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ABSTRACT

One major realm of Condition Based Maintenance is find-
ing features that reflect the current health state of the asset
or component under observation. Most of the existing ap-
proaches are accompanied with high computational costs dur-
ing the different feature processing phases making them in-
feasible in a real-world scenario. In this paper a feature gen-
eration method is evaluated compensating for two problems:
(1) storing and handling large amounts of data and (2) compu-
tational complexity. Both aforementioned problems are exis-
tent e.g. when electromagnetic solenoids are artificially aged
and health indicators have to be extracted or when multiple
identical solenoids have to be monitored. To overcome those
problems, Compressed Sensing (CS), a new research field
that keeps constantly emerging into new applications, is em-
ployed. CS is a data compression technique allowing original
signal reconstruction with far fewer samples than Shannon-
Nyquist dictates, when some criteria are met. By applying
this method to measured solenoid coil current, raw data vec-
tors can be reduced to a way smaller set of samples that yet
contain enough information for proper reconstruction. The
obtained CS vector is also assumed to contain enough rel-
evant information about solenoid degradation and faults, al-
lowing CS samples to be used as input to fault detection or
remaining useful life estimation routines. The paper gives
some results demonstrating compression and reconstruction
of coil current measurements and outlines the application of
CS samples as condition monitoring data by determining de-
terioration and fault related features. Nevertheless, some un-
resolved issues regarding information loss during the com-
pression stage, the design of the compression method itself
and its influence on diagnostic/prognostic methods exist.
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1. INTRODUCTION

The process of feature extraction (identifying features that
represent the health state of the system or component under
consideration) is seen as most critical point in data-driven di-
agnostics and prognostics (Jardine, Daming Lin, & Banjevic,
2006). As the performance of subsequent steps like classifi-
cation or remaining useful life (RUL) estimation is strongly
influenced by feature quality (Alkhadafe, Al-Habaibeh, &
Lotfi, 2016; Peng, Long, & Ding, 2005), it is necessary to
find features that allow differentiation between fault or de-
terioration states. This is usually achieved by generating fea-
tures in e.g. time, time-frequency or frequency domain, based
on measured data. As these feature sets possibly contain re-
dundant or unnecessary information, a selection has to be
performed where only ’meaningful’ features are further pro-
cessed. This reduction step is critical as the amount of neces-
sary training data for classification rises with the number of
used features (also known as curse of dimensionality). The
whole process of feature extraction and selection is compu-
tationally expensive, especially if lots of data has to be anal-
ysed. In the application at hand this is for example the case in
run-to-failure experiments carried out during development or
when multiple identical components have to be monitored,
e.g. in a machine. The approach presented in this paper,
therefore, tries to improve on two aspects: (a) the amount
of data to be handled and stored and (b) the feature extrac-
tion and selection step. Step (a) is realised by compressing
measured data employing CS and step (b) is tackled by per-
forming diagnostics and prognostics directly on compressed
samples without additional feature generation.
The remainder of this paper is structured as follows. In sec-
tion 2 the application and available datasets are briefly ex-
plained. Section 3 presents the employed methods and ap-
proaches followed by the results in section 4 and a discussion
in section 5. The paper concludes with a summary and an
outlook on future work.
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2. ACTUATOR AND DATA

Figure 1 shows a schematic cross section of an electromag-
netic solenoid which is used to transform electric energy via
magnetic energy to mechanical energy. By applying a volt-
age step to the coil, current and therefore magnetic flux build
up resulting in an electromagnetic force moving the plunger
in the z-direction. Due to back electromagnetic force, caused
by magnetic field changes, the plunger movement can be ob-
served in the measured coil current. Especially the end of
movement (plunger hits mechanical stop) produces a charac-
teristic spike which is further on denoted as cycle time (time
the plunger takes to reach its end position). When the applied
voltage is switched off, current and hence the magnetic flux
degrade, resulting in a spring driven plunger retraction (mag-
netic force is exceeded by spring force). During this back and
forth movement (denoted as one switching cycle) the solenoid
operates e.g. a switch, brake or door lock. As these applica-
tions can be safety relevant (elevator brakes, safety switches,
etc.) it is desirable to monitor the solenoids health condition
and its progression over time. In a run-to-failure experiment
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Figure 1. Schematic drawing of an electromagnetic solenoid
consisting mainly of: coil, plunger, housing, retaining spring
and bushings.

ten solenoids were artificially aged 13 million cycles measur-
ing their coil current every 100 cycles. Using a test-stand,
errors were induced influencing plunger movement and sup-
ply voltage (see tab. 1). It is assumed that gradual degrada-

Table 1. Emulated fault data with either altered coil supply
voltage or reduced stroke. Plunger movement was influenced
by employing a mechanical stop.

Mode Class Measured Cycles
normal stroke 1 91
reduced supply voltage 2 92
no supply voltage 3 31
reduced stroke 15mm (I) 4 92
reduced stroke 22mm (II) 5 92
no stroke 6 91

tion, mainly governed by friction phenomena, and discrete er-
ror events can be extracted solely from measured coil current

profiles (sampled at fS = 10 kHz resulting in N = 2000
samples for t = 0.2 s recording time which corresponds to
the on time of the solenoid).

3. METHODS

In the following section Compressed Sensing (CS) is briefly
explained. Furthermore, the usage of CS features as input for
diagnostic and prognostic methods is outlined.

3.1. Compressed Sensing

Compressed Sensing is a signal processing technique that
was first described by (Candes, Romberg, & Tao, 2006) and
(Donoho, 2006). The basic idea is to make use of the sig-
nal’s sparsity in some domains that allows sampling fewer
data points than the Shannon-Nyquist theorem dictates. It
was shown that the original signal can be reconstructed from
these few measurements with high probability using con-
vex optimization methods obeying some constraints and re-
quirements. CS received lots of attention due to its ap-
plicability in signal and image processing (especially med-
ical imaging) and data compression. During the last two
years interesting and promising applications in diagnostics
and prognostics kept emerging establishing a new research
field (Jayawardhana, Zhu, Liyanapathirana, & Gunawardana,
2017; Liu, Zhang, & Xu, 2017; Wang, Xiang, Mo, & He,
2015).

3.1.1. Compression

Let x ∈ <N be a k-sparse compressible signal of length N
with k non-zero coefficients c and k � N . Employing a sam-
pling matrix Λ = ΘΛ̂, that is extracted from Λ̂N×N using a
selector matrix ΘK×N , the CS vector (compressed measure-
ments) y ∈ <K with K < N is given by

y = Λx. (1)

As most of the signals measured in technical applications
are not sparse in time-domain (i.e. CS would be not appli-
cable), they have to be expanded in an orthonormal basis,
where the necessary sparsity can be achieved (Flandrin &
Borgnat, 2010). Here the Wavelet-basis was used to calculate
an approximately sparse representation of the signal of inter-
est. Prior to transformation non-stationary signal components
are removed by calculating the difference id(t) between mea-
sured current im(t) and a prototype function f(t, a, b) (black
curve in Fig. 6).

f(t, a, b) = a · (1− e− tb ) (2)

This particular prototype function resembles essentially the
inductance step response (solenoid plunger blocked in initial
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position) with a = Vcc
R and b = τ .

istep(t) =
Vcc
R
· (1− e− t

τ ) with τ =
L

R
(3)

Due to the interconnection of inductance L and resistance R,
τ can only be identified in its entity. Factor a, however, can
be easily calculated. The parameter b was identified using
current measurements of a new solenoid, applied supply volt-
age Vcc = 20V and calculated coil resistance R = Vcc

iend
(with

stationary current end value iend). Hence, input to the com-
pression step given in Eq. 1 is not the current signal itself, but
the Wavelet transform of is(t).

is(t) = istep(t)− im(t) (4)

Sparsity of k = 231 with an original signal length of N =
2000 samples was achieved by a thresholding on the near
zero Wavelet-coefficients (which also leads to a denoising of
the signal). Using the signal istep(t) as reference is benefi-
cial in three ways: (1) temperature influences and, as already
mentioned, non-stationarity are eliminated, (2) all measured
signals are compared to the same prototype and (3) it is the
worst considerable scenario, since a blocked solenoid plunger
can’t fulfil its intended task.

3.1.2. Reconstruction

Output of the reconstruction procedure are estimated
Wavelet-coefficients x̂ that can be used to perform an in-
verse Wavelet-transform reconstructing îs(t). As istep(t)

is known, an estimate of the measured coil current îm(t)
can be calculated. The under determined recovery problem
Λx̂ = y can be solved employing vector norm minimization
(`1-minimization) as shown by (Candes et al., 2006; Donoho,
2006)

min
x̂∈<N

‖ x̂ ‖1 subject to Λx̂ = y. (5)

When x meets the aforementioned criteria and Λ the subse-
quent ones, reconstruction will be successful with high prob-
ability.

3.1.3. Sensing Matrices

The sampling matrix Λ has to meet certain criteria to ensure
reconstruction of the original signal x. I.e. the matrix should
be designed such that there exists only one CS measurement
vector y to be matched to at most one x. The spark of a sam-
pling matrix Λ is denoted as one key property. It is defined as
the smallest number of columns in Λ that are linearly depen-
dent. If Eq. 6 holds, reconstruction can be guaranteed.

spark(Λ) > 2k (6)

But as calculation of spark(Λ) is NP-hard, its computa-
tion is not feasible for arbitrary sampling matrices. Another

key property is matrix coherence µ(Λ) that is defined as the
largest inner product of any two columns in Λ.

µ(Λ) = max
i 6=j
| < λi, λj > | (7)

The maximum signal sparsity is then determined by:

k <
1

2

(
1 +

1

µ(Λ)

)
. (8)

As under noisy conditions (measurement noise y = Λx + δ
or noise due to numerical instabilities Λ̂ = Λ + ∆) the afore-
mentioned properties do not hold any more, the Restricted
Isometry Property (RIP) has to be used to check and ensure
stable reconstruction (Candes & Tao, 2005).

(1− α)‖x‖22 ≤ ‖Λx‖22 ≤ (1 + α)‖x‖22 (9)

Again, the RIP is computationally expensive to calculate for
arbitrary sampling matrices. For random Toeplitz-type and
random-value-type sampling matrices research results exist
showing that both types fulfil the aforementioned properties
with high probability allowing reconstruction of the original
signals (Haupt, Bajwa, Raz, & Nowak, 2010; Duarte & El-
dar, 2011). Hence, they will be used for compression of the
Wavelet transformed current measurements.

3.1.4. Optimal Matrix Size K

To find an optimal sensing matrix size, i.e. determine the
necessary amount of CS samples to reconstruct coil current
of new as well as deteriorated solenoids, reconstruction was
performed with different matrix sizes K and types (random
value and random Toeplitz-type) using Monte-Carlo simula-
tions. For every reconstruction step the sum of squared errors
(SSE) between measured and reconstructed coil current was
evaluated.

ε(K) =
∑

(im − îm(K))2 (10)

3.2. Using CS Samples as Features

To overcome the problem of massive data amounts occurring
during run-to-failure test or when monitoring many identical
devices, only CS samples of the original signal are stored and
not the raw signal itself. As the CS data vector can be multi-
ple times smaller not only less space is required but compu-
tational costs are also reduced. Reconstruction is performed,
whenever desired or necessary. To avoid a separate feature
extraction for condition monitoring and remaining useful life
estimation (RUL) and to make use of the information con-
tained in the CS samples they are directly re-utilised as fea-
tures. I.e. the suitability of CS samples for fault detection
(do features exist, that allow fault discrimination) and for ex-
traction of wear-related patterns (do features exist that show
deterioration and life time dependent behaviour) is evaluated.
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For now no further post-processing is performed on the com-
pressed values. Whether such techniques have to be applied
to enhance fault separability or wear features, depends on the
proceeding results.

4. RESULTS

In the following section compression and reconstructions
results for different solenoid ageing stages, sensing matrix
types and sizes are given. Furthermore, the usage of CS data
as features for diagnostic and prognostic methods is outlined.

4.1. Compression Results

Figure 2 shows K = 250 CS samples of a new and an aged
solenoid where compression was performed using a random
type matrix. It can be seen how feature values differ from
their new-state after approximately 6 · 106 cycles.
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Figure 2. Comparison of K = 250 CS samples of an aged
and a new solenoid.

Normalized trajectories for CS samples y50,75,97,108 and the
changes they undergo during solenoid lifetime are given in
Fig. 3. They are compared to the solenoids cycle time ts that
is used as a deterioration indicator (if ts exceeds a certain
threshold for more than ten consecutive measurements, the
solenoid is denoted as deteriorated). This particular solenoid
failed at approximately 5 · 106 cycles trespassing a cycle time
threshold of ts = 90ms . Line breaks are caused by mal-
functioning of the used test stand causing incomplete data. It
should be noted here, that unlike cycle time, CS features start
approximately with the same amplitude as before the inter-
ruption at about 4.4 · 106 cycles. Figure 4 shows CS values
yj=24, i=20 spanning a two dimensional feature space with
fault classes 1 to 6. Compression of the current profiles was
performed in the same way as described before.
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Figure 3. Feature trajectories ya,b,c,d over life time in compar-
ison with cycle time ts that serves as a deterioration indicator.
Gaps in the data were caused by a malfunctioning test stand.

-0.4 -0.3 -0.2 -0.1 0 0.1

Feature y
i

-0.4

-0.3

-0.2

-0.1

0

0.1

F
e

a
tu

re
 y

j

Normal

No Stroke

Reduced Stroke I

22V Supply

Reduced Stroke II

0V Supply

Figure 4. Clustering and class separation of CS samples
yj=24, i=20 in two dimensional feature space.

4.2. Optimal Matrix Size K

Figure 5 shows the CS reconstruction errors and their depen-
dency on sensing matrix size, type and solenoid age. Com-
pression and reconstruction steps were performed for consec-
utive coil current measurements of one solenoid at three dete-
rioration states. Mean and standard deviation (denoted by er-
ror bars) are given for each matrix size K that was evaluated.
Reconstruction errors decrease with increasing CS samples
K for both sensing matrix types converging to error minima
for KR > 200 and KT > 500, respectively.

4.3. Reconstruction Results

Figure 6 shows measured coil current of a deteriorated and a
new solenoid, their respective reconstructions from CS sam-
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Figure 5. Reconstruction error using a random value sens-
ing matrix ΛR and a Toeplitz-type sensing matrix ΛT of in-
creasing size (i.e. taking increasing amounts of CS samples).
Reconstructions were performed for randomly picked current
profiles for each matrix size.

ples, the reference curve as explained in 3.1.1 and the differ-
ences between reference and measurement. Compression as
well as reconstruction was performed using a random-value
sampling matrix with K = 250. Reconstruction and original
signal are in good accordance with each other for both de-
terioration stages. I.e. no artefacts are superimposed on the
signal that might result from too few CS measurements or an
inappropriate selection of the sensing matrix.
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Figure 6. Comparison of reconstructed and measured coil
currents of a new and a worn out solenoid. The used refer-
ence istep(t) (inductance step response, see section 3.1.1) is
displayed as well.

5. DISCUSSION

Figure 2 shows a clear differentiation between a new and an
aged solenoid in feature space. By visual examination of the
single features it can be seen that some have a higher devia-
tion from their initial state than others and that features tend
to drift towards the abscissa with increasing age. This be-
haviour can be observed for all ten solenoids tested. Never-
theless, feature movement towards end of life is of major in-
terest. Four examples of such feature movements in compar-
ison with the solenoids cycle time are given in Fig. 3. It can
be seen, that after some initial oscillations the features start
to move nearly monotonically. Missing data was caused by
malfunctions of the test stand, where either the solenoids did
not toggle or data was not recorded properly. An interruption
of solenoid actuation causes the coil to cool down influencing
its current profile and thus its cycle time. Once the solenoid
heats up again, one would expect the cycle time to approach
its previous level again. But, on closer inspection of Fig. 3 it
can be seen, that at approximately 4.3 million the cycle time
does not continue at a similar level as before the interruption
(at approximately 2 million cycles it does).
The CS features seem to be invariant and more robust to
such disturbances and commence at nearly the same value
after an interruption. However, not all features undergo the
same changes while approaching the solenoids end of life
(EOL). Some are correlated with cycle time or show non-
monotonic behaviour, hamper additional insight into underly-
ing degradation patterns. To overcome this problem, several
approaches might be considered: (a) employing feature selec-
tion and rating techniques as mentioned in 3.2 and (b) using
data and domain knowledge to enhance the compression step.
Approach (a) is state-of-the-art and might work out the best
wear dependent features but impose additional computational
costs whereas approach (b) improves on the method itself by
using structured sensing matrices and more suitable sparsify-
ing transforms to make compression and feature generation
more effective and ideally features more expressive.
As it was shown in (Knöbel, Marsil, Rekla, Reuter, &
Gühmann, 2015) for the same application, post-processing
of fault related features enhances class separation and clus-
tering. Looking at Fig. 4 it can be observed that CS based
features (here simply two CS values y20 and y24 were se-
lected) already show good clustering and class separability
without the need for additional post-processing. The overlap-
ping of class 1 (normal stroke) and class 4 (22V supply volt-
age) arises from using nearly the same voltage level the coil
measurements were acquired with. I.e. at 22V the solenoid
works as intended and the slightly lowered voltage can’t be
detected using only coil current measurements (this particu-
lar overlapping of class 1 and 4 exists in all CS data features).
Fig. 5 shows coil current reconstruction error plotted over
CS samples employing a random value and a Toeplitz-type
sensing matrix for three different solenoid ageing stages. For
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both matrix types all three error curves (new, intermediate,
aged) are superimposed (showing slightly different standard
deviations) indicating that for new solenoids the same com-
pression matrix size can be used as for worn out ones. Fur-
thermore, all curves converge to a lower error bound for
KA,T ' 600, but lower reconstruction errors can be achieved
with way fewer CS samples for the random value matrix com-
pared to the Toeplitz-type matrix. The graph clarifies in a
quite intuitive way, how not only matrix size but also its type
influences the performance of CS. For the successful current
reconstruction shown in Fig. 6 KR = 250 CS samples were
used which seemed to be a good compromise between matrix
size and error. This matrix size is also in good agreement with
the achieved sparsity of k = 231 (i.e. more CS measurements
were taken than necessary). Nevertheless, reconstruction er-
rors and losses as well as alternative methods to the employed
`1 minimisation have to be quantified and evaluated.

6. CONCLUSION AND FUTURE WORK

Focus of this paper is the application of Compressed Sensing
(CS) as a feature extraction approach and the evaluation if and
how CS features are suitable for diagnostics and prognostics.
As results show, compressed coil current measurements con-
tain enough information about wear phenomena and faults to
show life time dependent degradation patterns and good clus-
tering regarding different fault cases. The dual and concurrent
usage of extracted CS data as deterioration/fault indicators as
well as for compression constitutes a promising approach in
the field of condition based maintenance and provides a so-
lution for both problems outlined in section 1: (a) data han-
dling and (b) feature generation. In future work it has to be
evaluated how compression and thus feature extraction can be
enhanced by better adapting the compression step to the data.
This could either be achieved by applying structured sensing
matrices or by appropriate post-processing of the obtained
CS features. Furthermore, errors occurring during the spar-
sifying transform and the compression step as well as their
influence on diagnostic and prognostic processes have to be
quantified and handled accordingly. With regard to concepts
like Industry 4.0 and Internet of Things, CS is becoming even
more interesting. Not only data transfer rates can be kept low
by sending compressed rather than raw data, but also refin-
ing fault detection and remaining useful life prediction based
on fielded assets and components is possible. Ever growing
research interest led to vast improvements of the method it-
self enabling CSto emerge to new application fields in the past
years. Especially, new developments regarding the aforemen-
tioned structured sensing matrices offers significant potential.
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