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ABSTRACT

For electric vehicles, technology for monitoring, diagnosis,
and prognosis of the electrical power system (EPS) becomes
essential for safe and efficient operation. To this end, we de-
velop a general system-level integrated diagnosis and prog-
nosis framework, which detects, isolates, and identifies EPS
faults, and predicts when the EPS will fail to deliver sufficient
power. The approach takes advantage of recent work in struc-
tural model decomposition in order to distribute the global di-
agnosis and prognosis problems into local subproblems that
can be solved in parallel, thus enabling implementation on
distributed computational platforms. The framework is ap-
plied to the EPS of a planetary rover testbed, and is demon-
strated using data from field experiments.

1. INTRODUCTION

For electric vehicles, technology for monitoring, diagnosis,
and prognosis of the electrical power system (EPS) is critical.
In order to ensure safety, algorithms are needed that are able
to predict the end-of-discharge (EOD) of the batteries pow-
ering the vehicle. The EOD time depends both on the cur-
rent state of the batteries, including state-of-charge (SOC),
and the future power requirements of the batteries. The fu-
ture power requirements for the batteries depend both on the
power required for future vehicle maneuvers and on any fault
present in the system, which may cause increases in power
demands. Therefore, both diagnosis (determining the current
system state and faults) and prognosis (predicting the EOD of
the system) are required.
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A large body of research exists for both model-based diagno-
sis (Gertler, 1998; Blanke et al., 2006) and prognosis meth-
ods (Luo et al., 2008; Saha & Goebel, 2009; Orchard &
Vachtsevanos, 2009), however, most of the approaches in the
literature focus in either solely the diagnosis or the progno-
sis task. A few works have proposed the integration of both
tasks within a common framework (Patrick et al., 2007; Or-
chard & Vachtsevanos, 2009; Roychoudhury & Daigle, 2011;
Zabi et al., 2013), however, unlike our approach, these ap-
proaches perform the diagnosis and prognosis tasks in a cen-
tralized way, thus suffering from scalability issues due to the
large number of states and parameters in real-world systems.
Moreover, most solutions do not approach the system-level
problem. To the best of our knowledge, there is no approach
in the literature which combines, in a distributed fashion, the
system-level diagnosis and prognosis tasks.

In previous work, we have developed an integrated model-
based diagnosis and prognosis framework (Roychoudhury
& Daigle, 2011). The main contribution of this work was
a unified modeling framework. In an extension of this
work, we used structural model decomposition to develop
a distributed integrated diagnosis and prognosis framework
(Bregon, Daigle, & Roychoudhury, 2012), based on other
work in distributed diagnosis (Bregon et al., 2014) and dis-
tributed prognosis (Daigle, Bregon, & Roychoudhury, 2012,
2014). Through structural model decomposition, a global
model is transformed into a set of local submodels. For
model-based diagnosis and prognosis, this results in the
global diagnosis and prognosis problems being transformed
into local diagnosis and prognosis subproblems. These sub-
problems can be solved independently by assigning them to
different processing units, thus enabling a scalable and com-
putationally efficient distributed diagnosis and prognosis so-
lution.
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In this paper, we apply these frameworks and ideas to the
EPS of a planetary rover testbed at NASA Ames Research
Center (Balaban et al., 2013). The applied architecture con-
stitutes a new framework for integrated system-level diag-
nosis and prognosis. For the rover, we are interested in a
system-level prediction, that is, when the EPS can no longer
supply sufficient power to the loads. The rover is powered
by several batteries, and this condition is a function of the
state of all the batteries. Hence, component-level prognos-
tics algorithms cannot be used, and a system-level progno-
sis framework is required (Daigle, Bregon, & Roychoudhury,
2012). We utilize recent work in structural model decom-
position (Roychoudhury, Daigle, Bregon, & Pulido, 2013) to
achieve a distributed implementation of the framework. We
demonstrate the complete approach using real experimental
data from the rover operating in the field.

The paper is organized as follows. Section 2 formulates the
system-level diagnosis and prognostics problems. Section 3
describes the background on structural model decomposition,
distributed diagnosis, and distributed diagnosis. Section 4
presents the rover EPS case study. Sections 5 and 6 present
the system-level diagnosis and prognostics solutions, respec-
tively, for the rover EPS. Section 7 presents the results for
different scenarios. Finally, Section 8 concludes the paper.

2. PROBLEM FORMULATION

In this section, we formulate the integrated system-level diag-
nosis and prognosis problem. Ultimately, the goal is to pre-
dict when some event occurs in the system, such as the rover
running out of power. In order to make such a prediction,
we need to know the state of the system, including any faults
that are present, therefore, diagnosis is needed in order to per-
form prognosis. We first formulate the system-level diagnosis
problem, followed by the system-level prognosis problem.

2.1. System-Level Diagnosis

The problem of system-level diagnosis consists of three parts:
(i) detecting whether a fault is present, (ii) isolating the cor-
rect fault, and (iii) identifying the faulty system state. In each
of these parts, different models may be used. We assume that
a model M can be succinctly represented in the following
general formulation:

x(k + 1) = f(k,x(k),θ(k),u(k),v(k)), (1)
y(k) = h(k,x(k),θ(k),u(k),n(k)), (2)

where k is the discrete time variable, x(k) ∈ Rnx is the
state vector, θ(k) ∈ Rnθ is the unknown parameter vector,
u(k) ∈ Rnu is the input vector, v(k) ∈ Rnv is the process
noise vector, f is the state equation, y(k) ∈ Rny is the output
vector, n(k) ∈ Rnn is the measurement noise vector, and h is

the output equation.1 We will describe in Section 3 an equiv-
alent structural representation of a modelM that will be used
for structural model decomposition.

In the model-based paradigm, we assume that in the nomi-
nal (fault-free) case, the system behaves according to some
model Mn, and, given the inputs u(k), produces measured
outputs y(k). The problem of fault detection is to determine
when model-predicted (nominal) outputs ŷn(k) are different
from the measured outputs y(k) in a statistically significant
manner. The difference y(k) − ŷn(k) is called a residual; a
(statistically significant) nonzero residual indicates a fault.

Faults are generally represented as changes in the model (i.e.,
in parameter values and/or model structure). So, in general,
each fault f ∈ F , where F is the complete set of potential
faults, is represented as a new model,Mf . Given that a fault
is present, the problem of fault isolation is to determine which
modelMf now represents the system. The problem of fault
identification is to determine the fault parameter estimate for
the isolated fault, p(θf (k)|y(k0 :k)), where y(k0 :k) denotes
all measurements observed from the initial time k0 to the cur-
rent time k.

2.2. System-Level Prognosis

Rather than being focused on individual components, system-
level prognostics is focused on the system as a whole, and
on predictions for the system. As such, it is a more general
formulation of the prognostics problem. System-level prog-
nostics was previously defined in (Daigle, Bregon, & Roy-
choudhury, 2012). Here, we generalize the problem formu-
lation based on (Daigle & Kulkarni, 2014) and explicitly in-
tegrate it with the diagnosis problem. Specifically, predic-
tions must be made for a given fault hypothesis, which con-
sists of a fault modelMf and joint state-parameter estimate
p(xf (k),θf (k)|y(k0 :k)). Fault identification computes an
estimate of θf (k), and the initial step of prognostics is to
compute the full joint-state parameter estimate for the new
faulty model.

System-level prognostics is concerned with predicting the oc-
currence of some system-level event E that is defined with
respect to the states, parameters, and inputs of the system.
We define the event as the earliest instant that some event
threshold function TEf : Rnxf × Rnθf × Rnu → B, where
B , {0, 1} changes from the value 0 to 1. That is, the time of
the event kEf at some time of prediction kP given some fault
f is defined as

kEf (kP ) ,

inf{k ∈ N : k ≥ kP ∧ TEf (xf (k),θf (k),u(k)) = 1}. (3)

1Bold typeface denotes vectors, and na denotes the length of a vector a.

2



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

The time remaining until that event, ∆kEf , is defined as

∆kEf (kP ) , kEf (kP )− kP . (4)

The prognostics problem is inherently uncertain, due
to the random nature of the system evolution (repre-
sented with v(k)), and unknown future inputs (u(k) for
k > kP ). Therefore, kEf and ∆kEf are random vari-
ables, and we must compute the probability distribution
p(kEf (kP )|y(k0:kP )) (Daigle, Saxena, & Goebel, 2012;
Sankararaman, Daigle, Saxena, & Goebel, 2013; Sankarara-
man, Daigle, & Goebel, 2014).

3. BACKGROUND

For a large system, both the diagnosis and prognosis problems
are correspondingly large. A centralized approach does not
scale well, can be computationally expensive, and prone to
single points of failure. Therefore, we propose to decompose
the global diagnosis and prognosis problems into indepen-
dent local subproblems. In this work, we build on the ideas
from structural model decomposition (Blanke et al., 2006;
Pulido & Alonso-González, 2004) to compute local indepen-
dent subproblems, which may be solved in parallel, thus pro-
viding scalability and efficiency.

We adopt here the structural model decomposition framework
described in (Roychoudhury et al., 2013). This approach al-
lows us to make guarantees of the minimality of the derived
submodels and allows to generate different submodels for
each one of the diagnosis and prognosis tasks. In the fol-
lowing, we review the main details and refer the reader to
(Roychoudhury et al., 2013) for additional explanation. We
define a model as follows:
Definition 1 (Model). A modelM∗ is a tupleM∗ = (V,C),
where V is a set of variables, and C is a set of constraints
among variables in V . V consists of five disjoint sets, namely,
the set of state variables, X; the set of parameters, Θ; the set
of inputs, U ; the set of outputs, Y ; and the set of auxiliary
variables, A. Each constraint c = (εc, Vc), such that c ∈ C,
consists of an equation εc involving variables Vc ⊆ V .

Input variables, U , are known, and the set of output variables,
Y , correspond to the (measured) sensor signals. Parame-
ters, Θ, include explicit model parameters that are used in the
model constraints. Auxiliary variables,A, are additional vari-
ables that are algebraically related to the state and parameter
variables, and are used to reduce the structural complexity of
the equations.

The notion of a causal assignment is used to specify the
computational causality for a constraint c, by defining which
v ∈ Vc is the dependent variable in equation εc.
Definition 2 (Causal Assignment). A causal assignment α
to a constraint c = (εc, Vc) is a tuple α = (c, voutc ), where
voutc ∈ Vc is assigned as the dependent variable in εc.

We write a causal assignment of a constraint using its equa-
tion in a causal form, with := to explicitly denote the causal
(i.e., computational) direction.
Definition 3 (Valid Causal Assignments). We say that a set
of causal assignments A, for a modelM∗ is valid if

• For all v ∈ U ∪ Θ, A does not contain any α such that
α = (c, v).

• For all v ∈ Y , A does not contain any α = (c, voutc )
where v ∈ Vc − {voutc }.

• For all v ∈ V −U−Θ,A contains exactly one α = (c, v).

The definition of valid causal assignments states that (i) input
or parameter variables cannot be the dependent variables in
the causal assignment, (ii) a measured variable cannot be used
as an independent variable in any constraint, and (iii) every
variable, which is not input or parameter, is computed by only
one (causal) constraint.

Based on this, a causal model is a model extended with a valid
set of causal assignments.
Definition 4 (Causal Model). Given a modelM∗ = (V,C),
a causal model forM∗ is a tupleM = (V,C,A), where A
is a set of valid causal assignments.

3.1. Structural Model Decomposition

To decompose a model into submodels, we need to break in-
ternal variable dependencies. We do this by selecting certain
variables as local inputs. Given the set of potential local in-
puts (in general, selected from V ), and the set of variables to
be computed by the submodel (selected from V − U − Θ),
we create from a causal model M a causal submodel Mi,
in which a subset of the variables in V are computed using
a subset of the constraints in C. In this way, each submodel
computes independently from all other submodels. A causal
submodel can be defined as follows.
Definition 5 (Causal Submodel). A causal submodelMi of
a causal modelM = (V,C,A) is a tupleMi = (Vi, Ci,Ai),
where Vi ⊆ V , Ci ⊆ C, and Ai ∩ A 6= ∅.

When using measurements (from Y ) as local inputs, the
causality of these constraints must be reversed, and so, in gen-
eral, Ai is not a subset of A.

The procedure for generating a submodel from a causal
model is given as Algorithm 1 (GenerateSubmodel)
in (Roychoudhury et al., 2013). Given a causal model
M, a set of variables that are considered as local in-
puts, U∗, and a set of variables to be computed, V ∗, the
GenerateSubmodel algorithm derives a causal submodel
Mi that computes V ∗ using U∗. The algorithm works by
starting at the variables in V ∗, and propagating backwards
through the causal dependencies. Propagation along a depen-
dency chain stops once a variable in U∗ is reached, or once
a constraint is reached in which the causality can be reversed
so that a variable in U∗ can become a local input. We refer

3



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

System
u(k) y(k)

u1(k)

u2(k)

y2(k)

y1(k)

System-level fault detection System-level fault identification

M1
n

M2
n

Mm
n

.

.

.

.

.

.

um(k)

ym(k)

F(k)

p(✓f1(k)|y(k0:k))

p(✓f2(k)|y(k0:k))

p(✓fj (k)|y(k0:k))C
en

tr
al

iz
ed

fa
u
lt

is
ol

at
io

n

f1(k)

f2(k)

fj(k)

M✓fj

M✓f2

M✓f1

x̂1
n(k), ✓̂

1

n(k), ŷ1
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Figure 1. System-level diagnosis architecture.

the reader to (Roychoudhury et al., 2013) for the algorithm
and additional details.

3.1.1. Structural Model Decomposition for System-Level
Diagnosis

In this work, we use model decomposition to simplify the
fault detection and fault identification problems (Bregon,
Biswas, & Pulido, 2012; Bregon, Daigle, & Roychoudhury,
2012). For fault detection, we compute a set of residuals
based on the sensors, and so derive a set of minimal local
submodels to compute the nominal values of these sensors,
i.e., one submodel for each y ∈ Y . In the submodel comput-
ing the output y, we use the other sensors Y − {y} as local
inputs, thus allowing decomposition. So, given the nominal
model Mn, for each output y ∈ Y , we create a submodel
with V ∗ = {y} and U∗ = {U ∪ (Y − {y})}.
Fault identification requires estimating a set of parameters
associated with faults. Here, we also add Y as local in-
puts. Given a fault model Mf , we create a submodel with
V ∗ = θf , where θf denotes the set of fault parameters, and
U∗ = U ∪ Y .

3.1.2. Structural Model Decomposition for System-Level
Prognosis

Prediction requires determining kEf for a given fault hy-
pothesis f , which is computed based on TEf , which, in
turn, is a function of the system states, parameters, and in-
puts. Often, the system-level, global threshold TEf can be
expressed as the logical or of other local thresholds, i.e.,
TEf = TE1

f
∨ TE2

f
∨ . . . ∨ TEnf for n conditions. With each

local threshold TEif we can associate a local event Eif and
compute times kEif , such that kEf can now also be defined as
min(kE1

f
, kE2

f
, . . . , kEnf ). This leads to a natural decomposi-

tion where each kEif is computed independently, and allows

us to decompose the prediction problem. So, to create the pre-
diction submodels, we use the GenerateSubmodel algo-
rithm in (Roychoudhury et al., 2013) withU∗ set to {UP } and
V ∗ set to {kEif } for each local threshold TEif , where UP ⊆ V
is the set of variables that can be predicted a priori.

The decomposition that can be achieved depends also on the
selectedUP . If no variables exist that can be predicted a priori
outside of U , then the GenerateSubmodel algorithm may
not result in any decomposition and it will suffice to simply
use the global model.

The initial state needed for prediction can be generated from
a set of local estimators. The global prediction model is de-
composed into local state estimators for the needed states, in
the same way as in estimation for diagnosis.

3.2. Integrated System-level Diagnosis and Prognostics
Architecture

Figs. 1 and 2 illustrate the architecture for our system-level
diagnosis and prognosis frameworks, respectively. Regard-
ing system-level diagnosis (Fig. 1), at each discrete time
step, k, the system takes as input u(k) and produces out-
puts y(k). These are split into local inputs ui(k) and local
outputs yi(k) for each one of the m system-level fault detec-
tion submodels, Mi

n. Within each submodel Mi
n, nominal

tracking is performed, computing estimates of nominal states,
x̂in(k), parameters, θ̂

i

n(k), and the measurements, ŷin(k).
The fault isolator performs detection first by comparing the
estimated measurement values against the observed values, to
determine statistically significant deviations for the residual,
ri(k) = yi(k) − ŷi(k). Deviations in the residuals are then
transformed to qualitative symbols used by the centralized
fault isolation block to generate a set of isolated fault can-
didates, F(k). For each one of the isolated fault candidates,
fi(k), local models for fault identification,Mθfi

, are used to
compute local parameter estimates p(θfi(k)|y(k0:k)). These
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Figure 3. Detail of the system-level prognosis architecture.

local parameter estimates are then used as input to system-
level prognosis (Fig. 2).

The system-level prognosis block of the architecture is
divided into two phases: system-level estimation and
system-level prediction. Parameter estimates from the lo-
cal fault identification blocks, together with the inputs
and outputs of the system, are used as input for the local
estimation blocks, Mfi est., to compute state-parameter
estimates p(xfi(k),θfi(k)|y(k0:k)). Finally, the local
state-parameter estimates are used as input to the system-
level prediction blocks, Mfi pred., to compute predictions,
p(kEfi(kP )|y(k0:kP )), at given prediction time kP . Predic-
tions for each fault hypothesis are combined into the global
prediction p(kE(kP )|y(k0:kP )).

Fig. 3 shows the detail of the system-level estimation and
prediction blocks for fault f1, namely Mf1 est. and Mf1

pred. The system-level estimation task is decomposed us-
ing local estimation submodels, M1e

f1
to Mke

f1
. As shown

in the figure, subsets of the the local parameter estimates
p(θf1(k)|y(k0:k)), the system inputs, u(k), and the system

outputs, y(k), are used as input for each one of the local state-
parameter estimation submodels (this, of course, is similar to
the estimation problem using the nominal model in the diag-
nosis part). The output of all the local submodels is then com-
bined to compute the local state-parameter estimate for fault
f1, p(xf1(k),θf1(k)|y(k0:k)). The system-level prediction
problem is also decomposed using local prediction submod-
els. The state estimate for the fault is split into local estimates
for the prediction submodels, which then each compute a lo-
cal kiEf1 value; these are then merged into the system-level
prediction kEf1 for the fault.

4. ROVER EPS MODELING

We are interested in integrated diagnosis and prognosis of the
EPS of the rover. Thus, our system under consideration con-
sists of the batteries, the battery current sensor, and the volt-
age sensors. The rover motors, which produce the electrical
loads experienced by the EPS, are considered outside of our
system under consideration, and so the loads the motors de-
mand are viewed as inputs to the EPS.

5
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The circuit schematic for the rover EPS is shown as Fig. 4.
There are 24 lithium-ion cells in total, with two parallel
branches of 12 cells in series. In parallel is a parasitic load,
modeled as a resistance, Rp, that may appear as a fault. The
battery current, iB , is split into the current going to the load,
iL, and the current going to the parasitic load (if present), ip.
The total voltage provided by the EPS to the load is denoted
as VB . The cell model computes the voltage as a function of
time given the current drawn from the cell, and is described
in detail in (Daigle & Kulkarni, 2013). For completeness, the
model is summarized in the appendix, and we refer the reader
to (Daigle & Kulkarni, 2013) for additional explanation.

We assume that all cells start fully charged, so the voltage
over each parallel branch is the same, and the current is split
evenly (iB/2). As the cells discharge, the total voltages must
stay balanced, since the two sets of cells are in parallel, and
therefore the current into each branch remains iB/2.

The causal graph corresponding to the EPS model is shown in
Fig. 5. The boxes in the figure indicate the battery cell mod-
els (for brevity, the internal variables are not shown). Also
indicated are the sensor models. A measured value y∗ (the
∗ superscript indicates the measured value of a physical vari-
able y) is equal to the physical variable y plus a bias, indicated
with the b superscript. The biases, when present, produce a
constant offset to the true value. Here, it also makes clear that
we use the measured value of the load current, i∗L, as an input
to the system, which we assume is faultless.

The causal graph also indicates the computation of the time
kE (in the following, and in the figures, we drop the f sub-
script, as these submodels are not specific to a given fault).
For the rover, E corresponds to any of the batteries reaching
end-of-discharge (EOD), which is what must be predicted.
EOD is defined by a voltage threshold VEOD, where TE is
defined by V1 < VEOD or V2 < VEOD, . . ., V24 < VEOD.
When any cell voltage is less than VEOD, EOD is reached
for that battery and TE evaluates to 1. The rover cannot be
used beyond that point, as it will damage any batteries whose
voltage is below the cutoff voltage.
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V24
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...
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V1
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V2
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V24
*
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Figure 5. Causal graph for rover EPS model.
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Figure 6. Causal graph for global nominal model.

5. ROVER EPS DIAGNOSIS

As described in Section 2, for diagnosis, models are used
for the three phases of the diagnosis process: (i) fault detec-
tion, consisting of state estimation and residual generation,
(ii) fault isolation, and (iii) fault identification. We describe
the models used for each in the following subsections.

5.1. Fault Detection

Recall that in order to detect faults, we produce residuals, for
which we need to compute model-predicted values of the out-
puts. We denote a residual using ry∗ , where y∗ is the variable
name for the sensor output. The causal graph for the global
model for residual generation is shown as Fig. 6. It is gener-
ated by calling GenerateSubmodel with U∗ = {i∗L}, and
V ∗ = {V ∗1 , V ∗2 , . . . , V ∗24, i∗B}. For residual generation, only
the nominal model is needed, because the aim is only to de-
tect when the nominal model is no longer valid, due to the ap-
pearance of a fault. In Fig. 6, the nominal parts of the model
are colored black, and the fault-related parts in red. Since the
faults are free from the nominal version of the model, only the
black portion is needed for residual generation. We retain the
red parts in the figures to indicate that the measured values
will be causally effected by the faults.

As described in Section 3, we can decompose the residual
generation problem, by creating local models for each sen-
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Figure 7. Causal graph for local i∗B residual generator.
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Figure 8. Causal graph for local V ∗i residual generator.

sor to compute predicted values. The causal graph for the
local model for i∗B is shown in Fig. 7, and is generated
by calling GenerateSubmodel on the global model with
U∗ = {i∗L, V ∗1 , V ∗2 , . . . , V ∗24} and V ∗ = {i∗B}. The predicted
value of i∗B , in the nominal case, is simply equal to the mea-
sured load current, i∗L. For each residual generator that has
states we use the unscented Kalman filter (UKF) for estima-
tion (Julier & Uhlmann, 2004).

The causal graph for the local model for V ∗i (i ∈
[1, 24]) is shown in Fig. 8, and is generated by call-
ing GenerateSubmodel on the global model with
U∗ = {i∗L, i∗B , V ∗1 , V ∗2 , . . . , V ∗24} − {V ∗i } and V ∗ = {V ∗i }.
The voltage for each cell is computed independently, using
i∗B as an input (this is divided by 2 to be used as input to the
cell model).

5.2. Fault Isolation

Fault isolation is performed by analysis of the residual sig-
nals. Due to the decomposition used in the residual genera-
tion step, each fault manifests in only a subset of the complete
residual set. As is clear in Fig. 7, ri∗B will deviate (in a statis-
tically significant way from zero) due only to theRp fault and
the ibB fault. As is clear in Fig. 8, rV ∗

i
will deviate due to V bi

and ibB . Note that the relation i∗B = iB+ibB holds, so when i∗B
is used as a local input, the causal relation is modified so that
iB becomes the dependent variable, and the causal constraint
is iB := i∗B − ibB . That is, the true value of iB is equal to the
measured value minus the bias. For residual generation, the
bias is not included, so by using the measured value, i∗B as
a local input, when a bias is present the wrong (i.e., biased)

current will be fed to the cell model and used to compute V ∗i ,
thus causing a deviation in the corresponding residual.

The effects of the faults on the residuals are shown in Table 1.
Faults are indicated both by the model parameter and the di-
rection of its change, e.g., R−p denotes a decrease in the para-
sitic resistance.2 Fault effects on residuals are represented as
qualitative fault signatures (Mosterman & Biswas, 1999) and
relative residual orderings (Daigle, Koutsoukos, & Biswas,
2007). Fault signatures express the qualitative change in a
signal as the result of a fault. In general, they can be used
to represent changes in magnitude, slope, and higher-order
derivatives of a signal, but here, we represent changes in mag-
nitude only, as this is sufficient to obtain unique diagnoses.
For example, the parasitic load fault causes an increase in
ri∗B . An ordering between a residual r1 and r2 for fault f ,
denoted as r1 ≺f r2, indicates that the fault will cause an
observable deviation in r1 before r2. For example, a bias in
the V ∗1 sensor will produce a deviation in rV ∗

1
before every

other residual (since the fault affets no other residuals). Both
signatures and orderings can be derived from the model auto-
matically (Daigle, 2008).

Both signatures and orderings are reasoned over in an event-
based framework to perform fault isolation (Daigle, Kout-
soukos, & Biswas, 2009). When a residual deviation is first
detected, the fault isolation algorithm checks for the faults
that could have produced that deviation. As more residuals
deviate, the algorithm checks for consistency with the current
sequence of deviations, retaining only faults that can produce
the observed sequence according to the predicted signatures
and orderings. In addition, we can also eliminate candidates
as inconsistent when no deviation is observed in a residual
by using timeouts (this is equivalent to “observing” a 0 sig-
nature) (Daigle, Roychoudhury, & Bregon, 2013). For each
residual we set a time limit under which we expect a resid-
ual deviation to occur after a fault. If we detect a fault and
that residual has not deviated by that time, we observe a 0
signature and reason with that information. Including this in-
formation, we can distinguish qualitatively between all faults,
and therefore obtain unique diagnoses based on the qualita-
tive signatures and orderings alone.3

5.3. Fault Identification

The fault identification submodels are generated from the
global model shown in Fig. 5, with the faulty parts included.
In the call to GenerateSubmodel, U∗ is set to the set of
measured variables, and V ∗ is set to the fault parameter that
is to be estimated.
2In the nominal model, when the parasitic load is absent, this is equivalent to
an infinite resistance in parallel. Thus, the appearance of the parasitic load
is denoted as a decrease in the parasitic resistance.

3Without using the 0 signatures for isolation, if a a voltage sensor bias oc-
curred, we would have to wait infinitely long to ensure there were no further
deviations and rule out ibB as a possibility.
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Table 1. Fault Signatures and Residual Orderings

Fault rV ∗
1

rV ∗
2

. . . rV ∗
24

ri∗
B

Residual Orderings
R−

p 0 0 . . . 0 + ri∗
B
≺ rV ∗

1
, ri∗

B
≺ rV ∗

2
, . . ., ri∗

B
≺ rV ∗

24

V b+
1 + 0 . . . 0 0 rV ∗

1
≺ rV ∗

2
, . . ., rV ∗

1
≺ rV ∗

24
, rV ∗

1
≺ ri∗

B

V b−
1 - 0 . . . 0 0 rV ∗

1
≺ rV ∗

2
, . . ., rV ∗

1
≺ rV ∗

24
, rV ∗

1
≺ ri∗

B

V b+
2 0 + . . . 0 0 rV ∗

2
≺ rV ∗

1
, . . ., rV ∗

2
≺ rV ∗

24
, rV ∗

2
≺ ri∗

B

V b−
2 0 - . . . 0 0 rV ∗

2
≺ rV ∗

1
, . . ., rV ∗

2
≺ rV ∗

24
, rV ∗

2
≺ ri∗

B

. . . . . . . . . . . . . . . . . . . . .
V b+
24 0 0 . . . + 0 rV ∗

24
≺ rV ∗

1
, . . ., rV ∗

24
≺ rV ∗

2
, rV ∗

24
≺ ri∗

B

V b+
24 0 0 . . . - 0 rV ∗

24
≺ rV ∗

1
, . . ., rV ∗

24
≺ rV ∗

2
, rV ∗

24
≺ ri∗

B

ib+B + + . . . + + ∅
ib−B - - . . . - - ∅
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Figure 9. Causal graph for local Rp estimation.
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Figure 10. Causal graph for local V bi estimation.

For the parasitic load fault, the causal graph for the local esti-
mation model is shown in Fig. 9. The parasitic resistance Rp
is computed using iP and VB , where ip is computed based
on the difference between the measured load and battery cur-
rents, and VB is computed based on the measured voltages.

The causal graph for the local model for the voltage sensor
bias estimation is shown in Fig. 10. The voltage bias is com-
puted based on the measured voltage and the model-predicted
voltage, computed using the measured battery current.

The causal graph for the local model for the current sensor
bias estimation is shown in Fig. 11. ibB is computed as the
difference between the measured battery and load currents.

6. ROVER EPS PROGNOSIS

As described in Section 2, prognosis requires a prediction
model, an initial state estimate, and future trajectories of the
inputs, UkP and the process noise, VkP . The prediction
model must be able to compute the event threshold TE , given
the local inputs for prediction.

iL iB

iL
  * iB

  *

iB
    b

Figure 11. Causal graph for local ibB estimation.

PL

kEiL iB V1

V2

V24

:

...

...

...

Rp ip VB

Figure 12. Causal graph for system-level prediction.

The causal graph for the global model for prediction is shown
in Fig. 12. We need only to compute TE , so none of the sensor
outputs are included. Note also that for prediction, we use as
an input the load power, PL, instead of the load current. This
is because it is much easier in practice to predict load power
a priori. With a given speed command to the rover motors,
power is constant, but current will increase as the battery cells
discharge and VB decreases.

It is important also to note that the prediction problem cannot
be decomposed in general. Given iB , we can compute each
Vi independently, and evaluate Vi < VEOD. Since E occurs
when any one of the cells drops below the cutoff voltage, we
can compute EOD for each cell and take the minimum to de-
termine when E will occur (since E occurs when the first
cell reaches EOD). However, iB depends on iP and iL, both
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PB kEiB Vi... i

Figure 13. Causal graph for local prediction for cell i.

of which depend on VB . There are no local inputs to break
this dependency.

If we make a simplifying assumption, however, we can de-
compose the prediction problem and thus achieve the benefits
of a distributed implementation. The causal graph for this
case is shown in Fig. 13. In this case, we use as a local in-
put the cell power PB , where PB = PL/24, thus allowing
local EOD thresholds, TEi , and, hence, local events Ei, to
be computed independently. This assumption is only valid if
the cells are all approximately equal in voltage, otherwise the
assumption of PB = PL/24 will be violated. Further, this is
not valid when Rp is present, as in that case PB is a function
of both PL and ip.

In general, the state estimates required for the prediction
models must be produced by new estimators derived us-
ing structural model decomposition, for the global predic-
tion model. For some faults, however, the needed estimates
may be available from the residual generators, if those resid-
ual generators were not affected by the fault. In this case,
new estimators do not need to be derived. For the parasitic
load fault, the residual generator for each V ∗i has the state
estimates for the battery cells, and the fault identifier has the
value of Rp. We can then reconstruct a global state estimate
for use in prediction. For a voltage sensor fault, a new lo-
cal estimator (same as that used for residual generation, see
Fig. 8) is needed to reestimate the states for the corresponding
battery cell model. From the time of fault detection onwards,
the corrected value of the sensor, computed by removing the
estimated bias, is used to reestimate the states. For the cur-
rent sensor fault, the case is more complex, because a faulty
sensor reading was used in all of the local voltage estimators.
Therefore, new local estimators are needed for all cells, in
which the bias-corrected value must be fed as an input from
the time of fault detection onward, once the fault bias has
been identified.

In this work, we assume that process noise is negligible com-
pared to the future input uncertainty, so represent the uncer-
tainty only in the future input trajectories UkP (i.e, the tra-
jectory of PL). We use the surrogate variable method to rep-
resent the future input trajectories (Daigle & Sankararaman,
2013). In this method, we represent UkP through a set of
surrogate variables, such that UkP can be constructed in a
deterministic way given values of the surrogate variables. In
this way, we can represent the probability distributions of the
surrogate variables to indirectly represent the probability dis-
tribution of the input trajectories. For the rover, we consider

an equivalent constant-loading distribution for the future in-
puts. That is, we assume that the future load power, PL, will
be constant with the value drawn from some distribution. In
the case of the rover, the operator really only needs to know
EOD predictions for best-, average-, and worst-case usage
scenarios (Daigle & Kulkarni, 2014). For the state estimate,
we use as samples the sigma points provided by the UKF.
Each sample is simulated forward three times, once for each
use case. From this we obtain best-, average-, and worst-case
EOD predictions, each with some small variance (due to the
state estimate variance).

It is important to note that since Rp is included in the predic-
tion model, the prediction input does not change in the nom-
inal and faulty cases. If, however, Rp was considered part
of the load, i.e., part of PL, then PL prediction would have
to change in the faulty case and would be complicated, since
the additional power required by Rp is actually a function of
battery voltage (as shown in Fig. 12). This is an advantage of
viewing the prediction problem in a system-level perspective
(the EPS perspective), rather than a component-level perspec-
tive (the battery cell perspective).

7. RESULTS

In this section, we demonstrate the integrated system-level
diagnosis and prognosis framework on the rover case study,
using real experimental field data. The task of the rover is
to travel to different waypoints to complete some science ob-
jective. We must predict how long the rover will be able to
execute its mission before having to return to the start point.
Faults must be diagnosed so that the mission can be replanned
if the rover is unable to meet all of its objectives due to the
fault, and does not become stranded before returning to the
start point.

We consider first a nominal scenario, in which the rover has
enough energy to visit all waypoints and return successfully
to the start point. Fig. 14 shows the measured and estimated
values of V ∗1 (results are similar for the remaining voltage
sensors). With VEOD = 2.5 V, EOD is clearly not reached.
Fig. 15 shows tracking of the battery current sensor. Although
the measured value is very noisy, the residual remains within
the nominal range, and no fault is detected in any of the resid-
uals. Fig. 16 shows the system-level EOD predictions for
the rover. Each prediction consists of three points, for best-
, average-, and worst-case future loading. Here, even in the
worst-case scenario the predictions indicate that the rover will
be able to complete the mission.

We next consider a parasitic load fault of 20 Ω, appearing as
an additional load on the batteries, draining additional current
and causing the batteries to discharge more quickly. The fault
occurs at 780 s, and is detected at 801 s on the battery cur-
rent residual, as shown in Fig. 17. Given the increase in the
battery current, the parasitic load fault and a positive bias in
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Figure 14. Estimation of V ∗1 .
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Figure 15. Estimation of i∗B .
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Figure 16. Predictions of ∆kE for worst-, average-, and best-
case future usage scenarios.

the battery current sensor are the only possible faults (see Ta-
ble 1). At 922 s, two minutes after fault detection, we observe
a 0 symbol on all the voltage sensor residuals, since they have
not yet deviated. Given these observations, the only consis-
tent candidate is the parasitic load fault. The estimated par-
asitic resistance over time is shown in Fig. 18. The estimate
converges to the true value in less than 50 s, and stays very
close to the true value. As described in Section 6, the predic-
tion problem in this case cannot be decomposed, because the
parasitic current depends on the battery voltages, so the local
input for prediction is the total motor power. The system-
level predictions are shown in Fig. 19. Before the fault is
diagnosed, the predictions indicate that the rover will be able
to complete its mission. After the fault is diagnosed, the pre-
dictions reflect the fact that more power is being demanded
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Figure 17. Estimation of i∗B for a parasitic load.
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Figure 18. Estimation of Rp for a parasitic load.
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Figure 19. Predictions of ∆kE for worst-, average-, and best-
case future usage scenarios with a parasitic load fault.

from the batteries, and EOD will be reached much sooner,
requiring the mission to be shortened.

We next consider a battery voltage sensor fault, manifesting
as a constant offset (bias) of 0.2 V on the voltage sensor for
battery 1. The fault is injected at 600 s and detected at 634 s
in the residual for the faulty sensor, as shown in Fig. 20. It
is immediately diagnosed, as no other fault can produce a de-
viation first in the voltage sensor, according to the residual
orderings. In order to recover from this fault, the estimator
for the voltage is reset back to the estimated time of the fault,
and is updated up to the current time using the unbiased sig-
nal, computed as the measured signal value minus the esti-
mated bias. From the current time on, the present value of the
estimated bias is used to correct the measured value sent to
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Figure 20. Estimation of V ∗1 for the voltage sensor bias fault.
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Figure 21. Estimation of i∗B with a battery current sensor
fault.

the estimator. Because this fault does not actually have any
effect on the energy required by the rover, the predictions are
the same as in the nominal condition.

Finally, we consider an offset fault in the battery current sen-
sor. The fault is injected at 300 s, and is detected at 344 s.
Detection time is slow due to the high amount of noise in the
sensor. The tracking of the sensor is shown in Fig. 21, where
the bias is clear visually (c.f. Fig. 15). The initial diagno-
sis is either the parasitic load fault, which can also cause an
increase in the current, and a current sensor fault. Because a
faulty current sensor value is being used as a local input to the
voltage estimators, these residuals deviate as well. Tracking
for V ∗1 is shown in Fig. 22. Because a larger current is used,
the estimated voltage drains faster than actual, and a deviation
is detected at 415 s, thus isolating the current sensor fault as
the true fault. Since the state estimates for the batteries will
be corrupted, this will propagate to the predictions, giving in-
correct results. So, to recover from the fault, once the fault
is identified, the battery estimators are reset to the time of
fault detection, and the corrected measurement value, based
on the estimated bias is fed up to the current time and in the
future. There is no physical effect on the energy consump-
tion of the rover due to the fault, and therefore the predictions
match those in the nominal case.

8. CONCLUSIONS

In this paper, we developed and implemented an approach for
integrated system-level diagnosis and prognosis of the elec-
trical power system of a planetary rover testbed. The algo-
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Figure 22. Estimation of V ∗1 with a battery current sensor
fault.

rithms monitor the behavior of the EPS and generate symbols
for fault isolation in a distributed fashion. Fault isolation is
performed, and for each fault hypothesis, system-level prog-
nosis is performed, starting with distributed estimation of the
state and fault parameters, and followed by distributed pre-
diction. The distributed nature of the architecture is based
upon the use of local submodels that enable the decompo-
sition of global diagnosis and prognosis problems into local
subproblems, applying ideas established in previous works.
The approach was demonstrated using field data from the
rover, showing successful detection, isolation, identification,
and prediction for a set of realistic faults.

Future work will extend the application of the framework to
the entire rover system, not just the EPS, which will enable
the diagnosis of faults in the rover motors, and incorporation
of that information into system-level predictions. We will
also apply the approach to other systems, and make further
theoretical extensions of the work, e.g., by including multiple
faults, and hybrid systems.
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APPENDIX: BATTERY CELL MODELING

The battery cell model computes the voltage as a function of
time given the current drawn from the cell, and is described
in detail in (Daigle & Kulkarni, 2013). We summarize the
model here and refer the reader to (Daigle & Kulkarni, 2013)
for additional explanation.

The voltage terms of the battery are expressed as functions
of the amount of charge in the electrodes (the states of the
model). Each electrode, positive (subscript p) and negative
(subscript n), is split into two volumes, a surface layer (sub-
script s) and a bulk layer (subscript b). The differential equa-
tions for the battery describe how charge moves through these
volumes. The charge (q) variables are described using

q̇s,p = iapp + q̇bs,p (5)
q̇b,p = −q̇bs,p + iapp − iapp (6)
q̇b,n = −q̇bs,n + iapp − iapp (7)
q̇s,n = −iapp + q̇bs,n, (8)

where iapp is the applied electric current The term q̇bs,i de-
scribes diffusion from the bulk to surface layer for electrode
i:

q̇bs,i =
1

D
(cb,i − cs,i), (9)

whereD is the diffusion constant. The c terms are lithium ion
concentrations:

cb,i =
qb,i
vb,i

(10)

cs,i =
qs,i
vs,i

, (11)

where, for CV v in electrode i, cv,i is the concentration and
vv,i is the volume. We define vi = vb,i + vs,i. Note now that
the following relations hold:

qp = qs,p + qb,p (12)
qn = qs,n + qb,n (13)

qmax = qs,p + qb,p + qs,n + qb,n. (14)

We can also express mole fractions (x) based on the q vari-
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Figure 23. Battery voltages.

ables:

xi =
qi
qmax , (15)

xs,i =
qs,i
qmax
s,i

, (16)

xb,i =
qb,i
qmax
b,i

, (17)

where qmax = qp + qn refers to the total amount of available
Li ions. It follows that xp+xn = 1. For lithium ion batteries,
when fully charged, xp = 0.4 and xn = 0.6. When fully dis-
charged, xp = 1 and xn = 0 (Karthikeyan, Sikha, & White,
2008).

The different potentials are summarized in Fig. 23 (adapted
from (Rahn & Wang, 2013)). The overall battery voltage
V (t) is the difference between the potential at the positive
current collector, φs(0, t), and the negative current collector,
φs(L, t), minus resistance losses at the current collectors (not
shown in the diagram). At the positive current collector is the
equilibrium potential VU,p. This voltage is then reduced by
Vs,p, due to the solid-phase ohmic resistance, and Vη,p, the
surface overpotential. The electrolyte ohmic resistance then
causes another drop Ve. At the negative electrode, there is a
drop Vη,n due to the surface overpotential, and a drop Vs,n
due to the solid-phase resistance. The voltage drops again
due to the equilibrium potential at the negative current col-
lector VU,n. These voltages are described by the following
set of equations (see (Daigle & Kulkarni, 2013) for details):

VU,i = U0 +
RT

nF
ln

(
1− xs,i
xs,i

)
+ VINT,i, (18)

VINT,i =
1

nF

(
Ni∑
k=0

Ai,k

(
(2xi − 1)k+1 − 2xik(1− xi)

(2xi − 1)1−k

))
,

(19)

Vo = iappRo, (20)

Vη,i =
RT

Fα
arcsinh

(
Ji

2Ji0

)
, (21)

Ji =
i

Si
, (22)

Ji0 = ki(1− xs,i)α(xs,i)
1−α, (23)

V = VU,p − VU,n − V ′o − V ′η,p − V ′η,n, (24)

V̇ ′o = (Vo − V ′o)/τo (25)

V̇ ′η,p = (Vη,p − V ′η,p)/τη,p (26)

V̇ ′η,n = (Vη,n − V ′η,n)/τη,n. (27)

Here, U0 is a reference potential, R is the universal gas con-
stant, T is the electrode temperature (in K), n is the number
of electrons transferred in the reaction (n = 1 for Li-ion),
F is Faraday’s constant, Ji is the current density, and Ji0
is the exchange current density, ki is a lumped parameter of
several constants including a rate coefficient, electrolyte con-
centration, and maximum ion concentration. VINT,i is the ac-
tivity correction term (0 in the ideal condition). We use the
Redlich-Kister expansion with Np = 12 and Nn = 0 (see
(Daigle & Kulkarni, 2013)). The τ parameters are empirical
time constants (used since the voltages do not change instan-
taneously).

The model contains as states x, qs,p, qb,p, qb,n, qs,n, V ′o , V ′η,p,
and V ′η,n. The single model output is V .

The state of charge (SOC) of a battery is defined to be 1 when
the battery is fully charged and 0 when the battery is fully dis-
charged by convention. In this model, it is analogous to the
mole fraction xn, but scaled from 0 to 1. We distinguish here
between nominal SOC and apparent SOC (Daigle & Kulka-
rni, 2013). Nominal SOC is computed based on the combi-
nation of the bulk and surface layer CVs in the negative elec-
trode, whereas apparent SOC is be computed based only on
the surface layer. When a battery reaches the voltage cutoff,
apparent SOC is 0, and nominal SOC is greater than 0 (how
much greater depends on the difference between the diffusion
rate and the current drawn). Once the concentration gradient
settles out, the surface layer will be partially replenished and
apparent SOC will rise while nominal SOC remains the same.
Nominal (n) and apparent (a) SOC are defined using

SOCn =
qn

0.6qmax (28)

SOCa =
qs,n

0.6qmaxs,n
, (29)

where qmaxs,n = qmax vs,n
vn

.4

4Note that SOC of 1 corresponds to the point where qn = 0.6qmaxs,n , since
the mole fraction at the positive electrode cannot go below 0.4, as described
earlier.
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