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ABSTRACT

Criminal risk models are used to assist security forces both
in the identification of zones with high of criminal activity
for better resource allocation and prediction of future crim-
inal events for the prevention of new crimes. In this sense,
spatio-temporal models are widely employed by their capac-
ity of characterizing the criminal risk inside of a zone of in-
terest and updating the model to new crime data. This pa-
per improves an existing method based on spatio-temporal
probabilistic risk functions. The spatial probabilistic charac-
terization uses geo-referenced information of criminal inci-
dents related to public services to approximate a risk func-
tion based on a Gaussian Mixture Model (GMM). The tem-
poral characterization is supported by Importance Sampling
methods and Neural Gas Theory to incorporate the informa-
tion from new measurements, in a recursive manner, updating
the spatial probabilistic risk function. Finally, we propose a
prediction scheme for criminal activity that also uses Neural
Gas Theory, in conjunction with hypothetical future criminal
events sampled from a GMM that characterizes the spatial
distribution associated with recent criminal activity. The time
index related to each hypothetical future crime event is prob-
abilistically characterized using an exponential distribution.
Results using real data and the defined performance indexes
show an improvement both in the temporal updating as well
as the proposed prediction approach.

1. INTRODUCTION

Day by day security forces monitor criminal incidents both to
protect the victims and understand the offending behaviour.
Thanks to location technologies, it is possible to include geo-
referenced and temporal information, which can be used by
analysts to find spatio-temporal patterns of reported incidents,
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with the aim of predicting new criminal events. In this way,
many approaches have been developed to address this predic-
tion problem. One of these is the Hot-Spots Theory (Eck,
Chainey, Cameron, & Wilson, 2005), in which criminal in-
cidents are located on a plane, forming clusters that are as-
sumed to be invariant for any prediction horizon. Unfortu-
nately, this technique fails to reflect changes in crime patterns
as the environment changes. To overcome this drawback,
more sophisticated statistical models have been developed.
For instance, in Xue and Brown (2006) and Smith and Brown
(2007) work with models based on spatial decisions, where
criminals are assumed to choose places that can be mod-
eled in terms of profit maximization, which depends simul-
taneously on the gain in committing the crime and the like-
lihood of being arrested. The disadvantage of such models
is that they do not directly incorporate the temporal compo-
nent, and when it is modeled using time series (for example),
space-time interactions are not considered (Ivaha, Al-Madfai,
Higgs, & Ware, 2007). Furthermore, Caplan and Kennedy
(2011) develop a method that uses geographic information
system techniques to explore the relationship between crime
and the spatial features that influence it (i.e., bars, houses,
parks, public transport hubs). Finally in Wang and Brown
(2012), generalized additive models (GAM) are studied to
combine spatial and temporal data, as well as diverse char-
acteristics for prediction.

In a previous work (Flores et al., 2015), the authors proposed
a methodology to model and predict future criminal activity
based on spatial probabilistic risk functions and a characteri-
zation of their temporal evolution as new data becomes avail-
able. To accomplish this, Hot-Spots and Gaussian Mixture
Models (GMMs) were used to characterize the spatial com-
ponent of the criminal activity. And, for the temporal com-
ponent, Importance Sampling and Bayesian Inference were
used. The methodology can be summarized in three main
points. The first, the method uses geo-referenced information
of public services (e.g., bars, banks, parks, shopping centers)

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

and criminal incidents to approximate an spatial risk function
(called “prior”) using GMMs. The second, the methodology
includes a characterization of the temporal evolution of crime
activity using Sequential Monte Carlo Methods and Impor-
tance Sampling. This part incorporates information from new
measurements, in a recursive manner, to approximate an up-
dated spatial probabilistic risk function (called “posterior”)
associated to the position of the particles on the map. The
third method includes a prediction scheme for criminal activ-
ity that uses Gaussian fields centered on hypothetical future
criminal events, which are sampled from a GMM that charac-
terizes the spatial distribution associated with recent crime ac-
tivity. The time step related to each hypothetical future crime
event is probabilistically characterized using an exponential
distribution fitted from the temporal information of the reg-
istered criminal events. The results of the spatio-temporal
model showed a high performance in the prediction of crimi-
nal activity (using real data, the majority of future events oc-
cur within risk modeled zones). Despite this interesting re-
sult, some elements in the methodology need further revision
to reach a better performance. One of them is the calculation
of the “posterior” risk function, which uses a “tuning param-
eter” that may be difficult to tune and can significantly affect
in the criminal activity prediction performance.

To improve the results of the calculation of both the posterior
and prediction spatial risk functions, this paper proposes a
new approach based on Neural Gas Theory for defining the
“movement” of the particles in the map according available
measurements.

The article is structured as follows. Section 2 presents a the-
oretical background of concepts such as GMMs, Neural Gas
(NG), and Evaluation Methods for criminal risk models. Sec-
tion 3 presents the proposed methodology for the temporal
characterization, and prediction of criminal events. Section 4
focuses on the analysis of generated results. Finally, in Sec-
tion 5 conclusions and future work are presented.

2. THEORETICAL BACKGROUND

The theoretical background presents an overview of the main
concepts used in this work. These concepts include GMMs,
the NG algorithm, and the performance measures of spatial
criminal risk models.

2.1. Gaussian Mixture Models

The GMMs are defined as a weighted sum of single Gaussian
distributions as stated in Eq. (1):

G(x) =

M∑
i=1

αi · fi(x), (1)

where x is a D-dimensional random vector, αi are the mixture

weights satisfying
∑M
i=1 αi = 1, and fi(x) are multivariate

Gaussian distributions of dimension D, given by:

fi(x) = 1
(2π)D/2|Σi|1/2

exp
(
− 1

2 (x− µi)T Σ−1
i (x− µi)

)
(2)

where µi and Σi are the mean vector and the covariance ma-
trix of the i-th Gaussian of the mixture.

2.2. Neural Gas Algorithm

The Neural Gas algorithm (Martinetz, Berkovich, & Schul-
ten, 1993) is an iterative algorithm to train a network of nodes
or prototypes for vector quantization (the process of approx-
imating a large data set of multidimensional data by a re-
duced number of “prototype” vectors whose probability den-
sity closely resembles the probability density function (PDF)
of the input data) (Ancona, Rovetta, & Zunino, 1997; De-
Alarcon, Pascual-Montano, Gupta, & Carazo, 2002).

The neural gas network is specified by (Orts-Escolano et al.,
2015):

• A set P of M prototypes. Each prototype c ∈ P has a
reference vector wc ∈ Rd (position in the input space).

• A set of edges (connections) between pairs of prototypes.
Its purpose is to define the topological structure of the
network. Each edge has associated an aging scheme used
to remove invalid connections due to the motion of the
prototypes during the adaptation process.

• The network uses parameters that decay exponentially
according to time and the Euclidean distance to the input
data.

The sequence followed by neural gas is described in Algo-
rithm (1) (Ancona et al., 1997; Peterson et al., 2009; Orts-
Escolano et al., 2015).

2.3. Model evaluation

To evaluate the performance of the proposed risk model, the
high-probability areas predicted by the model and the num-
ber of crimes that actually occur in those areas must be com-
pared. The characterization of risk model performance at a
time tj is given by the curve that relates the High-Risk Per-
centage (HRPθ) vs. True Incident Percentage (TIPθ) (Wang
& Brown, 2012) in which:

HRPθ =
||{ai|P(inciai,tj

=1)>θ}||
||{ai}|| (3)

TIPθ =
||{inciai,tj

=1|ai⊂{ai|P(inciai,tj
=1)>θ}}||

||{inciai,tj
=1}|| (4)
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Algorithm 1: Neural Gas Algorithm
Input: d-dimension input samples xi (i = 1, 2, ..., n)

M prototypes W {w1, w2, ..., wM}
Output: Organized M -dimensional map

1 Specify the number of prototypes
P = {c1, c2, ..., cM} with reference vectors
{w1, w2, ..., wM} chosen randomly;

2 Initialize the connection set C, C ⊂ P × P , to the
empty set: C = ∅;

3 Initialize the time parameter t, t = 0;
4 Set I a fixed number of iterations;
5 for k=1:I do
6 Input a sample vector x;
7 Compute de distance dk = ‖x− wk‖ for each

prototype wk;
8 Sort the list of prototypes according to dk;
9 Compute the adaptation step ∆wk for each

prototype wk;
10 Apply adaptations to each prototype;
11 end

where || · || is the cardinality of a set, θ ∈ [0, 1] is a thresh-
old and P(inciai,tj = 1) is the probability that criminal in-
cidents occur in an area subdivision ai and a time window
tj . In this case, HRP represents the percentage of high-risk
areas predicted by the model, whereas TIP represents the in-
cidents from a test set that took place within the high-risk
areas. Both measures are computed for different θ and plot-
ted against each other obtaining a graphic similar to the re-
ceiver operating characteristic (ROC) curve (Fawcett, 2006).
If many crime incidents take place in high-risk areas, a curve
closer to the upper left corner is expected. In the opposite
case, a curve similar to a linear relationship is expected.

To measure the model quality, we use the concept of Area
Under the Curve (AUC). This area takes values between 0.5
and 1, corresponding to the worst and the best possible cases,
respectively.

3. METHODOLOGY

In our previous work (Flores et al., 2015), a strategy for
spatio-temporal modeling was proposed. This strategy is di-
vided in two stages: Off-line and On-line (Figure 1). The
Off-line stage computes an spatial distribution of criminal
risk, where geo-referenced crime events are related with in-
formation of public services and GMMs are used to gener-
ate the spatial distribution. The on-line stage includes: 1)
a strategy to model the temporal evolution of the previously
computed spatial distribution, where samples are reallocated
sequentially as soon as the notification of new criminal inci-
dents are available. 2) A prediction strategy is presented to
evaluate the risk level within a specific area and future time
period.

The present work is focused only in the On-line stage where
the temporal evolution and the prediction module are based

Figure 1. Flowchart of methodology for calculating the pos-
terior PDF and predicted PDF.

on NG and GMMs. As input of the On-line stage, the spa-
tial risk distribution (including Importance Sampling and Re-
samplig) is computed in the same way as our previous work
(Flores et al., 2015).

3.1. Temporal Evolution (Posterior PDF)

During the On-line stage, a temporary evolution strategy
based on NG defines the movement of the particles accord-
ing to the inclusion of new observations (sequential incor-
poration of new geo-referenced criminal events). Therefore,
every time in which a new criminal notification arrives, some
particles will be attracted to the area where the event was re-
ported.

With the purpose to link the resampling step (Off-line stage)
with the NG algorithm in the temporal evolution step (On-line
stage), the chosen prototypes (number of prototypes and ref-
erence vectors) for the initial steps in the NG algorithm (Al-
gorithm (1)) must be the resultant particles of the resampling
step. This is observed in Figure 2.A. Then, with the inclu-
sion of new criminal events the position of the particles are
updated according to NG algorithm (2.B). Once the tempo-
ral evolution is completed, a new GMM can be approximated
to obtain a criminal risk spatial distribution. Therefore, each
particle becomes to the centroid of a Gaussian bivariate dis-
tribution, and the variance corresponds a design parameter
(2.C).

3.2. Prediction Module

In absence of new criminal data, our methodology proposes a
strategy for prediction, which employs the same methodology
based on NG for reallocating particles used in the temporal
evolution step.

The prediction strategy assumes that there should not be ma-
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Figure 2. A) Particles after Importance Sampling and Re-
sampling; B) Movement of particles based on NG and new
observations; C) Gaussian bivariate distribution centered at
each particle.

jor changes on the spatial position of the criminal activity
in the short term (the crimes are distributed according to a
stationary PDF). Hence, the historical data of recent crimi-
nal events is used to update the posterior risk PDF, as shown
in Figure 3.A in color blue. The procedure then uses these
events to generate a GMM representing the risk PDF associ-
ated with recent criminal activity, denoted by GMMpred, as
shown in Figure 3.B. Then, to propagate uncertainty through-
out time, future crime events are simulated by sequentially
drawing samples from
GMMpred (coloured in black in Figure 3.C). Future tempo-
ral evolution is characterized by the movement of particles
which are driven by these simulated events. This evolution is
also based on NG, where the “initial state” of the prototypes
network (number of prototypes, reference vectors, and con-
nections among prototypes) is equal to the “final state” of the
prototypes network of the temporal evolution of the posterior
PDF. Once the prediction stage is finished, a Gaussian ker-
nel is centered at each particle, in the same manner as when
characterizing the posterior risk PDF, and a GMM is approx-
imated to obtain a criminal risk spatial distribution (3.D).

4. RESULTS

The same database of our previous work (Flores et al., 2015)
was used to test the proposed methodology (185 criminal
events are used to test the updating stage, and 185 are used to
validate the proposed risk prediction approach). In the same
way, the results of the Off-line stage in (Flores et al., 2015)
are used as an input to the On-line stage in the present work.

Figure 3. A) Recent criminal activity (used to compute the
posterior; B) GMM using recent criminal activity; C) Move-
ment of particles based on NG and simulated criminal events;
D) Gaussian kernel centered at each particle.

4.1. Posterior Spatial Risk Probability Function

For the prior spatial risk distribution obtained in (Flores et al.,
2015) (after importance sampling and resampling), 185 crime
events are sequentially used to compute the posterior spatial
risk probabilistic function (Figure 4).
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Figure 4. Grid and location of 368 particles associated with
the prior spatial risk function. Blue dots indicate the location
of 185 criminal events that are used to compute the posterior
risk function.

The computation of the posterior risk distribution based on
NG algorithm considered I = 18 (a 10% of the number of
criminal events used to compute the posterior), updating the
position of the particles according to the Figure 5. According
NG Theory, the algorithm “moves” the network of particles
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in function of finding a representation of the PDF related to
the input data.
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Figure 5. Neural gas network (particles) after sequentially
incorporating 185 criminal events, and 18 iterations of the
neural gas algorithm. In green is visualized the connections
among particles.

After updating the position of the particles, the posterior PDF
is built using a GMM, as explained in Section 3.1. Figure 6
shows the posterior spatial risk function built from the 368
particles and Gaussian kernels with a diagonal covariance
matrix that characterizes a range of influence of three blocks.

Figure 6. Posterior spatial risk function built from the 368
particles updated through NG algorithm, 185 criminal events,
and GMMs.

To evaluate the performance of the posterior spatial risk
model, HRP and TIP measures are calculated according to
Eq. (3) and (4). In this regard, the AUC is computed assum-
ing different influence ranges for particles (when building the

GMM), diagonal covariance matrices, and different grid sizes
(measured in blocks); see Table 1. The highest AUC is ob-
tained for a resolution of 1 block, and an influence range of 3
blocks. Figure 7 shows the HRP vs. TIP curve with the best
AUC = 0.957.

Table 1. AUC considering [3,7] (rows) for particle influence
range and [1,10] (columns) for grid resolution in the posterior
spatial risk model (in blocks).

1 2 3 4 5 6 7 8 9 10
3 0.957 0.946 0.941 0.933 0.925 0.916 0.919 0.887 0.880 0.882
4 0.950 0.931 0.919 0.919 0.913 0.899 0.906 0.879 0.875 0.866
5 0.942 0.914 0.908 0.897 0.895 0.889 0.887 0.874 0.875 0.865
6 0.936 0.903 0.893 0.888 0.884 0.877 0.871 0.869 0.859 0.862
7 0.933 0.891 0.880 0.872 0.873 0.863 0.861 0.858 0.854 0.853
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Figure 7. HRP vs. TIP curve, using influence range of 3
blocks and grid resolution = 1 block (AUC=0.957).

4.2. Predicted Spatial Risk Probability Function

Once the posterior spatial risk distribution is obtained, we
proceed to generate the GMM Hot-Spot distribution related
to recent criminal activity. After applying clustering analysis
to recent criminal activity, and testing the number of clusters
using the Silhouette algorithm, three clusters are found as the
optimal choice for the centroids of the Hot-Spot GMM. From
this Hot-Spot GMM, 185 samples are extracted to simulate
future criminal activity; see Figure 8.

The inclusion of temporal information related to each simu-
lated crime event is characterized by an exponential distribu-
tion with β = 113.09 [minutes], as it defined in (Flores et
al., 2015). In this way, the simulated 185 future crime events
define a prediction window of 2 weeks approximately.

The simulated events are used to modify the position of parti-
cles, according to NG algorithm as well. In consequence, the
predicted spatial risk function is obtained (Figure 9).

The predictive capability of the predicted spatial risk model
through the AUC measure, for different values of influence
ranges and grid sizes is shown in Table 2. Where the highest
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Figure 8. Hot-Spot GMM for recent criminal activity with 3
centroids, and 185 simulated events that are used for predic-
tion purposes.

Figure 9. Predicted Spatial Risk Function (GMM after 185
prediction steps).

AUC is obtained for a resolution of 1 block, and an influence
range of 3 blocks. Figure 10 shows the HRP vs. TIP curve
with the best AUC = 0.946.

Table 2. AUC considering [3,7] for particle influence range
and [1,10] for grid resolution in the prediction spatial risk
model (in blocks).

1 2 3 4 5 6 7 8 9 10
3 0.946 0.933 0.922 0.923 0.914 0.907 0.898 0.898 0.899 0.896
4 0.943 0.926 0.919 0.917 0.909 0.906 0.896 0.888 0.894 0.893
5 0.946 0.920 0.912 0.911 0.903 0.898 0.894 0.885 0.885 0.887
6 0.945 0.918 0.911 0.906 0.900 0.894 0.900 0.882 0.882 0.881
7 0.941 0.912 0.901 0.898 0.890 0.880 0.880 0.874 0.869 0.871
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Figure 10. HRP vs. TIP curve, using influence range of 3
blocks and grid resolution = 1 block (AUC=0.946).

5. DISCUSSION

In our previous work (Flores et al., 2015), the best AUC ob-
tained for the posterior spatial risk function was 0.934, and
for the prediction spatial risk function was 0.932. For the
present work, the calculated AUC were 0.957 and 0.946 re-
spectively. Obtaining in this way, an increase in the AUC
metric for both proposed spatial risk models.

The improvement obtained in the AUC metric, may be ex-
plained by the capability of the NG algorithm to resemble
the probability density function of a determined multidimen-
sional dataset. Hence, the method used to update the particles
is different from the one proposed in the previous work. The
previous method incorporates a dynamic model for the move-
ment of the particles, which considers the distance among the
particles to the new events, and a process noise for uncer-
tainty characterization. This kind of model may have prob-
lems with large amount of criminal data events, because the
process noise may position the particles outside the interest
area. A example of this is shown in Figure 11, where some
particles in the posterior spatial risk function calculated in
(Flores et al., 2015) are outside of the interest area. On the
other hand, Figure 6 shows the posterior spatial risk function
calculated in the present work, where all the particles are con-
tained inside the interest area. Both posterior risk functions
were calculated using the same amount of particles and crim-
inal events.

The parameters of the NG algorithm used in the present work
were set with standard values. Therefore, a tuning of these
parameters can be an interesting alternative to explore in a
future work to obtain better results.

6. CONCLUSION

This article provides an update of the methodology presented
in a previous work intended to characterize the evolution in
time of a spatial criminal risk model within a specific area.
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Figure 11. Posterior spatial risk function calculated in (Flores
et al., 2015).

The evolution is represented by the movement of particles,
which correspond to a discretized version of this criminal risk
model. The main contribution of the present work is the char-
acterization of the evolution in time of the spatial criminal
risk model through the use of the NG algorithm.

The results of implementing this new strategy show an in-
crease in the AUC from 0.934 (previous work) to 0.957 (cur-
rent work) in the computation of the posterior spatial risk
function. Furthermore, an increase in the AUC from 0.932
(previous work) to 0.946 (current work) in the computation of
the predicted spatial risk function is also achieved. Two ele-
ments associated to NG implementation might be responsible
for this improvement. The first is related to the characteristic
of searching a representation for the underlying PDF of the
analyzed dataset. The second is associated to the capacity of
maintaining the particles inside the interest area after all the
new criminal events were processed.
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