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ABSTRACT 

Induction motors are usually considered as one of the key 

components in various applications. To maintain the 

availability of induction motors, it calls for a reliable 

condition monitoring and prognostics strategy. Among the 

common induction motor faults, stator winding faults are 

usually diagnosed with current and voltage signals. 

However, if the same performance can be achieved, the use 

of vibration signal is favorable because the winding fault 

diagnostic method can be integrated with bearing fault 

diagnostic method which has been successfully proven with 

vibration signal. Existing work concerning vibration for 

winding faults often takes it either as auxiliary to magnetic 

flux, or is not able to detect the winding faults unless 

severity is already quite significant. This paper proposes a 

winding fault diagnostic method based on vibration signals 

measured on the mechanical structure of an induction motor. 

In order to identify the signature of faults, time synchronous 

averaging was firstly applied on the raw vibration signals to 

remove discrete frequency components originating from the 

dynamics of the shaft and/or gears, and the spectral kurtosis 

filtering was subsequently applied on the residual signal to 

emphasize the impulsiveness. For the purpose of enhancing 

the residual signal in practice, a demodulation technique 

was implemented with the help of kurtogram. A series of 

experiments have been conducted on a three-phase 

induction motor test bed, where stator inter-turn faults can 

be easily simulated at different loads, speeds and severity 

levels. The experimental results show that the proposed 

method was able to detect inter-turn faults in the induction 

motor, even when the fault is incipient. 

1. INTRODUCTION 

Three-phase induction motors play a vital role in many 

engineering areas such as high-speed trains, electric 

vehicles, industrial robots, and machine tools, etc. 

Unexpected failures of induction motors occurring in these 

machines can thus lead to excessive downtime and large 

losses in terms of maintenance cost and lost revenue. 

Condition-based maintenance (CBM) and predictive 

maintenance (PdM) have been proven to be a maintenance 

strategy that can reduce unscheduled downtime and 

maintenance cost. In CBM, one does not schedule 

maintenance activities for machines merely according to 

history of maintenance records and fixed maintenance rules, 

but also based on the prediction of machine health 

conditions from sensor data, so that the waste owing to 

redundant maintenance and failures will be avoided. Such 

maintenance strategy requires the technologies of: (a) on-

line condition monitoring, (b) fault detection and diagnosis, 

and (c) prognostics.  

 

Figure 1. Statistics of failure modes in induction motors 
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Figure 1 shows the statistical distribution of common failure 

modes typically occurring in induction motors. Rolling-

element bearing and stator winding failures due to insulation 

degradation contributes to 80% of the causes for unexpected 

breakdown in induction motors (Jover Rodríguez & Arkkio, 

2008). Condition monitoring, diagnosis, and prognostics for 

rolling-element bearings have been well studied during the 

past four decades due to its wide applications in almost all 

the rotary machinery. Vibration-based and motor current 

signature analysis (MCSA) based monitoring methods for 

roller-element bearings in induction motors have been 

widely published in literature. However, the condition 

monitoring for winding insulation faults, especially 

vibration-based diagnosis and prognosis methods remain 

limited.  

Winding faults due to insulation degradation can be 

classified into four types (Ukil, Chen and Andenna, 2011), 

namely (a) inter-turn short of the same phase, (b) short 

between coils of same phase, (c) short between two phases, 

and (d) short between phase to earth. Among them, inter-

turn fault is considered to be the most challenging winding 

fault to be detected in induction motors. The online 

condition monitoring methods for motor winding faults are 

summarized in Figure 2. Most of the online monitoring 

methods are based on current and voltage signals, among 

which the symmetric component current balance monitoring 

(Furfari & Brittain, 2002; Eftekhari, Moallem, Sadri and 

Hsieh, 2013), negative sequence impedance detector 

(Kliman, Premerlani, Koegl and Hoeweler, 1996), voltage 

mismatch (Sottile, Trutt and Kohler, 2000; Trutt, Sottile and 

Kohler, 2002), and Parks vector (Cardoso, 1997) are the 

most widely referred methods. Nevertheless, these methods 

require measuring 3-phase high voltage signal from 

induction motors, which requires expensive sensors and 

DAQ hardware. Moreover, direct measurements of 3-phase 

voltages from motor windings are not feasible for online 

application, and the voltage measurements from the 

frequency-inverter drive are usually pulse-width modulation 

(PWM) signals that need additional signal processing 

process.  

 

Figure 2. Online condition monitoring methods for motor 

winding fault (Sin, Soong and Ertugrul, 2003) 

Compared with the current and voltage-based winding fault 

monitoring, vibration-based methods have the advantages of 

(a) requiring less expensive sensors, (b) requiring less 

channels for the DAQ system, and (c) monitoring 

mechanical failures at the same time. Yet vibration analysis 

for motor winding fault detection has received modest 

attention due to claimed lower sensitivity.  To remedy this 

gap, this paper proposes a combination of different signal 

processing techniques to mine and amplify the motor 

winding fault related features. Time synchronous averaging, 

spectral kurtosis filtering, and envelope analysis are 

implemented in the signal processing process. As will be 

discussed in the results section, the first order of envelope 

spectrum showed monotonically increasing trend as the 

level of winding insulation degradation increase.  

The remaining part of the paper will be organized as 

follows: Section 2 discusses the methodology development 

and theoretical background of the signal processing 

techniques applied to the motor vibration signals; Section 3 

briefly discusses the experimental setup and the test 

procedure for data generation; Section 4 demonstrates the 

effectiveness of the proposed vibration signal processing 

methods and the selected features through the experimental 

data analysis; and Section 5 summarizes the important 

findings obtained in this study.  

2. METHODOLOGY DEVELOPMENT 

2.1. Overall Method  

Vibration signal has long been adopted for the diagnosis of 

mechanical wear in rotary machinery, such as bearings and 

gearboxes (Randall & Antoni, 2011). One of the elementary 

assumptions of vibration analysis for rotary machinery 

mechanical faults is that the concerned fault leads to 

impulses in vibration signals, which do not occur in the 

healthy state. Detection of the impulses hidden in the 

smearing and noise requires advanced signal processing 

techniques to emphasize the impulsiveness, especially when 

the fault is incipient. Similar to mechanical faults, induction 

motor winding faults will generate additional 

magnetomotive force that is usually reflected in the 

vibration signal at harmonics of slot frequency and supply 

frequency (Lamim Filho, Pederiva and Brito, 2014). 

However, these characteristics are only significant when the 

faulty turns are around 5% of total windings (Lamim, Brito, 

Silva and Pederiva, 2013), making it difficult to detect 

winding faults at an early stage. 

Inspired by bearing fault diagnosis, this paper addresses the 

issue when the inter-turn faults are still preliminary by 

adopting advanced signal processing tools. As shown in 

Figure 3, the first step of signal processing was to check the 

vibration data quality (Jabłoński, Barszcz and Bielecka, 

2011; Jablonski & Barszcz, 2013) to guarantee raw data 

integrity and justify the correctness in the following  
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Figure 3. Flowchart of inter-turn fault detection for three-

phase induction motors using vibration signal. 

 

analysis. Then, the “corrected” vibration signal and the 

tachometer signal passed through a low-pass filter to 

exclude the high frequency noise. The cut-off frequency was 

set to be one fourth of sampling frequency (in this case 

12800 Hz) for the vibration signal, and 10 Hz for the 

tachometer signal, since the ratio of tachometer is 1/4. After 

the aforementioned pre-processing steps, time synchronous 

averaging (TSA) was performed to eliminate discrete 

frequency component noise (Randall & Antoni, 2011). Then 

the resonance frequency section of the obtained residual 

signal estimate with TSA that contained faulty 

characteristics was enhanced by envelope analysis, whose 

bandwidth was selected using kurtogram.  

The following sub-sections focus on introducing the 

theoretical background of the tools utilized and explaining 

why they are effective in detecting inter-turn faults in 

induction motors. 

2.2. Theoretical Background 

Instead of going through the calculation of magnetic forces, 

the induction motor winding fault detection strategy is 

formulated from the perspective of vibration signal 

processing. To state mathematically, the problem is to detect 

the inter-turn faulty signal x(t) buried in the noise η(t). And 

the actual raw signal s(t) we get is the combination of the 

two, which is (Antoni & Randall, 2006) 

 ( )( ) ( )s t x t t    (1) 

Under this problem statement, the following assumptions 

for this research are proposed: 

1. The inter-turn faulty signal x(t) has transients and 

contains impulses which do not occur or follow a 

different pattern in the healthy conditions; 

2. The noise η(t) refers to not only the stationary 

measurement noise, but also the discrete frequency 

component, namely the vibration influence of the 

mechanical parts. 

2.2.1. Time synchronous averaging (TSA) 

Time synchronous averaging (TSA) is an essential tool for 

rotating machines that extracts periodic waveforms from 

noisy data. TSA is performed with respect to a certain shaft 

according to the tachometer signal as angular position 

reference. Vibration signals that went through TSA process 

will have an integer number of orders of the fundamental 

harmonic (shaft frequency) retained, and other vibration 

components weakened. If the synchronous-averaged signal 

is subtracted from the original signal, the residual signal that 

have the harmonics of the shaft frequency removed will be 

obtained. Both the synchronous-averaged signal and 

residual signal contain diagnostic information of different 

failure mode (Al-Atat, Siegel and Lee, 2011). While there 

are many different techniques for TSA, zero crossing-based 

technique is the most widely used.  

Zero crossing-based TSA resamples the vibration signal to 

angular domain where the samples recorded in one shaft 

rotation are interpolated into a fixed number of data points 

for each revolution. The number of points per revolution N 

is derived from Eq. (2): 

 2(log m )ax( )
2

ceiling n
N    (2) 

where n is the number of points between two subsequent 

zero crossing indices of the tachometer signal (Bechhoefer 

& Kingsley, 2009).  

However, resampling from time domain to angular domain 

will cause problems for the following signal processing 

steps since the kernel functions of kurtogram, filtering, and 

envelope analysis have a constant frequency (Δt) instead of 

constant angle (Δθ). Hence the synchronous-averaged signal 

should be interpolated back to its original time-based 

sampling mechanism before calculating the residual signal.  

The process of obtaining residual signal from TSA is 

summarized as follows: 

(1) Find zero-crossing indices in the tachometer signal 

and calculate the zero crossing time (ZCT) with 

interpolation.  

(2) For each ZCT, calculate the time between ZTCk 

and ZCTk+1, namely, dZCTk, where k is the 

crossing point index. 
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(3) Calculate the resampled time interval: dZCT/N, 

where N is given by Eq. (2). Interpolate the signal 

to the newly resampled time and accumulate the 

resampled data.   

(4) Save the original time stamps for each revolution. 

(5) Repeat step (2) through (4) for all the revolutions, 

and then divide the accumulated N point vector by 

number of revolutions.  

(6) Interpolate the N point vector (TSA signal) back to 

the original time stamps for each revolution, and 

combine the interpolated TSA signal to get the 

same length of vector as the original data. 

(7) Subtract the combined vector from the original data 

to get the residual signal.  

2.2.2. Spectral kurtosis and kurtogram 

Kurtosis as a statistical feature is widely used as a global 

value to detect the peakiness in a signal. It is defined as 

 

  

  

4

2
2

( ) ( )

( ) ( )

E x t E x t
k

E x t E x t

 
 
 
 

  (3) 

where E[●] indicates the averaging calculation. Spectral 

kurtosis is an extension of kurtosis to a function of 

frequency, and is known for identifying the impulsiveness 

in the signal spectrum for rotary machinery fault diagnosis. 

It is calculated based on the short-time-Fourier-transform 

(STFT) X(t,f) of the original signal. As mentioned by 

Randall et al in (Randall & Antoni, 2011), spectral kurtosis 

is defined as 

 

  

  

4

2
2

( , ) ( , )
( ) 2

( , ) ( , )

E X t f E X t f
K f

E X t f E X t f

 
  
 
 

  (4) 

The benefit of spectral kurtosis analysis is that it is able to 

find the frequency band that contains fault characteristics 

without requiring a large amount of history data. However, 

it is then of vital importance that an appropriate window 

length to be chosen for the STFT. In order to find the 

optimal window length, or equivalently bandwidth, fast 

kurtogram was adopted to plot spectral kurtosis against level 

and frequency. Another task for kurtogram is to find the 

center frequency with the highest spectral kurtosis value, 

which is related to the resonance frequency of the motor 

itself. The incipient vibration winding fault causes will be 

amplified at this resonance frequency. Reader should be 

able to observe in Figure 4 that the color in the fast 

kurtogram indicates the value of kurtosis, and in this 

particular example the highest kurtosis exists at Level 5.5  
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Figure 4. Kutogram of inter-turn fault residual signal at 

2000 rpm. The highest kurtosis is 0.4 at Level 5.5 with a 

center frequency of 12000 Hz. 

with a center frequency of 12000 Hz. Even though the fast 

kurtogram gives the center frequency and the bandwidth, the 

original power spectrum density still needs to be taken into 

consideration to finalize the spectrum section that needs to 

be demodulated later. This part will be shown with 

graphical explanation in the following sub-section. 

2.2.3. Envelope Analysis 

Often, the spectrum of raw vibration signal for rotary 

machinery gives little insight on faulty characteristics due to 

noise. As mentioned in previous sections, winding faults at 

early stage induce mechanical impacts that are amplified at 

the high frequency range of the induction motor system. 

With kurtogram locating this high frequency range, 

envelope analysis will further improve the signal to noise 

ratio and enhance the transients so that the fault can be more 

easily detected.  

The procedure for envelope analysis in this research is 

described in Figure 5, where the residual signal estimation 

with TSA is the input and the envelope spectrum is the 

output. First, a Butter band-pass filter was designed based 

on the center frequency and bandwidth determined from fast 

kurtogram. Then the resulting signal was demodulated by 

following Eq. (5).  

( ) ( ) exp( 2 )cy t r t j tf      (5) 

where r(t) is the residual signal estimation with TSA, 

  √  , fc is the center frequency, and y(t) is the 

demodulated signal. Afterwards, the demodulated signal 

went through a low-pass filter with half of the bandwidth as 

the cutoff frequency. Then the squared envelope signal was 

calculated by following Eq. (6): 

 
*( ) ( ) ( )e t y t y t    (6) 
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where e(t) represents the squared envelope signal and y*(t) 

represents the complex conjugate of y(t). 

Residual Signal Estimation 
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Low-pass Filtering

Enhanced Signal
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Figure 5. Flowchart of envelope analysis. The resonance 

frequency (center frequency) and bandwidth are determined 

with the help of kurtogram. 
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Figure 6. Comparison of time domain and frequency 

domain signal before and after demodulation: (a) time 

domain TSA residual signal estimate with kurtosis 3.0459, 

(b) Welch estimate power spectrum of TSA residual with 

high-frequency band highlighted in dark red, (c) time 

domain demodulated TSA residual signal with kurtosis 

4.5025, (d) Welch estimate power spectrum density of the 

demodulated TSA residual. The signal comes from the 

condition of inter-turn fault. Note that the scales of plots are 

different. 

The result of band-pass filtering and demodulation can be 

found in Figure 6. In time domain, the emphasis of 

impulsiveness in the faulty signal is recognized even 

graphically. Quantitatively, the kurtosis of the signal has 

increased from 3.1053 to 4.1744. In frequency domain, one 

can clearly see in Figure 6 (b) that the peaky section 

centered at approx. 12000 Hz with a bandwidth of 800 Hz is 

highlighted. This is where the high frequency band that 

contains the faulty information locates. It was picked up by 

kurtogram and moved to lower frequency band after 

demodulation. Discussion on the result of envelope signal 

and envelope spectrum will be found in Section 4. 

3. EXPERIMENTAL SETUP 

For conducting this research, a dedicated induction motor 

test-bed was designed and developed. The test-bed is 

designed such that one is able to simulate the winding faults 

with different levels of severity and collect vibration, 

current, voltage and torque signals from the motor. The 

winding faults that could be induced in the system include 

(i) inter-turn and (ii) turn-to-earth faults. The test-bed was 

also designed to run at different speed regimes and load 

conditions for multi-regime data collection and analysis. 

The following sections will briefly describe the test-bed 

design, the procedure for inducing winding faults and the 

experiments with different fault conditions. 

 

Figure 7. Photograph of the induction motor test bed. 

 

Figure 8. Schematic view of the motor test bed. 
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3.1.  Test Setup 

The test-bed consisted of an 11KW, 19.7A, 400V 3-phase 

induction motor driven by a variable frequency drive 

(VFD). The rotational speed of the motor could be varied 

from 0 to 3000 RPM with both stationary and transient 

modes available. A magnetic brake was connected to the 

output shaft of the motor through a timing-belt and pulley 

mechanism. The mechanism allowed the brake shaft to 

rotate at half of the speed of the motor shaft. By controlling 

the input current of the brake, an external load varying from 

0 to 50 Nm could be applied to the motor. A PC with 

LabVIEW programs was used to send the control signals to 

the VFD and magnetic brake controller. A variable resistor 

with the range of 0-580 Ω was used to simulate different 

levels of severities in the shorted turns in inter-turn faults.  

A tri-axial accelerometer was mounted on the top of the 

housing of the motor to collect the vibration of the motor. A 

tachometer based on a proximity probe was used to measure 

the rotational speed of the motor. The head of the 

tachometer was put towards a 4-tooth flywheel connected to 

the motor shaft generating 4 pulses per revolution.  The 

experimental setup and the schematic view of the test-bed 

are shown in Figure 7 and Figure 8. 

3.2.  Fault Simulation 

The winding of the motor used in the test-bed is random-

wound (Figure 9). The winding was modified by connecting 

three shielded wires to the coil of phase w at three locations 

and the other ends of the wires were brought outside as 

schematically shown in Figure 10. The inter-turn faults were 

simulated by connecting the other ends of the wires to a 

variable resistor. For healthy state simulation, the ends of 

the three wires were left unconnected. The inter-turn faults 

were simulated under two different scenarios referred to as 

inter-turn I and II. In inter-turn I, wires 1 (in orange) and 2 

(in green) were connected through a variable resistor. 

Similarly for inter-turn II, wire 1 was shorted to wire 3 

(black) through a variable resistor. By adjusting the 

resistance to 580 and 300 Ω, two levels of severity for both 

inter-turn I and II were simulated, as summarized in Table 

1.   

 

Table 1. Different fault levels for induction motor 

State Resistance [Ω] Comment 

F1 580 Lowest level 

F2 300 Moderate level 

 

Figure 9. Disassembled motor exposing random would 

stator winding. 

 

Figure 10. Schematic winding diagram with three taps on 

the phase w winding for different inter-turn fault scenarios. 

3.3.  Test Procedure 

The test was performed at the constant speed of 2000 RPM 

and constant brake torque of 12 Nm for all the winding 

conditions. At each level of winding faults, the current il 

flowing through the variable resistor was measured and the 

corresponding dissipated power Pd was calculated as 

summarized in Table 2.  

Prior to digitizing the signals, each measured signal was 

passed through a low-pass and an anti-aliasing filter 

embedded in each channel of the NI data acquisition system. 

Doing the tests in this way ensures that the potential aliasing 

problems caused by high frequency noise can be avoided. 

Depending on the sampling frequency, the cut-off frequency 

of the anti-aliasing filter was automatically adjusted. The 

vibration signals were sampled at the rate of 51.2 KHz with 

the duration of four seconds. The digitized data was stored 

in the PC and analyzed off-line in MATLAB software. 
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Table 2. Current and dissipated power through the variable 

resistor at different states 

State Inter-turn I Inter-turn II 

il [mA] Pd [W] il [mA] Pd [W] 

F1 265 40.7 86 4.3 

F2 297 26.5 155 7.2 

4. RESULTS AND DISCUSSION 

Under varying fault severity levels, squared envelope signal 

estimation was calculated by following the procedure 

introduced in Section 2.2.3. The result for healthy state, 

Inter-turn I and Inter-turn II is presented in Figure 11. 

Compared with the healthy state, it is obvious that the 

pattern of vibration of the induction motor has changed in 

time domain for inter-turn fault. The period of one cycle of 

vibration for the healthy case is approximately 0.0456 s, and 

the period for both of the inter-turn cases is approximately 

0.0300 s, namely 33.3 Hz which is about the same with the 

rotational speed (2000 RPM/60 s= 33.3 Hz). This is because 

inter-turn fault has changed the magnetic flux distribution of 

the induction motor and the faulty characteristic is related to 

rotating speed. It is also noticeable that the amplitude of the 

faulty characteristic increases as the fault becomes more 

severe. 

After obtaining the envelope signal, Fourier transform was 

applied. For the purpose of comparing between different 

scenarios, amplitudes of the spectrum were normalized 

according to DC amplitude, which should be the highest; 

and the frequency domain was also transferred to order 

domain to help the readers to recognize quickly the feature 

at the rotational speed. In Figure 12, it is evident that at the 

first order, inter-turn fault case has a component. And by 

comparing (3) with (2) in Figure 12, the severity of the fault 

is also revealed.  

Furthermore, a bar plot was generated for all the conditions 

at different severity levels, which is shown in Figure 13. As 

one can observe, there is a clear difference between healthy 

state and inter-turn faults in terms of bar height. In terms of 

severity, for Inter-turn I and Inter-turn II respectively, 

amplitudes at F2 in (b) is bigger than those in (a) of Figure 

13. Besides, Inter-turn II has a larger value than Inter-turn I, 

which once again reveals the severity of fault successfully. 

Since the values of the order domain amplitudes were 

normalized between 0 and 1, it can be considered as a 

metric called hazard value (HV) to quantify inter-turn fault 

in induction motors. The result is shown in Table 3. 
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Figure 11. Time domain envelope signals for F1: (1) time 

domain envelope signal for healthy state with period of 

approx. 0.0456 s, (2) time domain envelope signal for Inter-

Turn I with period of approx. 0.0300 s, (3) time domain 

envelope signal for Inter-Turn II with period of approx. 

0.0304 s. Note that the scales of the three sub-plots are 

different. 

 
Figure 12. Envelope spectra in order domain for F1: (1) 

envelope spectrum for healthy state with no harmonic at the 

first order, (2) envelope spectrum for Inter-turn I with a 

peak valued at 0.09403 at the first order, (3) envelope 

spectrum for Inter-turn II with a peak valued at 0.14737 at 

the first order. 

 

Table 3. Hazard value (HV) of different conditions and 

severities 

Metric Healthy Inter-turn I Inter-turn II 

F1 F2 F1 F2 

HV 0.0359 0.0940 0.2385 0.1474 0.2574 
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Figure 13. Amplitudes of first order component in envelope 

spectrum for different conditions and severity levels: (a) 

amplitudes for all three conditions at severity level F1, (b) 

amplitudes for all three conditions at severity level F2. The 

three colors represent healthy state, Inter-turn I, and Inter-

turn II, respectively, and they are consistent with previous 

figures. 

5. CONCLUSION 

This paper proposes a vibration-based method to detect 

inter-turn winding fault, which is known to be the hardest to 

detect even with current and voltage signal. The method was 

divided into two stages, namely signal pre-processing stage 

and signal enhancement stage. In the pre-processing stage, 

data quality check and a low-pass filter were applied on 

both vibration signal and tachometer signal. In the signal 

enhancement stage, several techniques were adopted. Time 

synchronous averaging was used to remove the discrete 

frequency component noise, and then the residual signal was 

demodulated at the center frequency and bandwidth selected 

with the help of kurtogram. The resulting normalized 

envelope spectrum was converted into order domain, and 

the component at the first order was able to detect inter-turn 

fault from the healthy state, and reflect the severity. Note 

that this method is applied at a constant speed, and time 

synchronous averaging technique is in fact quite 

computationally costly. Other techniques to remove the 

discrete frequency components like cepstrum analysis are to 

be explored for future work. 
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