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ABSTRACT

Prognostics-enabled Decision Making (PDM) is an emerg-
ing research area that aims to integrate prognostic health in-
formation and knowledge about the future operating condi-
tions into the process of selecting subsequent actions for the
system. Previous work developing and testing PDM algo-
rithms has been done in simulation; this paper describes the
effort leading to a successful demonstration of PDM algo-
rithms on a hardware mobile robot platform. The hardware
platform, based on the K11 planetary rover prototype, was
modified to allow injection of selected fault modes related to
the rover’s electrical power subsystem. The PDM algorithms
were adapted to the hardware platform, including develop-
ment of a software module framework, a new route planner,
and modifications to increase the algorithms’ robustness to
sensor noise and system timing issues. A set of test scenar-
ios was chosen to demonstrate the algorithms’ capabilities.
The modifications to run with a hardware platform, the test
scenarios, and the test results are described in detail. The re-
sults show a successful use of PDM algorithms on a hardware
test platform to optimize mission planning in the presence of
electrical system faults.

1. INTRODUCTION

The research fields of system health, diagnostics, and prog-
nostics have become mature to the point where the tech-
niques have begun to be incorporated in new designs of
aerospace vehicles (Reveley, Kurtoglu, Leone, Briggs, &
Withrow, 2010). This has led to the newer research area
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called Prognostics-enabled Decision Making (PDM), which
is devoted to the ability to incorporate system health informa-
tion in making decisions in the planning and control of the
system. A vehicle capable of making decisions, or assisting
a human operator to make decisions, based on system health
information could potentially accomplish more mission ob-
jectives, or operate with improved safety margins, than those
that do not incorporate those considerations.

A useful way to drive maturation of algorithms in diagnostics
and prognostics has been to develop test platforms where the
algorithms may be evaluated. NASA Ames Research Center
has developed several such test platforms, first in the elec-
trical power system domain (Poll et al., 2007) and in the
electromechanical actuator domain (Smith et al., 2009; Bal-
aban et al., 2010). Each test platform has provided a means
for controlled injection of faults to test the capabilities of the
diagnostic and prognostic algorithms and has driven their de-
velopment to be robust to real-world issues such as data la-
tency and sensor noise. However, each test platform was de-
signed primarily with the diagnostic and prognostic problems
in mind. This led to the development of another test platform
- the mobile robot test platform for testing and maturation of
PDM algorithms.

Work began on a mobile robot test platform (Balaban et al.,
2011, 2013) to provide a means for maturing PDM algorithms
and verifying their predictions in a real-world environment.
As described in previous publications, the mobile robot test
platform is expected to support the following high-level tasks:
(i) development of system-level and component-level PDM
algorithms; (ii) development of realistic fault injection and
accelerated aging techniques for algorithm testing; (iii) mat-
uration and standardization of interfaces between reasoning
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algorithms; (iv) performance comparison of PDM algorithms
from different sources; and (v) generation of publicly avail-
able datasets for enabling further PDM research. (Balaban et
al., 2013) described the intended use of the test platform and
the series of test scenarios which had been accomplished in
simulation. This paper describes the adaptation of the algo-
rithms to the hardware test platform, and the scenarios and
results from using it to test PDM algorithms in the field.

The paper is organized as follows. Section 2 describes the
platform modifications to support the new experiments. Sec-
tion 3 presents the modifications to the PDM algorithms. Sec-
tion 4 presents the experimental scenarios and results. Sec-
tion 5 concludes the paper.

2. PLATFORM MODIFICATIONS

The ability to emulate realistic adverse events in the test plat-
form is of key importance for the maturation process of PDM
algorithms. In this context, an adverse event is regarded as
an unexpected off-nominal physical change in the system un-
der consideration. Such an event is to be properly observed
by the health monitoring technology and properly mitigated
or managed by the decisions and actions of the PDM system.
Another important capability for a test platform is to provide
a standard mechanism for its software modules to communi-
cate with each other and with the PDM system. The adverse
events emulated on the test platform and the software module
framework are described in the sections below.

2.1. Hardware fault injection

The hardware faults currently implemented in the test plat-
form are related to its electrical power system. As described
in previous publications (Balaban et al., 2011, 2013), the
rover vehicle under consideration is based on an electric
power train in which the wheels are powered by electric mo-
tors and the power is stored in batteries. A variety of power
conversion and mechanical faults in the electrical power train
result in an increased power consumption in the form of
higher levels of current demanded from the batteries. This
ends up draining the batteries faster, thus potentially consider-
ably reducing the duration of the rover mission. An example
of an electrical power train fault that relates to increased en-
ergy consumption can be identified within the electrical mo-
tor controllers. A motor controller contains power switching
elements like power transistors. The parasitic resistance of
such devices and the lost of power dissipation capability due
to degradation in performance during the device’s lifetime,
resulting in increased power consumption.

Because a variety of faults result in increased power con-
sumption, the battery current drain circuit (parasitic load) was
selected to implement on the robotic test platform. Other rea-
sons for choosing that way of injecting hardware faults are
that the circuit emulating the fault(s) has the ability to drain a
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Figure 1. Battery current drain circuit schematic

variable amount of current and also that it is controlled pro-
grammatically. Figure 1 presents the battery current leakage
circuit. It consists of three banks of resistors in parallel that
can be engaged programmatically by closing the correspond-
ing relay. The third bank in the diagram is a rheostat that
is also controlled programmatically and ranges from 0 Ω to
10 Ω.

2.2. Sensor fault injection

Sensor fault injection is another method of introducing faults
in the mobile robot platform. The prognostics and decision
making components of the PDM system depend on accurate
knowledge of the platform’s state, in order to make accurate
predictions and correct decisions based on those predictions.
If a sensor is faulty and results in an incorrect estimate of the
system’s state, it could lead to either suboptimal decisions
or, in the aviation domain, the potential loss of the mobile
robot platform. Therefore, injecting sensor faults on the mo-
bile robot platform is a useful way to test the PDM system’s
robustness and ability to ensure correct decisions are being
made even in the presence of these types of faults.

Common types of sensor faults were described in (Balaban,
Saxena, Bansal, Goebel, & Curran, 2009; Poll et al., 2011),
and, in the course of this work, three types of sensor faults
were implemented: stuck, offset, and drift. When a sensor is
stuck, its value is set to a specified value and is unchanging
thereafter. When a sensor has an offset fault, its value differs
from the correct value by some specified constant amount.
Finally, when a sensor has a drift fault, its value diverges
slowly from the correct value over time. Examples of these
are shown graphically in Figure 2.
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2.3. Software module framework

The hardware test platform requires software to operate. The
software consists of three major subcomponents: (i) the rover
control and data acquisition module; (ii) the reasoning algo-
rithms, (iii) and the communication infrastructure. The rover
control and data acquisition software is implemented in Lab-
VIEW (LabVIEW version 12.0.0.4029, 2012) and is respon-
sible for interacting with the rover hardware. Control of the
rover is performed by specifying wheel speeds for each indi-
vidual rover wheel through the wheel motor controller hard-
ware. Data acquisition is performed by multiple devices, and
the LabVIEW control software is responsible for gathering
the data from all the devices and making it available as a sin-
gle sensor array. This data is sent to the PDM system.

The communication infrastructure is responsible for facilitat-
ing information sharing between the rover control software
and the reasoning algorithms, as well as among the various
reasoning algorithm modules. This is accomplished through a
publish/subscribe architecture, which is implemented through
the Internet Communication Engine, ICE (Henning, 2004).
Standardized interface definition files are used to describe
messages exchanged among the software and hardware mod-
ules. The message types include command inputs, sensor
data, vehicle state information, fault diagnosis candidates,
as well as unordered and ordered waypoint lists. A central
server coordinates message exchanges among any number of
devices on the same network. In order to be integrated into
the architecture, a new reasoning module needs to only imple-
ment a minimal interface to register with the ICE server and
to publish and/or subscribe to the appropriate messages. For
example, a diagnostic module would subscribe to the rover
commands and sensor data and, in turn, publish diagnostic
messages. Thus the architecture allows for easy accommoda-
tion of modules implemented in different programming lan-
guages and running on dissimilar platforms.

3. ALGORITHM MODIFICATIONS

Modifications were also made to several PDM system algo-
rithms; namely the state of charge estimator, the electrical
power system (EPS) diagnoser, the route planner, and the de-
cision maker. The changes made to each are described below.

3.1. State-of-Charge Estimator

The battery state-of-charge (SOC) estimator employs a
model-based approach. Whereas in (Balaban et al., 2013)
an electric circuit equivalent model of the battery cell was
used, in this work the underlying model employed is an
electrochemistry model of the lithium-ion cell presented in
(Daigle & Kulkarni, 2013). The model has higher accuracy,
yet is based only on ordinary differential equations, and, like
the equivalent circuit model, can be simulated very quickly,
suitable for real-time operations. As in (Balaban et al.,
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2013), the unscented Kalman filter (UKF) is used for state
estimation (Julier & Uhlmann, 2004). The UKF estimates
internal model states, from which SOC and the cell voltage
are computed.

A distributed estimation approach (Daigle, Bregon, & Roy-
choudhury, 2014) can be used for the cells, where the local
input to each cell’s estimator is the measured battery current,
iB , divided by 2. Since the battery voltages on each paral-
lel branch remain approximately balanced, the current going
into the two branches is split evenly.

3.2. EPS Diagnoser

The diagnoser has three main diagnostic purposes, namely
fault detection, isolation, and identification. Fault detection
involves determining if a fault has occurred and is usually
determined by taking the difference between the actual ob-
served sensor readings and the model-predicted nominal be-
havior of these sensor readings, then determining if this dif-
ference is statistically significant. In order to compute the
model-predicted signals, we adopt the structural model de-
composition approach from (Roychoudhury, Daigle, Bregon,
& Pulido, 2013) to decompose the global model of the EPS
into smaller, local submodels, thus decomposing the model-
based estimation problem. This is achieved by using mea-
sured sensor values as local inputs to the submodels. This,
in fact, is what is done for the SOC estimators, formally jus-
tified by this decomposition approach. Thus, we obtain 25
local estimators, one for each cell voltage (using the SOC es-
timators), and one for the battery current (in which measured
load current is used as an input, and we assume in the nomi-
nal case that the battery current is equal to the load current).
The difference between a measured sensor value and the esti-
mated value is termed the residual. A statistically significant
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deviation of a residual from zero indicates a fault. The em-
ployed fault detection method, based on a Z-test, is detailed
in (Daigle et al., 2010) and is the same as used in (Balaban et
al., 2013).

Once a fault is detected, a qualitative event-based diagnosis
(QED) approach (Daigle, Roychoudhury, & Bregon, 2013)
is invoked for fault isolation. For each available residual, a
symbol generation routine is invoked that transforms a quan-
titative residual into qualitative symbols {0,+,−} indicating
whether or not the observed sensor reading is at, above, or
below the estimated nominal value, respectively. Fault isola-
tion is performed by comparing these observed symbols with
the model-predicted symbols (Mosterman & Biswas, 1999;
Daigle, Koutsoukos, & Biswas, 2009). Fault candidates that
are inconsistent with the observed sequence of residual de-
viations are dropped. The fault candidate set is continually
pruned as more residual deviations are observed until, ide-
ally, the true single fault is the only fault candidate remain-
ing1. Since the residuals are computed using local submodels,
most faults affect only a few residuals (e.g., the parasitic load
causes a deviation only in the battery current residual). This
is in contrast to the global estimation approach in (Balaban
et al., 2013) in which faults affect many residuals. Using
the distributed estimation approach improves diagnosability
(Daigle, Bregon, Biswas, Koutsoukos, & Pulido, 2012).

Once the true fault is isolated, a local model for estimating
the fault parameters is used. The state estimate is augmented
with the fault estimate for use in the prediction and decision-
making steps. In the case of sensor faults, the faulty sensor
value may have been used as a local input to an estimator,
thus corrupting the resulting estimates. Therefore, once the
sensor fault is identified, the estimators that used that (faulty)
sensor value as an input must be reset to the time of fault
occurrence and run again up to the current time using the cor-
rected sensor value, so that a correct state estimate (to be used
for prediction) can be obtained.

3.3. Route Planner

The route planner is a new component responsible for deter-
mining the route that the test vehicle takes. It operates on
a set of waypoints, which represent points of scientific in-
terest. Each waypoint consists of a location, specified with
latitude, longitude, and altitude, and a reward, which is an in-
teger representing the scientific importance of that waypoint.
In the case of an aerial vehicle or a high-level simulation, di-
rect paths between waypoints can often be assumed. This is
not generally the case for a ground vehicle, where terrain fea-
tures and obstacles need to be taken into account when plan-
ning vehicle movement. The available waypoints are defined
in advance and are located at the street intersections in the
experiment’s geographical area, as shown in Figure 3a. Not

1This work is restricted to single faults only.

all of the defined waypoints were used as primary waypoints
in the experiments described later; the choice of waypoints is
described in Section 4. The waypoints which were used are
shown as green in Figure 3a and the unused waypoints are
shown in black. The waypoints are identified with numbers,
shown in the figure just after the letter ’W’ (for ”waypoint”).
In Figure 3a, the reward value of each waypoint is shown
in parentheses after the waypoint number. Given the set of
waypoints, the route planner calculates routes for all possible
pairs of waypoints going in either direction. A route between
any two waypoints is approximated as a set of linear segments
between secondary waypoints. This set is translated into
a list of tuples {heading, distance, elevation change}, with
each tuple providing instructions on getting from one sec-
ondary waypoint to the next.

The route planner uses the Google Maps API (JavaScript
Google Maps Application Programming Interface, version
3.0, 2014) to calculate the routes. The route planner then
considers all pairs of waypoints (in both directions). For each
pair of primary waypoints, the Google Maps API is used to
identify the secondary waypoints between the primary way-
points. The API provides latitude, longitude, and altitude for
the secondary waypoints as a sequence of steps to get from
the source waypoint to the destination waypoint. The planner
then steps through the secondary waypoints in order and uses
the API to determine the heading between the last waypoint
and current waypoint. It also calculates the altitude change
based on the already retrieved altitudes for the waypoints.
The result is a three-dimensional array where the first and
second dimension indicate pairs of primary waypoints. The
third dimension is used to list routes to secondary waypoints
in order, resulting in the aforementioned list of tuples.

3.4. Decision Maker

The decision-making algorithm used in this work, shown
in Algorithm 1, is similar to the one presented in (Balaban
& Alonso, 2013). It is based on a particle-filtering pattern
(Gordon, Salmond, & Smith, 1993) and is summarized be-
low.

Algorithm 1 uses a set of k particles, where each particle pi
is initialized with the starting waypoint wp1 and assigned a
uniform weight of wi = 1/k. The starting waypoint is the
waypoint where the vehicle is located at the point of execut-
ing the algorithm (not necessarily the original starting point
of the route). For simplicity of explanation, the algorithm
presented here operates over one-way paths, where the start-
ing waypoint is not always the same as the ending waypoint.
In the actual implementation, a choice between one-way and
round-trip routes is implemented via a straightforward exten-
sion.

During each of the iterations of the algorithm (and for each
particle), the path associated with a particle is sampled ran-
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Algorithm 1 PF

1: inputs: {wpi}Ni=1,K
2: outputs: p∗
3: p1, . . . , pK ← {wp1}
4: w1, . . . , wK ← 1/k
5: for d← 1, D do
6: for k ← 1,K do
7: τ ← permute({wpi}Ni=1 − pk)
8: l← −1
9: repeat

10: l← l + 1
11: ptest = {pk, {wp1, . . . , wpl}}
12: {b,R, Ch} ← simulate(ptest)
13: wk ← {ΘR,Θh} · {R,−Ch}T
14: until F(b) = true
15: if l ≥ 1 then
16: pk ← {pk, {wp1}τ}
17: end if
18: end for
19: j ← arg max

j
wj

20: p∗ ← pj
21: {w1, ..., wK} ← {w1, ..., wK}/

∑K
i=1 wi

22: {p1, ..., pK} ← resample({p1, ..., pK}, {w1, ..., wK})
23: end for

domly out of the set of unvisited waypoints up to the max-
imum length of N . Each sample is tested in the simulator
and the particle weight updated proportionally to the objec-
tive function value (which incorporates path costs in addition
to rewards). Unless system failure is believed to be likely for
even the shortest path extensions, the particle path is extended
by one waypoint (the first one in the randomized remaining
waypoints set τ ).

The number of algorithm iterations, D, is equal to N for the
deterministic simulator mode and can be set to D > N oth-
erwise, to help prevent potentially promising particles from
being ruled out too early. The highest weight particle is iden-
tified and stored after each iteration, to enable interruptibil-
ity. Particle weights are then normalized and the particles are
resampled. The overall computational complexity of the al-
gorithm is O(N2).

The objective function used to guide search of the solution
space is the following:

J = {ΘR,Θh} · {R,−Ch}T , (1)

whereR is the expected cumulative reward along a route, Ch
is the correspondent expected health cost, ΘR and Θh are the
weights for rewards and health costs, respectively. The sim-
ulator used with the PF algorithm utilizes a simplified power
consumption model of the rover. A candidate route is divided
into linear and turning segments and the resulting list of seg-
ments is processed sequentially. For the straight route seg-

Table 1. DM model parameters used in the experiments

Parameter Value Units
m 150.0 kg

v 0.4 m/s

ω 0.07 rad/s

µ 0.06

it 5.0 A

ηe 0.8

ments, the following relationship was used to estimate the
current drawn from the batteries:

il =
mgv

ηeE
(sinα+ µcosα), (2)

where il is the linear segment current, ηe is the electrical
transmission efficiency coefficient, E is the bus voltage, m
is the mass of the rover, g is the acceleration of gravity, v is
the magnitude of the linear velocity, α is the incline angle,
and µ is the coefficient of surface friction. For this set of ex-
periments linear velocity was kept constant. For the turning
segments, a constant rate of turn ω was assumed, associated
with a constant current draw it. When evaluating a candidate
route, a discrete time simulation is performed (with the time
step dt normally set to 1s), taking into account the nonlinear
relationship between current draw at a particular instance in
time and the corresponding drop in battery cell voltage (and
in the SOC of the battery cells).

The battery model used in the simulator is described in
(Daigle, Saxena, & Goebel, 2012). The parameters used with
the model remained the same as in the aforementioned paper.
This equivalent circuit model was integrated and tested with
the decision maker prior to the newer electrochemistry model
(Daigle & Kulkarni, 2013) becoming available and will be
updated to the latter in the near future. The rest of the model
parameters used in the experiments are the following are de-
scribed in Table 1.

A set of K = 50 particles was used by PF algorithm. The
values of objective function weights used were ΘR = 0.9
and Θh = 0.1.

4. EXPERIMENTS AND RESULTS

The PDM system described above was demonstrated in the
field though a set of scenario-based experiments. The de-
tails of the scenarios, including the number of waypoints, the
overall distance, the distances between waypoints, the fault
injection location and fault magnitude were chosen to clearly
show the capabilities of the PDM algorithms. The overall dis-
tance of the nominal trajectory would have to be such that the
vehicle would be capable of completing it fully without sys-
tem faults. That full nominal scenario trajectory was divided
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and arranged into waypoints, chosen to ensure the potential
for the system to replan its trajectory before a potential sys-
tem fault would cause the vehicle to reach the end of useful
life. Several fault scenarios were chosen as well, where the
PDM system was expected to optimize the trajectory while
ensuring the safe return of the vehicle. The location at which
the fault is injected and its magnitude were chosen to allow
the cumulative effects of the fault to cause the end of the sys-
tem’s remaining useful life before it reached the final way-
point. These experimental scenarios and the results of each
are described below.

4.1. Nominal

The nominal scenario consists of 5 waypoints, and no fault
was injected during this scenario. The vehicle began at way-
point 9 and traveled to waypoints 2, 5, 7, and back to 9. These
waypoints are shown in Figure 3b; the unused waypoints are
not shown for clarity. The reward value used for waypoint
9 is 70, and for waypoints 2, 5, and 7 are 30, 90, and 20,
respectively. The route planner inserted secondary waypoints
as required to navigate this route, where secondary waypoints
have no reward.

In this scenario, the vehicle successfully followed the nom-
inal route, covering a distance of approximately 970 m, and
gained the reward for all of the waypoints, for a total reward
of 280. The nominal route is shown as the blue line in Fig-
ure 3b, generated from the vehicle’s global positioning sys-
tem (GPS) sensor values recorded during the scenario. At the
end of the nominal scenario the batteries had an estimated
SOC of 57.6%. Note that even in the nominal case, the PDM
system ran and determined that it was feasible to achieve all
of the given waypoints.

4.2. Battery Parasitic Load Fault without PDM

As a second scenario, a battery parasitic load fault (as de-
scribed in Section 2.1) was injected during the route traver-
sal, with PDM system was not running. This scenario also
began and ended at waypoint 9 and consisted of the same
waypoints as for the nominal scenario, with the same reward
values. However, shortly before reaching waypoint 2, a bat-
tery parasitic load fault was injected into the electrical system
of the vehicle. This is shown in Figure 3c. The first two relays
were activated, resulting in an equivalent parasitic resistance
of 21.6 Ω (see circuit diagram in Figure 1) and an increased
current draw from the batteries.

In this scenario, with the battery parasitic load active and fol-
lowing the nominal route, the vehicle ran out of power be-
fore returning to the starting waypoint. The route is shown in
red in Figure 3c, and the location where the vehicle ran out
of power is marked. This scenario showed that the nominal
route is, in fact, infeasible under the battery drain fault.

4.3. Battery Parasitic Load Fault with PDM

As a third scenario, a battery parasitic load fault was again
injected (resulting in the same parasitic resistance of 21.6 Ω)
shortly before reaching waypoint 2, while following the same
waypoints as the nominal scenario. However, in this case the
PDM system was enabled.

In this scenario, the EPS diagnoser detected that the battery
parasitic load has been injected and estimated the equivalent
resistance value. It reported its estimate of the equivalent re-
sistance value 14 s after the fault was injected. The estimated
resistance was 19.5 Ω, which is an error of only 9.7% from
the actual parasitic resistance of 21.6 Ω. The EPS diagnoser
then sent that estimated parasitic resistance value to the deci-
sion maker along with the battery SOC estimate. When the
vehicle arrived at waypoint 2, the decision maker used the in-
formation from the EPS diagnoser and determined that the ve-
hicle’s original route is no longer feasible. It then performed
an optimization to determine a new route which maximized
the overall reward for the scenario, while ensuring that the ve-
hicle can return safely to the starting point. As can be seen in
Figure 3d, the PDM system eliminated waypoint 5 (shown in
red), but kept waypoint 7. The alternative route taken, shown
on the figure in green, covered a distance of approximately
713 m. The vehicle successfully navigated the new route and
returned to the starting waypoint 9, for a total reward of 190.
At the end of the scenario the estimated SOC of the batteries
was 14.5%.

Note that a conservative option existed: to return to the start-
ing waypoint as soon as possible after the fault was detected.
However, that route would only have gained a total reward
of 170. It would not have made optimal use of the vehicle’s
remaining useful life and, therefore, was not chosen by the
PDM system.

4.4. Bus Current Sensor Fault with PDM

As a fourth scenario, a bus current sensor fault was injected
(also just before reaching waypoint 2) while following the
same waypoints as the nominal scenario. The bus current
sensor value was overridden to always report a value of 0.0 A.

In this scenario, the EPS diagnoser detected that the current
sensor is faulty and reported that to the decision maker. The
decision maker performed an optimization with this vehicle
state and the given waypoints and determined that the vehicle
is able to complete the original route given the fault. There-
fore, it did not modify the vehicle route. Since the mission
was unmodified, the vehicle traversed the same route as in
the nominal scenario shown in Figure 3b, for the same total
reward of 280. At the end of the scenario the estimated SOC
of the batteries was 70.8%.
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(a) All waypoints (b) Nominal scenario

(c) Battery parasitic load fault scenario without PDM (d) Battery parasitic load fault scenario with PDM

Figure 3. Vehicle route taken in nominal and battery parasitic load scenarios with and without PDM

5. CONCLUSIONS

This paper described a successful demonstration of PDM al-
gorithms running onboard a hardware mobile robot test plat-
form. The demonstration required modifications to both the
platform and the algorithms. The demonstrations took the
form of a set of challenge scenarios. The data files from these
scenarios will be made available for download, to allow test-
ing of other prognostic and PDM algorithms.

Planned future work involves deployment of PDM algorithms
on an unmanned aerial vehicle, incorporation of uncertainty
estimates in the reported health parameters, and implementa-
tion of additional faults in the hardware test platform. Pos-

sible future work also includes modifications to support dif-
ferent types of decision-making, such as adapting parameters
and constraint relaxation in the PDM optimization. As the
PDM algorithms are further developed, this robotic test plat-
form will be modified to continue to evaluate them in a real-
world setting.
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