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ABSTRACT

In the aerospace industry, pricing of the maintenance, repair
and operations involve complex business rules that are being
formulated by domain experts. Automation of such a process
becomes a challenge, especially when pricing rules signifi-
cantly differ based on contract conditions, operators, main-
tenance shops, etc. This paper presents a pricing prediction
approach, where the predictors are dynamically built to fit
the different pricing rules. To this end, a clustering mech-
anism efficiently splits the space to dissimilar clusters that
are likely to follow different pricing rules. Then, candidate
models are designed and ranked for the different clusters. At
the exploitation phase, a testing data sample is assigned to a
cluster, and processed using the best model for that cluster.
Results show significant accuracy improvement compared to
the static modeling approach.

1. INTRODUCTION

Prediction of maintenance, repair and operations (MRO)
price has a central role in planning and negotiation of future
contracts, especially for industries involving expensive MRO
processes, such as the aerospace industry (Steven R. Erick-
son & Summerour., 1997). More specifically, accurate pre-
diction of such prices is needed to optimize the manufacturer
warranty reserves (Thomas & Rao, 1999) and maintenance
reserve funds (Ackert., 2012).

Estimation of the maintenance price of an aircraft, requires
prediction of the price and intervals for all systems and sub-
systems subject to several major events such as, air-frame
heavy maintenance visit, engine overhaul, landing gear over-
haul, etc. Such events involve different levels of uncertainty
that makes forecasting the maintenance price over the aircraft
life cycle, a challenging problem.
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Maintenance activities are also influenced by non-
engineering factors such as business decisions and envi-
ronmental conditions which introduce additional analytical
challenges.

The traditional methodology to building financial models for
MRO activities is to having domain experts formulating the
pricing models. Some examples can be found in (Ackert.,
2011), (Clifford J. Landreth, 2015), (Kenneth E. Marks,
1981) for estimating maintenance prices for the engine, APU,
and air-frame, respectively. Such knowledge-based models
need to be manually updated by the domain expert to capture
any changes in pricing conditions, such as policy changes and
new catalog prices, which is an expensive and a hard to main-
tain process.

For fully automating the maintenance price estimation pro-
cesses, a data driven approach is recommended (M. & R.,
1979), (Kang M. & C., 2008), (Kennet., 1994), (EZIK.,
2003), (Hanumanthan., 2009). This approach is only feasible
when enough historical data are available to train the mod-
els. In the aerospace industry, shortage of historical data that
cover a wide range of contract types, operating conditions,
fleets, etc., (due to historical paper records) hinders the ana-
lytical development.

In this work, the main challenge we observed is that it is not
easy to consider estimating maintenance prices as a single
problem that applies across operators. For instance, for in-
dividual operators, significant differences might exist in the
contract and business rules, environmental conditions, etc.,
that result in differences in pricing rules for the maintenance
performed for each operator. Alternatively, it might be more
promising to design different models for different operators.
However, this approach might not be possible when a few his-
torical maintenance activities are available for the specific op-
erator. Compounding the problem of having a small dataset to
build models on, is having a mixture of conditions including
the type of the maintenance activity, the maintenance shop,
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etc., which causes the problem to be divided into many sub-
problems. Coming back to the first approach of generating a
single model, that is generic for all of the maintenance activ-
ities, is the subject of the current work because of data short-
age. Accuracy of the model might differ significantly for the
different sub-problems according to the extent to which each
sub-problem is captured in the generic model.

In this paper, a new ensemble-type approach for price esti-
mation is proposed, where both training data and regression
models are dynamically selected to best fit a specific sample.
A previous approach has been applied for designing classi-
fication systems (Alceu Britto & Oliveira, 2014), while here
we study the applicability of it on regression problems focus-
ing on the price estimation. To this end, our algorithm selects
the best model that fits a specific region in the feature space
and trains it with a subset of the training data that lies in that
region.

Accuracy of the proposed method is compared with both the
static data approach, where all training data are used to train
the model, and the static models approach where a single
model is employed to fit the whole feature space. Results of
the dynamic approach in which both data and model selection
is performed dynamically show a promising improvement in
prediction accuracy compared to both the static data and static
models approaches.

Next section illustrates the baseline of the static modeling ap-
proach to designing price estimation models. Section 3 de-
scribes the proposed dynamic modeling approach. Results of
the dynamic approach are reported and discussed in Section
4, followed by a conclusions section.

2. STATIC MODELING

The traditional approach to modeling maintenance prices is
to use a single model to represent the whole problem space.
In other words, a specific machine learning algorithm and a
specific model structure are used to generate a formula that
is used to predict the price for all possible combinations of
maintenance activities types, and for all operators, mainte-
nance shops, contracts, etc. This approach, even if it suc-
ceeds to accurately model specific regions in the feature space
has no guarantee that it will perform similarly over the whole
space.

For price estimation problems, there are multiple factors that
might split the problems into different sub-problems that
should be modeled differently. For simple visualization, we
consider here only two, out of many, of the factors that we
observed to have a significant impact on the pricing mod-
els: maintenance type and operator (for simplicity, in Figure
1 both of them are chosen to be binary factors where operator
is modeled as a certain operator vs the rest of the operators).
With only two binary factors, the feature space is split into
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Figure 1. Ilustration of regions of competence for the differ-
ent models.

four different clusters. When considering all possible factors
that impact the pricing models, a high dimensional space is
generated and a high number of clusters exists.

For the static modeling approach, it is assumed that it is pos-
sible for a single model (actually a single formula, single ma-
chine learning approach, same training data, etc.) to gener-
alize over the whole feature space. Such assumption was
observed to be invalid for the maintenance price prediction
problem at hand.

Figure 1 illustrates the disadvantage of employing the static
modeling approach. We consider two possible model struc-
tures (Modell and M odel2). It can be seen that cluster 2 is
the region of competence for Modell (since Modell pro-
vides a lower error than M odel2), while Model2 is more
competent everywhere else. The intuition behind our pro-
posed dynamic modeling approach is to learn the regions of
competence of all models, using the training data. During the
exploitation phase, one can use a model for predicting a sam-
ple, only if the sample belongs to its region of competence.
The task increases in complexity with a higher dimensional
feature space and many models having different regions of
competence.

Another assumption behind designing a static model, using
the whole training data, is that the training data are equally
similar to all future testing samples. This assumption is also
questionable, since a testing sample might belong to a region
in the feature space that significantly differs from the other
training samples. Accordingly, it is logical to not only use
region-specific models, but also to train models with region-
specific data. Simply speaking, maintenance prices should
be predicted using models that work for similar maintenance
work and that were trained using similar historical data.

The aforementioned proposals (dynamic selection of models
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Figure 2. Proposed Dynamic Modeling Approach.

and dynamic selection of data) are combined in the proposed
dynamic modeling algorithm, described in the next section.
Performance of the proposed algorithm, using the same above
illustrative example, is discussed in Section 4.

3. DYNAMIC MODELING

This section describes the proposed dynamic modeling ap-
proach. In the traditional static modeling approach, a pre-
dictor is trained using the whole training data, and all test-
ing samples are processed using the same predictor. In our
proposed approach, each testing sample uses the best fitting
predictor that was designed using similar training samples.

Figure 2 illustrates our proposed approach. The target of the
design phase is to learn a dictionary of cluster-model pairs,
where a cluster represents a subspace that is likely to follow
a different pricing model. Each cluster should be assigned a
model that differs in its structure, method and training dataset,
from the other clusters in the feature space. To this end, we
propose a method to cluster the feature space in a way that
is guided by the problem at hand (top-left of the diagram).
Firstly, a linear regression model is designed using the train-
ing data, so that all features in the space are weighted accord-
ing to their importance. Then, the weights learned are used
to manipulate the feature space, by simply weighting the fea-

tures, so that important features will have more of a say in par-
titioning the feature space. A pair of samples that have high
similarity in the original (unweighted) feature space might
become dissimilar in the new (weighted) feature space. For
instance, consider the case of providing similar maintenance
services to operators that differ in their pricing criteria ac-
cording to business conditions. Using the original feature
space, the similar maintenance services are close and the rep-
resentation is similar for the different operators. However,
they are better separated in the new manipulated space due
to the linear regression placing higher weight on the operator
feature. Applying this weighted clustering method leads to
efficiently splitting the pricing problem into dissimilar sub-
problems, so that a specific model is then designed for each
problem.

Once the feature space is clustered, all models in the candi-
date model pool are then used to design region-specific ver-
sions, where models are trained using the region-specific data
(top-right part of the diagram in Figure 2). In order to select
the best models that fit each region in the feature space, an
independent validation data set is clustered and used to rank
the models for each region. Ranking is done based on the ac-
curacy of models for the specific region (bottom-right part of
the diagram).
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Figure 3. Dynamic selection of models algorithm learns the regions of competence: left) actual ranking, right) learned ranking.

Algorithm 1 Dynamic Modeling- Design Phase

1: Input: Training Set 7', Validation Set V, Candidate
Models M.
Clustering: 7 is used to design a clustering model C
with I clusters.
Dynamic Data Selection:
for each cluster ¢: do
subset T; of T is extracted from C;.
T is used to train models M.
end for
Dynamic Model Selection:
for each cluster i: do
subset V; of V is extracted from C;.
samples of V; are predicted using trained models M,
and models are ranked according to accuracy.
12:  best model M; is assigned to the cluster C;.
13: end for
14: Output: Output Cluster-Model dictionary: {C;, M, }L_,

»
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Algorithm 2 Dynamic Modeling- Exploitation Phase

1: Input: Test sample ¢, Cluster-Model dictionary:
{Ci, My}, ,
2: tis assigned to a cluster C; using C'.

- best model M; is located from {C;, M, }!_, using C;.
: Output: produce prediction p for ¢ using M;

AW

Algorithms 1 and 2 list the steps for the design and exploita-
tion phases of the proposed dynamic modeling approach, re-
spectively. There are three key processes that are executed
sequentially: 1) clustering (step 2 in Algorithm 1) where the
weights extracted from the regression model are used to clus-
ter the feature space for dissimilar sub-problems, 2) Dynamic
data selection (steps 3-7 in Algorithm 1) where the clustered
training data are used to design different version of the mod-
els for each region, and 3) Dynamic model selection (steps
8-13 in Algorithm 1) where models are ranked, using an in-

dependent validation set, and the most accurate model is as-
signed to each region. The impact of each of these key pro-
cesses is investigated through the experimental analysis re-
ported in the next section. For all the different experimental
setups, we executed Algorithm 2 to compute the predicted
price.

4. SIMULATION RESULTS

In order to evaluate the proposed approach, 1000s, 100s and
100s of data points were used for training, validation and test-
ing, respectively. More than 20 inputs, including operator,
maintenance type, etc. are used for both clustering the fea-
ture space and for designing the pricing models. A variety
of candidate models listed in Table 1 that differ in structure,
machine learning algorithm, etc. were used in our dynamic
modeling framework.

We use the same illustrative example, as discussed in Section
2, to visualize the advantages of the proposed approach.

Figure 3 shows how the proposed Algorithm 1 learned the re-
gion of competence of the different models. As in Section
2, this example shows only two inputs being used to split the
problem space, and only two model structures being available
to the model selection process. In this reduced example, the
region of competence of Modell structure is correctly cap-
tured, which is cluster 2. This is clear when matching the
left plot (actual ranking for the testing set) and the right plot
(learned ranked using the validation data set).

The other model structure (M odel2) is better performing in
the other three clusters (clusters 1, 3 and 4). The proposed
algorithm correctly learned two out of these three clusters (3
and 4), and incorrectly ranked models in cluster 1. The incor-
rect ranking results from the dissimilarity between the test-
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Figure 4. Diversity of the Dynamically Selected Models.

Table 1. Comparison of Using Static Data AND Dynamically Selected Data With Static Models

Static Data

Metric Modell Model2

Lasso SVR KNN Dtree Lasso SVR KNN Dtree
Err% | 2.13 2.01 1.88 2.85 1.25 2.03 1.52 3.12

Dynamic Data

Metric Modell Model2

Lasso SVR KNN Dtree Lasso SVR KNN Dtree
Err% | 2.63 1.95 1.70 1.93 0.41 1.95 2.30 1.56

ing and validation data that lie in the specific region (cluster
1). For improved performance, the clustering method needs
more consideration, where some similarity metric learning
methods might be investigated for better splitting the prob-
lem space.

The above example is used only for illustrative purposes.
However, in order to globally evaluate the significance of the
proposed approach, we report the prediction results over the
whole testing set, and when all splitting factors and models
are used by our algorithm.

Figure 4 shows how frequent the different models are found
to be most competent in a cluster. For instance, model struc-
ture 2 with the Lasso algorithm (Model2-Lasso) is assigned
to 13 regions, while structure 1 with the SVR (Support Vec-
tor Regression) algorithm (Modell-SVR) is selected only by
3 regions. The distribution of selected models over the prob-
lem space provides some insights on the importance of having
a diverse of model structures and algorithms in the selection
pool.

In order to test the impact of the two main contributions of

our algorithm (dynamic data selection and dynamic model
selection), we compare the results of applying the individual
steps against the static modeling approach (where all training
data are used to train the models, and the individual ”off-the-
shelf” models are used for prediction).

Table 1 shows the experimental results, where the individual
candidate models are used, and no dynamic model selection
step is applied (steps 8-13 of Algorithm 1 are not executed,
and static models are used instead). Here we only test the
significance of employing the dynamic data selection step, by
comparing two cases: static data, where all training data are
used for training, and dynamic data selection, where data are
dynamically selected to fit the specific testing sample. For
all experiments, the metric for prediction accuracy reported
is Error percentage (Err%).

Note that almost all models are doing better when the training
data are dynamically selected for the specific testing sample
(in 6 out of 8 cases, the results reported in the bottom cells
outperform their corresponding results in the top cells). These
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Table 2. Comparison of Using Static Models AND Dynami-
cally Selected Models

Metric Static Models Dynamic Models
Static Dynamic | Static Dynamic
Data Data Data Data
Err% | 1.25 0.41 0.82 0.2

results supports the claim that it is advantageous to dynami-
cally select training data.

It is also worth noting that, although model structure M odel2
with the Lasso regression algorithm has best overall predic-
tion accuracy, we observed that the best model changes for
the different testing regions, and there is no generic model
that performs best all the time. Accordingly, the second
main step of our algorithm (dynamic selection of models) is
needed, not only to further boost the performance, but also to
adaptively learn the best model over time and so sustainabil-
ity of the pricing modeling is addressed.

Table 2 shows the results when we investigate the impact of
the dynamic selection of models step. The best results from
Table 1 (for static model selection with both static and dy-
namic data) are compared to the dynamic selection of model
results. Two scenarios of dynamic model selection are tested:
with static data (where steps 3-7 of Algorithm 1 are not ex-
ecuted, and all training data are used instead), and with dy-
namic data (where all the algorithm steps are performed).

It is evident that dynamic selection of models boosted the pre-
diction accuracy for both scenarios. The best performance is
achieved when both dynamic data and dynamic model selec-
tion steps are executed.

5. CONCLUSIONS

In this paper, we introduced an approach to boosting regres-
sion accuracy through dynamic selection of data and models.
The method is motivated by the need for designing reliable
and sustainable price estimation models for industries that in-
volve expensive maintenance activities, such as the aerospace
industry. A practical challenge arises from the shortage of
available historical data for the different types of maintenance
activities that is needed to design specific models for the dif-
ferent regions in the problem space. Our method benefits
from the whole available training set, yet generates specific
models for the relevant sub-spaces. A weighted clustering
method is proposed to define different regions for which the
pricing model is likely to differ. Results have shown signifi-
cant improvement in pricing prediction accuracy as compared
to the traditional static models approach.

There is however room for performance improvement which
requires further experimentation over a wider range of price
estimation problems, and more generally, on different regres-
sion problems. For instance, the weighted clustering step

needs more investigation through the exploration of other
similarity learning and clustering strategies. Moreover, in this
work, we only employed the most competent model for pre-
diction. However, dynamic selection of the most competent
ensemble method could lead to improved predictions (Albert
H. R. Ko, 2008).

Finally, success of ranking the models properly, through find-
ing the regions of competence of each model, relies not only
on the clustering method we propose, but also on the extent
to which the validation set is similar to the future testing set.
Here, we chose the most recent portion of the available histor-
ical data as a validation set, with the promise that the pricing
rules are more likely to be smooth in time. However, future
work can focus on how to better quantify the impact of select-
ing the validation data on determining the models’ regions of
competence.
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