geometric measurement as listed in Table 4. 

 

 

Table 4. Corresponding 3D pitting characterization 

measurement of the area in Figure 11. 

 

No. 

Surface 

Area(µm²) 

Circumference 

(µm) 

1 20,081.765 679.027 

2 79,576.806 1,333.879 

3 28,428.326 770.822 

4 43,645.952 1,216.175 

5 39,969.714 1,053.796 

6 46,678.224 1,110.563 

5.2 Corrosion Image Features 

5.2.1 Image Pre-processing 

In addition to local pitting characterization analysis, 2D 

panel images were acquired successively and pre-processed 

in preparation for corrosion image feature extraction.  For 

each panel, 2D microscopic images of size 37 x 37 mm 

were taken using LEXT OLS4000 with a magnification 

setting of 108x, and then stitched together to obtain the 

entire panel image. Figure 12 depicts the stitched whole 

panel microscopic images of Panel 1, 2 and 3 and their 

corresponding binary images after image pre-processing.   

 
Figure 12. Whole panel image pre-processing. Left column: 

intermediary images with rivet holes and marked numbers 

whitened of (a) Panel 1 with 133-hr corrosion exposure, (c) 

Panel 2 with 209-hr corrosion exposure, (e) Panel 3 with 

286-hr corrosion exposure. Right column: binary images 

after pre-processing of (b) Panel 1, (d) Panel 2, (f) Panel 3.  

 

5.2.2 Feature Extraction, Selection and Data Mining 

Features extracted from segments of the corrosion images 

can be used to classify the state of corrosion in the 

corresponding image segment. Figure 13 shows an example 

set of corrosion images used for feature extraction. The top 

row is a set of 8 low corrosion images and the bottom row is 

a set of 8 high corrosion images. Contrast, correlation, 

energy and homogeneity features of the example corrosion 

images in Figure 13 were calculated and illustrated in Figure 

14. The corresponding feature performance was evaluated 

using FDR as listed in Table 5. Table 5 indicates that 

correlation, energy and homogeneity are good image 

features for corrosion detection and corrosion state 

classification, whereas contrast performs poorly.  

 

 
Figure 13. Example corrosion images. Top row: low 

corrosion. Bottom row: high corrosion. 
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Figure 14. Contrast, Correlation, Energy and Homogeneity 

features of low and high corrosion images from Figure 13 

(image number ascends correspond to the sequence from 

left to right in each row of Figure 13). 

 

Table 5. FDR values of image features. 

 

Features Contrast Correlation Energy Homogeneity 

FDR 0.9604 2.2084 95.1962 27.3738 

 

Figure 15 shows the corroded area percentage of the panels 

that had corrosion exposure times of 133, 209 and 286 hours. 

The resulting corroded area percentage feature was highly 

correlated with the measured panel mass loss as shown in 

Figure 15. The correlation coefficient     of the corroded 

area percentage and the corresponding measured panel mass 

loss is 0.9727.  

 

Figure 15. Top: Corroded area percentage over time. 

Bottom: Measured mass loss (mg) over time.  

6. CONCLUSIONS 

This paper reports results from an experimental 

investigation of pitting corrosion detection and 

interpretation on aluminum alloy panels using surface 

metrology methods, image processing and information 

processing techniques. Accelerated corrosion testing of the 

lap-joint panels was performed in a cyclic corrosion 

chamber running ASTM G85-A5 salt fog test. Then the 

global and local corrosion behaviors were imaged and 

characterized via microscopy and profilometry examination. 

Data mining techniques are utilized, including image pre-

processing, image and characterization feature extraction 

and selection, to facilitate the study of corrosion 

morphological behavior and its progression as a function of 

corrosion exposure time. The morphological study showed 

that facing electrochemical corrosion attack, pits initiated 

and predominantly assumed in regular shapes, but 

underwent irregular thus progressive geometric transitions 

associated with increased corrosion exposure time. This 

study also examined a list of promising characterization and 

image features and conducted the performance evaluation of 

some representative features for corrosion interpretation. 

This study is a first step in the process of understanding, 

assessing and responding to the pitting corrosion and 

ultimately preventing material failure to insure aircraft 

structural integrity. Future work may include more rigorous 

testing and analysis methods, e.g., to study an individual pit 

evolution over time, and the evolution from pitting to 

cracking under stress corrosion condition; and further in the 

direction of aircraft structure health management, to 

accurately model the corrosion progression, assess the 

corrosion states, and predict the corrosion-induced structure 

failure. 
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