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ABSTRACT

Complex machinery like spacecraft, aircraft, or chemical
plants are equipped with fault detection and diagnosis sys-
tems. Due to their safety-critical nature, such diagnosis sys-
tems have to undergo rigorous Verification and Validation
(V&V). In this paper, we present a tool suite to facilitate V&V
of the deployed diagnostic system. The V&V relies on the
paradigms of cross validation (to compare the diagnosis re-
sults of the deployed reasoner against those of other, more
advanced reasoners), automatic fault scenario generation (to
support extensive testing and coverage analysis), and para-
metric model analysis (to enrich test sets and for robustness
and sensitivity analysis). We present the application of this
tool architecture towards the V&V of the diagnosis system
based on the TEAMS tool suite towards a subsystem in the
NASA cryogenic fuel loading facility.

1. INTRODUCTION

Modern complex systems, like the NASA loading facility for
cryogenic rocket fuel, are equipped with extensive fault de-
tection and diagnosis systems to quickly detect off-nominal
conditions and to diagnose faulty components. For the NASA
Kennedy Cryo facility, the commercial TEAMS tool suite
(http://www.teamgsi.com) is being used for model-
ing and diagnosis. Obviously, such a plant is highly safety-
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critical. Thus, fault detection and diagnosis must undergo
rigorous V&V in order to ensure that the diagnostic system
properly models the physical plant and any associated detec-
tors, so as to minimize the number of false and missing alarms
during operation.

In this paper, we present a tool architecture that has been de-
signed to support V&V of TEAMS diagnostic models. Our
modular set of tools allows the user to carry out a multitude
of V&V use cases and is based upon three basic paradigms:
cross-validation, automatic fault scenario generation, and pa-
rametric analysis. Our tools are augmented with report gen-
erators and a number of advanced statistical analysis and vi-
sualization capabilities.

Any diagnostic model is ultimately based on a simplified and
abstracted model of the underlying physical plant. TEAMS/RT
(Real Time) models are based upon multi-signal diagnosabil-
ity analysis. Here, the outcome of individual tests (“pass”,
“fail”, or “unknown”) results in sets of components (or failure
modes) known to be “good”, “bad”, “suspect”, or “unknown”,
based upon an efficient algorithm using the model’s diagnos-
ability matrix (D-matrix). Because of its time-boundedness
and efficiency, this kind of discrete diagnosis algorithm has
become popular in the aerospace domain, although aspects
of timing, fault propagation, fault probabilities, or physical
model dynamics cannot be expressed. For real-time applica-
tions, the TEAMS/RT diagnosis engine is typically wrapped
by custom code for data acquisition, discretization, and filters
for noise and transient reduction. The V&V of this wrap-
per code is as critical as the V&V of the D-matrix. Timing
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and fault propagation information, as well as data on compo-
nent reliability is available in an extended TEAMS Designer
model, which is used in an off-line mode for designing instru-
mentation. This additional information can also be obtained
through information provided by subject-matter experts.

Our cross-validation tools use such additional information to
facilitate deep model analysis. The provided TEAMS mod-
els are translated into a different, more expressive modeling
paradigm (in our case Timed Failure Propagation Graphs and
Bayesian networks) and are enriched with additional infor-
mation. Then, failure scenarios are executed using reasoners
for these paradigms, and results are compared and analyzed.

One of our reasoners is a Timed Failure Propagation Graph
(TFPG) reasoner, which uses models that have been generat-
ed from the TEAMS models. These TFPG models capture the
faults (failure modes), and their propagation effects to trigger
one or more anomalies (tests). Additionally, the TFPG mod-
els can account for cascading effects of the failures, mode
and timing constraints in the failure propagation, and addi-
tional information such as failure rate expressed in terms of
Mean Time to Failure (MTTF). We also translate the TEAMS
model’s D-matrix into a Bayesian network (BN), which al-
lows probabilistic diagnostic reasoning and the incorporation
of priors on component reliability and failure likelihood.

Proper V&V requires the analysis of the health model to a
certain degree of coverage and not just on a few selected
and hand-crafted failure scenarios. While our tool set al-
lows for manual specification of fault scenarios, it uses ad-
vanced algorithms to automatically generate single and multi-
fault scenarios across the entire model or for a selected subset
of faults. These scenarios are applied in the context of the
mode-sequence commands prescribed in the operational test
scripts for the plant. Our tool set uses the mode-enriched fault
scenarios to generate the test/mode events from two inde-
pendent streams—the discrete TFPG model (generated from
TEAMS models) as well as a gold standard obtained from
a Simulink plant simulation or from Cryo lab experimental
data. Comparison of the data generated from the two inde-
pendent streams allows for cross-validation of the discrete
TFPG (TEAMS) model and the high-fidelity physics based
Simulink model.

The V&V process is made more rigorous by perturbing a
number of independent parameters including time of fault in-
jection, fault magnitude, discretization, and thresholding pa-
rameters, among others. Parametric Model Analysis (PMA)
provides a rich data set for a detailed analysis of the fault-
effect coverage on the tests associated with the fault including
analysis of the wrapper code.

This paper demonstrates the tool and its capability on a case
study of a NASA cryogenic fuel loading facility.

This paper is structured as follows: after discussing related

work, we will present our tool architecture (Section 3). In
Section 4, will give a brief overview of the NASA cryogenic
fuel loading facility and present a selected subsystem as our
example. We then demonstrate sensitivity/robustness analy-
sis, test/model coverage, and the analysis of cross-validation
results. Section 5 concludes and discusses future work.

2. RELATED WORK

It is obvious that a fault detection and diagnosis system is
a highly safety-critical piece of software. Thus, it needs to
undergo rigorous V&V and certification. For example, DO-
178C, Sec 2.4.3 (RTCA, 2011) requires that a monitoring
device has to undergo V&V to the same level as the sys-
tem it monitors. Due to its specific structure and the use
of non-standard reasoning algorithms, however, traditional
V&V techniques are not directly applicable, and only a few
approaches toward V&YV of fault detection and diagnosis sys-
tems have been reported. For example, Lindsey and Pecheur
(2004) describe a model-checking approach for Livingston
health models that can fully exercise the state space. Schwa-
bacher, Feather, and Markosian (2008) discuss various ap-
proaches for the V&V of an advanced FDDR system for a
NASA space system; Reed, Schumann, and Mengshoel (2011)
describe an approach on systematic analysis (parametric anal-
ysis) of a Bayesian FDDR model for ADAPT.

As pointed out in (Schumann, Srivastava, & Mengshoel, 2010;
Srivastava & Schumann, 2013), any diagnosis system must
be analyzed and validated on both the model level and the
implementation level. Most approaches in the literature aim
at model validation; actual testing of the system implemen-
tation for code coverage (e.g., MC/DC (RTCA, 2011)) has
not been reported yet and is difficult due to the usually table-
driven algorithms in this domain. The approach described in
this paper addresses both model-level and the implementation
level validation—especially for key parameters of the wrap-
per code and the reasoner engine through cross-comparison
with other reasoners.

3. TOOL ARCHITECTURE

Validation of the Systems Health Management (SHM) in safe-
ty critical systems through rigorous testing of the deployed di-
agnosis engines (reasoners) is extremely important for safety
and mission success. This process should help to understand
the quality and limitations of the current SHM setup and pro-
vide relevant guidance to further fine-tune and improve the
performance of the health management system.

With this in mind, we have designed our tool suite (Figure
1) that uses the concepts of cross-validation to compare the
results of the deployed baseline reasoner against other can-
didate reasoners that can employ richer models over a mul-
titude of auto-generated test-cases (automatic fault scenario
generation), taking into account the realistic variation of key
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Figure 1. Tool architecture

parameters (parametric model analysis) related to the sys-
tem (plant, signal preprocessing and discretization). Figure 1
captures the processes and flows across our V&V tool suite.
The tool suite uses multiple model-based reasoners such as
TEAMS/RT, TFPG, and Bayesian networks.

3.1. Overview

In an initial step (A), the given model, here developed with
TEAMS Designer, is translated and prepared for each speci-
fic reasoner. While some of these models are basic, others are
much richer and can take into account additional details and
knowledge available on fault-propagation such as sequenc-
ing, timing and mode constraints, or probabilistic informa-
tion. These models are generated through an automatic trans-
lation and annotation process.

The next step (B) is to design the experiment wherein our tool
set allows the engineer to specify the required coverage of the
test-cases in terms of the complete model or a subset of faults,
including single and/or multi-fault combinations. Further-
more, the designer can specify plant operational sequences
(commanded mode changes) in which these fault-scenarios
need to be tested. Based on the experimental design, the
fault-scenarios (C) and their associated ideal test-data (D) are
auto-generated using the discretized fault-model.

Alternately, a high-fidelity simulator (F) with fault-injection
capabilities is used to generate analog sensor values for each
fault-scenario (generated in C). The analog data is then dis-
cretized to generate test-data. This process is further enriched
by using PMA techniques to generates rich, yet small set of
test-cases by perturbing fault magnitude and timing parame-
ters (E), as well as monitoring and discretization parameters

G).

The auto-generated test-cases are then fed to each of the rea-
soners (H). Their outputs form the basis for the cross valida-
tion analysis (I) to get a handle on the diagnosis quality and
fault-coverage taking into account the results of the sensor
sensitivity analysis and test data coverage analysis. The tool
suite is augmented with report generators and a number of
advanced statistical analysis and visualization capabilities.

3.2. Reasoning Engines
3.2.1. TEAMS Emulator

Diagnostic reasoning with the given TEAMS model is per-
formed using an implementation of the D-matrix diagnosis
algorithm. Given a vector of discrete test results (pass, fail,
unknown) and the D-matrix, four sets of failure modes are
calculated, those, which are “good”, “bad”, “suspect”, or “un-
known”. Failure modes in the suspect list are those, for which
some tests have failed, but there has been not enough infor-
mation for disambiguation.

3.2.2. TFPG

A TFPG model is a labeled directed graph where the nodes
represent either failure modes, which are fault causes, or dis-
crepancies, which are off-nominal conditions that are the ef-
fects of failure modes. Edges between nodes in the graph cap-
ture propagation of failure effects over time in the dynamic
system. The model is used for fault diagnostics by collecting
observations about anomalies and discrepancies (i.e., tests) in
the system, and then using efficient graph search algorithms
to generate fault source candidates, i.e., failure modes of com-
ponents.
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Figure 2. Example TFPG model

Figure 2 shows, as an example, a generic TFPG model. Here,
rectangles represent the failure modes (FM1, FM2, ...) while
circles represent OR discrepancies and squares AND discrep-
ancies. Edges between nodes capture failure propagation in
the system. The edge labels of the form: [min, max]mode
capture the failure propagation constraints in terms of timing
interval (minimal and maximal expected times) and opera-
tional mode(s).

The TFPG modeling approach lends itself to creating system-
level, hierarchical fault-propagation models of complex (phys-
ical) systems, where component failure modes are anticipat-
ed, their failure effects (discrepancies) are observable, a clear
cause-effect relationship exists between failure modes and
discrepancies, and the failure effects cascade across compo-
nents (via material, energy, and information flows).

The TFPG reasoner (Abdelwahed, Karsai, & Biswas, 2005;
Abdelwahed, Karsai, Mahadevan, & Ofsthun, 2009) employs
a robust consistency based diagnosis algorithm that can ac-
count for multiple simultaneous faults while taking into ac-
count failure propagation constraints based on timing, op-
erational mode(s), and test/effect cascading sequences. The
reasoning algorithm is robust to realistic monitoring prob-
lems associated with the Tests/Alarms - false-positives, false-
negatives and intermittence. The TFPG approach has been
applied to and evaluated for various aerospace and industri-
al systems (Mahadevan & Karsai, 2000-2014; Abdelwahed
et al., 2009; Hayden et al., 2006) and recently applied in the
context of component-based software system (Abdelwahed,
Dubey, Karsai, & Mahadevan, 2011).

3.2.3. Bayesian Networks for HM

Bayesian networks (BN) can be used for diagnosis and deci-
sion making. Domain knowledge and probabilistic informa-
tion about sensor and component reliability, like MTTF, as
well as failure likelihood can be easily expressed as priors.
We developed a transformation of the given TEAMS model

(i.e., the D-matrix) into a Bayesian network, which is inspired
by (Pearl, 1988; Luo, Tu, Pattipati, Qiao, & Chigusa, 2005).
Optimizations like divorcing and a subsequent translation in-
to arithmetic circuits result in an efficient statistical reasoning
engine for large models.

3.2.4. Other Reasoners

Our tool architecture allows us to incorporate additional rea-
soners, like, for example, HyDE (Narasimhan & Brownston,
2007), which uses simulation over simplified physical mod-
els to support diagnostic reasoning. Similarly, systems, like
KATE (Goodrich, Narasimhan, Daigle, Hatfield, & Johnson,
2007), which is a generic shell for model-based simulation,
monitoring and reasoning, could be added to the set of rea-
soners for cross validation. In these cases, however, the given
TEAMS model cannot be directly translated into a model for
those reasoners, as the semantic difference is too large.

3.3. Automated Scenario Generation

The Diagnostic Verification (DVER) tool for the automated
scenario generation allows the user to specify the experiment
design parameters relative to the appropriate discrete TFPG
fault model. The user can specify the set of faults that need
to be covered as part of the experiment. The coverage could
include the entire model or a specific set of faults in the mod-
el. Additional parameters that can be input include: number
of faults to be generated per fault scenario (e.g., single-fault,
two-fault, etc.), mode change sequence to be applied, timing
consideration for the fault propagation interval (e.g., minimal,
random, or maximal delay), and number of missing (false-
negatives), inconsistent (false-positives) or intermittent tests.
Figure 3(left/center) shows a screen-shot of the DVER inter-
face to configure the experiment.

Brute force fault scenario generation involves generating all
combinations of faults from the selected list to produce single-
and/or multi-fault scenarios. The n-factor algorithm used in
Parametric Model Analysis (see Section 3.5) could be used
to generate the minimal combinations of fault-scenarios to
get the desired fault-coverage. Each generated fault-scenario
includes the list of faults and their respective fault-injection
times. Test-vector generation for each fault-scenario involves
using the TFPG model to simulate the graph traversal starting
from the fault-nodes listed in the scenario. The traversal takes
into consideration any timing/mode constraint imposed by the
TFPG along the fault-propagation sequence. Depending on
the user selected option, it chooses the minimal/maximal or
a random intermediate time (between minimal and maximal
delay) for each propagation link. As the graph is traversed,
the triggering time for each node is recorded. The simula-
tor advances the clock to the next time-stamp. The nodes
that are marked to be triggered at the time-stamp are then
marked visited, and the traversal proceeds to mark the trig-
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gering time for its child nodes. When the node corresponding
to an observable discrepancy is visited, the triggering time for
the test/monitor is recorded. A test once triggered is consid-
ered to be latched in that state. Any updates to the graph are
applied based on the mode-changes at the specified time. The
simulation/traversal process is completed when all possible
discrepancy nodes are reached subject to the fault triggering
time, propagation time, the mode-change sequence. The test-
scenario captures the triggering time for the visited/triggered
tests as well as any mode-changes. Missing tests are gener-
ated by randomly removing one or more triggered tests from
the test-scenario. Inconsistent tests are generated from the set
of tests that are not visited during the traversal. Intermittent
tests are generated by repeatedly toggling the test-status at
random times (within a specified interval).

EXPT. ?ESIGN REASONER CONFIG
$ney

Figure 3. DVER experiment configuration

3.4. Cross Validation

Cross validation of the deployed baseline reasoner results with
the results of other candidate reasoning engines facilitates
analysis of the correctness, reliability, and limitations of the
deployed SHM model and process. As any diagnostic model
represents a simplified and abstracted model of the underly-
ing physical plant, we leverage off an abstraction hierarchy,
which simplifies the plant model towards different domains.
In the current instantiation of the tool suite, the reasoners
considered include TEAMS/RT (baseline deployed reasoner),
TFPG, and a BN diagnoser. While the TEAMS/RT engine us-
es a simple dependency matrix between fault and tests in each
operating mode, the TFPG and BN reasoners can take into
account additional details pertaining to timing, fault propaga-
tion (sequence), and probabilistic information, respectively.
In the abstraction hierarchy this would mean a step towards
the time domain, and the probabilistic domain. The use of
HyDE (Narasimhan & Brownston, 2007), which uses simpli-
fied physical models to support diagnostic reasoning, would
correspond to yet another step in the abstraction hierarchy.

The cross-validation process starts with Scenario Validation
- validating reasoner results against the ground truth fault-
scenario to group the listed faults per hypothesis as well as
across all hypotheses to identify the fault sets Match (true-po-
sitives — match with fault scenario) and Extra (false-positives
— do not match with fault scenario). These are used to com-

pute metrics that reflect the diagnosis quality in terms of De-
gree of Match (ratio of number of matched faults to total num-
ber of scenario-faults) and Accuracy. In cross validation, the
Match and Extra sets (computed during scenario validation)
of the baseline reasoner is compared against those of a can-
didate reasoner to compute coverage/confidence metrics that
indicate the relative closeness of the correctness (match with
ground truth) and accuracy (match in terms of ambiguous or
erroneous results) of the two reasoners. The cross validation
process is repeated against multiple reasoners to get a bet-
ter assessment of the relative quality of the baseline reasoner.
These results from scenario and cross validation are averaged
over the desired/expected scenarios (fault subset, single/multi
fault, varying fault magnitude, varying test thresholds) to get
an overall assessment of the baseline diagnosis quality. Fig-
ure 3(right) shows the screen-shot of the interface for config-
uring reasoners.

3.5. Parametric Model Analysis

Results of system runs with parametric variations are impor-
tant, among others, for robustness and sensitivity analysis.
Traditionally, methods of single-parameter variation or sta-
tistical Monte Carlo techniques are used. These methods,
however, fail to work on multi-failure analysis or require a
large number of test cases without providing any guarantee
for coverage of the parameter space. Our GUI-based PMA
tool (Reed et al., 2011; Schumann, Bajwa, Berg, & Thiru-
malainambi, 2010; Schumann, Gundy-Burlet, Pasareanu, Men-
zies, & Barrett, 2009) uses an n-factor algorithm for gener-
ating perturbed fault scenarios and to modify discretization
and timing parameters. For the generation of test vectors, the

Table 1. N-factor performance for different number of vari-
ables. Number of test cases and generation time (in parenthe-
ses) shown for calculations under 10 minutes.

[ variables ]| n=2 ] n=3 | n=4 | n=>5 |
5 35(1s) 180(1s) 775(1s) 3125(1s)
10 || 45(1s) 309(1s) 1878(9s) | 10364(480s)
15 53(1s) 390(1s) | 2546(100s)
20 ([ 38(1s) | 446(1s) | 3046(5375)
50 || 74(Ts) | 629(4%s)
100 || 85(1s) | 784(724s)

given perturbation range for each variable is discretized into a
(small) number of bins, in our case 5, which could correspond
to “almost nominal”, “lower”, “higher”, “much lower”, and
“much higher”. Then the n-factor generation picks individual
bins for each variable in such a way that (a) each bin of each
variable is present at least once, (b) for all pairs of variables,
all combinations of their pairs of bins are present. If n = 3,
condition (b) must hold for all triples. This means that for a
given n all m-ary combinations for m < n must be present
in the test set, but not necessary combinations for larger m.
An n-factor algorithm makes the assumption that failures in a
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system are only caused by m < n triggers, and higher-order
combinations of n 4 1 or greater factors are not necessary.
Experience indicates that 2 or 3 factors are usually sufficient
for most applications with a substantially reduced number of
test cases. Table 1 shows number of generated vectors and
the generation times on a Macbook Pro.

Similar effects can be observed when using n-factor for code
coverage testing. Giannakopoulou et al. (2011) report that a
3-factor set reduced the size of the test set by more than 3 or-
ders of magnitude compared to the combinatorial exploration.
Yet, only about 2% of code coverage was lost. Random test
sets of the same size led to a substantially reduced coverage.

3.6. Analysis and Report Generation

Our tool suite can perform a number of analyses regarding
sensor and discretization sensitivity and robustness, test data
coverage, and cross validation. Since regular health models
contain a large number of signals, tests, and failure modes, vi-
sualization of results is a challenge. The tool’s visualization
and analysis capabilities focus on three main areas: sensor
sensitivity, test data coverage, and cross-validation. For our
tool, we provide several levels of detail, ranging from naviga-
ble HTML documents showing the individual time series data
for each sensor in a very detailed way to ROC (Receiver Op-
eration Characteristic) curves, which summarize the overall
system performance over multiple scenarios in a single plot.
The user can interpret the results with a visual interface and
assess the quality of the health model to the desired level of
detail. We will present results of some of these analyses in
the next section.

4. APPLICATION
4.1. NASA Cryo Fuel Loading

Most liquid fuel rockets use cryogenic liquid oxygen LO5 as
oxidizer, which provides high thrust per volume but is diffi-
cult to handle. Depending on the size of the rocket, extremely
large large amounts of LO5 must be pumped from a storage
tank into the tank of the rocket. The different modes of op-
eration include chill-down phases, filling (slow and fast), as
well as draining the pipes, or pumping the LO2 back into the
storage tank in case the launch has been scrubbed.

Figure 4 shows a schematic overview of such a plant; the
storage tank on the left-hand side contains the oxygen, from
where it is pumped—using several pumps—into the rocket
tank. Electrically and pneumatically operated valves control
the flow through the various pipes. An operator console is
used to control the loading operations and to display results
of the health management system. Numerous pressure sen-
sors, temperature sensors, and flow sensors provide real-time
information about the plant status.

Figure 4. Generic Cryo Fuel loading plant (schematic)

4.2. Health Management and TEAMS Modeling

For this plant, a health management and diagnosis system
(Goodrich et al., 2007) is being developed, using the commer-
cial QSI TEAMS modeler and TEAMS/RT diagnosis engine.
The plant is instrumented with multiple sensors for pressure,
temperature, and flow. These sensor readings are captured at
fixed time intervals and preprocessed in the TEAMS wrap-
per (Figure 5), where the signals are discretized to form test
results, which are in turn used by the diagnostic engine. A
single sensor can produce several test results, e.g., for a pres-
sure sensor p, there are tests: p-nominal-in-range, p-too-high,
p-too-low, etc. The outcome of each test can be “pass”, “fail”,
or “unknown”. The TEAMS model, which is based on a hier-
archical multi-signal diagnosability analysis consists of sev-
eral hundred tests and almost 2,000 failure modes, produced
diagnosis results as sets of components (or failure modes)
known to be “good”, “bad”, “suspect”, or “unknown”.

wrapper
5 =
8|8 %)
© © O | tests Q: o || failure
° N .S N O
l=5% ™ = <
K] 2 = < || modes
= o iT o
© k) L uw =5
a ~

Figure 5. Cryo loading plant with TEAMS/RT wrapper

4.3. Example

For our case study, we consider a small part of a generic cryo-
genic fuel loading plant (Figure 6). Liquid oxygen is fed from
the storage tank (left side, not shown) through the pump. The
flow of LO; is reduced after the pump by valve V. Then a
longer pipe transports the LO, to the other parts of the plant
(right side of the figure). The individual pipes can be drained
by means of opening V;, Vs, or Vi. If Vj is open, the pipes’
LO5 contents flow into a dump tank, where the liquid oxygen
evaporates. This part of the plant is equipped with various
pressure sensors p1, p2 (red) and a flow sensor f; (green/red).

In our operational scenario, LO5 is pumped and V} is partial-
ly open to let through the fuel. A constant pressure and flow
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can be measured by all sensors. At a certain time ¢¢, we in-
ject a failure into the system: one of the valves Vi, V5, or V3
gets stuck partially open. This fault obviously causes a loss of
pressure, because now a majority of the LO5 is flowing into
the dump tank.

pumpm VO p2

\Al V2 V3

%ﬂ va
to dump tank

Figure 6. Schematics of small portion of the loading plant
with one pump, valves V7, V5, V3, V,, pressure sensors p1, p2
(red), and flow sensor f; (green/red)

Figure 7A shows the sensor signals for the two pressure sen-
sors p; (left) and p, (right), and the flow sensor f; (mid-
dle). The curves were obtained by running a physics-level
Simulink simulator (see Figure 1(F)). Shown are 5 paramet-
ric variations of the failure magnitude: the valve gets stuck
at 80% =+ 20%. The purple lines are contrasted with a green
dashed line showing the nominal (no-fault) condition. The
rows of Figure 7A show the scenario, where, V1, V5, and V3
fails, respectively. Graphs of the pressure and flow are shown
over time. If V) fails, the pressure at p; drops almost immedi-
ately. The observed pressure drop measured at po is much less
and slower, because of the long pipe and the pressure reduc-
tion by V4. The measured flow becomes considerably smaller,
because LO5 back-flows toward V7. In contrast, when V5 or
V3 fails, the flow actually increases, because additional LO,
flows from the pump through the bad valves.

The comparative timing of the signals in these failure sce-
narios are shown in Figure 7B. The top row shows pressure
development over time at location p;, the bottom row at loca-
tion po, respectively. The settling time (f959) of the curves,
belonging to each scenario can be clearly distinguished. This
temporal behavior is caused by physical effects only. For a re-
alistic plant with actual sensors, additional delay times, e.g.,
caused by W-LAN signal transmission, must be considered.

Our case study will focus on the analysis of these scenarios
and the diagnosability of each of the failures. Specific small
TEAMS models are used to discuss the tool capabilities.

4.4. Scenario Robustness and Sensitivity Analysis

Parametric Model Analysis on scenarios, shown in Figure 1(E)
produces rich data sets that can be used to analyze robustness
and sensitivity of the physical plant with respect to the sen-
sors. Only if the value of a sensor changes over time in a
characteristic manner when a failure occurs, its output can be
potentially used for fault detection.

Figure 7. A: pressures and flow over time for scenario V;
(top), Va, and V3 (bottom). Left panels show pressure at p,
middle panels flow at f;, and pressure at p, (right). B: delay
times tg59, (blue) for pressures at p; (top) and po (bottom).
Fault injection at ¢; shown in red. All results obtained with
the Simulink plant simulator.

For a high level of detail, our tool generates navigable HTML
reports, which show tables of all parametric variations of the
injected faults and the time-series of all sensor outputs, con-
trasted to a nominal run, similar to the plots shown in Fig-
ure 7. For larger systems with many sensors a more compact
representation of sensitivity results is needed. For each sen-
sor, we therefore calculate four metrics. S7: relative maximal
deviation of the signal with respect to nominal, S5: sensi-
tivity of the sensor signal with respect to failure magnitude
(0S/0F), Ss: typical shape of the curve (increase/decrease to
final value, transient curve, or unspecified), and Sy: settling
time tg59;. Figure 8A shows the sensitivity for the more than
200 plant sensors for failure scenario V;. For each sensor, its
metrics are shown as star-plots. The length of each side corre-
sponds to the normalized metrics Sy (red), So (blue), S5 (ma-
genta), and Sy (cyan) — see Figure 8(center). Sensors that
are not sensitive are shown as light-blue dots. Figure 8(right)
displays the differences in sensitivity with respect to scenar-
ios V4 and V5. Here, the number of sensitive sensors is much
smaller. Sensors, which exhibit a large deviation could be
used to disambiguate the failure modes relevant to these sce-
narios and thus could help to improve the health model.
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Figure 8. Sensor sensitivity for V; fault scenario (left). En-
larged view for 2 sensors (middle). Right panel shows the
difference in sensitivity between scenario V; and V5.
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4.5. Threshold Robustness and sensitivity analysis

Obviously, discretization thresholds play an important role

for the overall performance of the diagnosis system. There-

fore, an important task is to analyze if the discretization thresh-
olds that are provided by the domain experts are set appropri-

ately and do not influence the diagnosis result in the presence

of noise or variations in the fault magnitudes.

Figure 9 shows plots of two sensor readings 57, So over time
for different failure magnitudes, as obtained from the Simulink
simulator via PMA with nominal behavior (dashed green)
and sensor values in different hues of blue according to the
fault magnitudes. Two failures have been injected at differ-
ent times 1, to (vertical purple lines). Sensor Sy (top panel)
is not very sensitive to the failure injected at ¢;, but highly
sensitive to failure at ¢5. It is clearly visible that S is sensi-
tive with respect to the failure magnitude; different PMA runs
produce different time series.

Figure 9. PMA analysis of two sensor signals S (top) and Sy
(bottom)

A threshold, set to the value shown as a red dot-dashed line
would result in a situation, where, depending on the actual
fault magnitude (which might be subject to noise or other
variations), a reliable detection might fail. On the other hand,
if the threshold is set to the blue line, the off-nominal situa-
tion caused by the failure at ¢, is detected reliable regardless
of the fault magnitude.

The bottom panel of Figure 9 shows the output of sensor Ss.
Although it is sensitive to failure at ¢;, where the nominal
and off-nominal traces deviate considerably, no threshold can
be found to help to detect this fault. A typical threshold (red
line) would flag the fault ¢1, but would also trigger during
nominal operations (left part of the bottom panel). Note, that
this failure causes a transient-style trace, where the value of
the sensor goes back to the nominal value after some time de-
spite the fact that this fault has been occurring. The analysis
of the proper interaction between sensor signals, discretiza-
tion, and reasoning results can be performed by the methods

described below.

4.6. Test/Model coverage analysis

The test coverage analysis deals with understanding the qual-
ity of coverage for each test. This is done by comparing the
expected test status against the realistic test status for every
fault scenario. The expected test status is based on the failure-
effect propagation (reachability) with the discrete fault mod-
el that is used by our reasoners (here TEAMS and TFPG).
The realistic test status is obtained by thresholding the analog
sensor values (from experiment or high-fidelity simulator) for
the concerned fault scenarios (possibly across an interesting
spectrum of fault magnitude values). The real test status gen-
erated for different thresholding criteria is compared against
the expected test status to measure the test coverage quality
in terms of sensitivity (true positive rate) and specificity (1-
false positive rate). A higher test-coverage quality is reflected
in terms of high true-positive rate and low false positive rate.
The coverage quality for each thresholding criteria may be
plotted and compared in an ROC (Receiver Operations Char-
acteristics) curve. Figure 10 below shows the ROC curve ob-
tained by changing the cut-off threshold for the test associated
with pressure p;. ROC curves are typically used to visualize
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Figure 10. Coverage quality in terms of ROCs. Data points
are fittedtoy = 1 — 1/((1 4 (x/C)B)E.

the behavior of a clustering or diagnosis algorithm. Results
of experiments are shown as points of the true positive rate
over the false positive rate. An ideal diagnosis system would
be depicted by the green dashed line: a full true positive rate
(100%) can be already reached with 0% false negatives. On
the other hand, a purely random diagnosis shows up as the
diagonal red line.

It is worth mentioning that the above analysis can also help
capture any differences in fault-propagation (and thereby trig-
gering of tests) between the discrete fault model (used by the
reasoners) and the plant or the high-fidelity simulator. This
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is especially true with tests that are never triggered in the
realistic scenario but are expected by the fault-model (false
negatives), as well as tests that are always triggered but not
expected by the fault model (false positives). This shows up
in the ROC curve as a shift in the curve along true positive
rate axis and/or the false positive rate axis.

4.7. Analysis of Cross-Validation results

Analysis of the scenario validation and cross validation met-
rics over the specified fault scenarios helps to get a handle
on the quality of diagnosis. The scenario validation process
compares the faults listed in the scenario (“ground truth”)
against the faults reported by the diagnoser. The compari-
son helps identify the true positives (faults that match in the
scenario and diagnosis), true negatives (scenario-faults that
are not reported by the diagnoser), and false positives (faults
listed by the diagnoser that are not part of the scenario). The
quality of the results is expressed in terms of Match (percent-
age of true positives among the faults listed in scenario) and
Accuracy (percentage of true positives among all faults listed
by the reasoner). While Match is a measure of the ability of
the reasoner to identify the real fault sources, Accuracy is a
measure of the ambiguities listed by the reasoner.

Table 2 captures the results of scenario validation for our case
study. It shows Match and Accuracy of three reasoners—
TEAMS emulator, TFPG using the same fault-propagation
model as TEAMS, and TFPG*, a TFPG reasoner using an
updated fault-propagation model, which includes fault prop-
agation times and fault propagation sequences based on the
results of failure analysis shown in Figure 7. Specifically, the
TFPG* model has been updated with (a) fault propagation
time and (b) a propagation link between p, and p; for fault
from V3. Table 2 shows the results for ideal test vectors the
TEAMS and TFPG model exhibit similar performance, but
the TFPG with the updated model has a far greater accuracy
(fewer ambiguities). In case of the realistic test vectors that
include missing alarms, false alarms, and intermittents, the
TFPG reasoner has a slightly higher accuracy probably relat-
ed to the way intermittents are handled. The TFPG reasoner
identifies intermittence and waits for the tests to stabilize be-
fore updating results. The TEAMS emulator, on the other
hand, starts afresh with every time-stamp. This could also
explain the slight decrease in Match (compared to ideal) for
the TEAMS emulator, as it does not report any faults when
all alarms disappear while exhibiting intermittence.

In computing the cross validation metrics, the candidate rea-
soner results for ground truth and the baseline reasoner re-
sults are compared to identity, for each result, the true positive
(faults listed by both reasoners), true negative (faults listed by
candidate and not by baseline), and false positive (faults list-
ed by baseline and not by candidate). These help analyze the
degree of Match between the reasoners in identifying faults

(Match Scenario) and in eliminating ambiguities (Match Ex-
tra). These metrics help establish the accuracy of the baseline
deployed reasoner relative to the candidate reasoners.

Table 3 captures these metrics for the baseline TEAMS emu-
lator relative to the two candidate TFPG reasoners. The high
numbers for the Match Scenario reflect the closeness between
the baseline and candidate reasoner in identifying the source
of the fault. A lower Match Extra in case of TFPG with the
update model reveals that the candidate reasoner has a tighter
ambiguity set than the baseline reasoner.

Table 2. Scenario Validation

Reasoner | Ideal Test-Vectors | Realistic Test-Vector
Match | Accuracy | Match | Accuracy
TEAMS
Emulator 1 0.66 0.9 0.47
TFPG 1 0.66 1 0.59
TFPG* 1 1 1 0.83

Table 3. Cross Validation (baseline - TEAMS Emulator)

Reasoner | Ideal Test-Vectors | Realistic Test-Vector
Match Match Match Match
Scenario | Extra | Scenario Extra
TFPG 1 1 0.93 0.79
TFPG* 1 0.33 0.93 0.45

Analysis with the scenario validation metric is important to
understand the relative performance of different reasoners. A
consistently poor scenario validation metric across all reason-
ers could indicate a problem with the fault model (inability
to isolate a fault), sensor placement, or tolerance boundaries
on test coverage. Alternatively, the metric could indicate the
effectiveness of one reasoner in certain cases (fault scenar-
ios/modes/robustness to test coverage changes). On the other
hand, cross validation helps benchmark the performance of
the baseline relative to each candidate reasoner. This would
be useful when the real source of the fault is not known and
the candidate reasoners have to be used to predict the per-
formance of the baseline reasoner. Since each candidate rea-
soner might have their own limitations, it is better to cross-
validate against a bank of candidate reasoners. Furthermore,
analysis over different subsets of faults helps identify where
the baseline reasoner might be lacking when compared to the
candidate reasoner. This analysis makes it possible to im-
prove the performance of the baseline by adding suitable tests
or pseudo-tests.

5. CONCLUSIONS AND FUTURE WORK

For V&V it is essential to ensure robustness and reliability
of a health management systems, even more if it is to be
deployed in a safety and mission critical environment. In
this paper, we have presented a tool set to support V&V of
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TEAMS health management systems by employing the pa-
radigms of cross validation, where diagnosis results of the
TEAMS model are compared with results of other, more ad-
vanced reasoners, automatic fault scenario generation to sup-
port extensive testing and coverage analysis, and parametric
model analysis to enrich test sets for robustness and sensitiv-
ity analysis. We used, as an example, a subsystem of a large
NASA cryogenic fuel loading system to demonstrate tool ca-
pabilities and to present initial results. A number of specific
coverage metrics have been introduced for assessing model
quality and model coverage during pre-deployment V&V.

In this paper we have described scaling properties of core
algorithms of our integrated V&V tools. For example, n-
factor combinatorial test generation scales well with increas-
ing dimension. To provide users with succinct yet meaningful
metrics to assess validation, we provide a summary analy-
sis in terms of scenario validation (match, accuracy), cross-
validation (match scenario, match extra), and ROC curves.
We expect to present our results of using this tool suite on
a large system with a rich set of failure effect propagation.
In future work we will extend our V&V tool suite to include
advanced machine learning algorithms and further statistical
analysis in order to provide deeper analysis and to improve
quality and robustness of scenario generation and parameter
perturbation.
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