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ABSTRACT 

Planetary gearboxes are widely used in the drivetrain of 
helicopters and wind turbines.  Any planetary gearbox 
failure could lead to breakdown of the whole drivetrain and 
major loss of helicopters and wind turbines. Therefore, 
planetary gearbox fault diagnosis is an important topic in 
prognostics and health management (PHM). Planetary 
gearbox fault diagnosis has been done mostly through 
vibration analysis over the past years.  Vibration signals 
theoretically have the amplitude modulation effect caused 
by time variant vibration transfer paths due to the rotation of 
planet carrier and sun gear, and therefore their spectral 
structure is complex.  It is difficult to diagnose planetary 
gearbox faults via vibration analysis.  Strain sensor signals 
on the other hand have less amplitude modulation effect.  
Thus, it is potentially easy and effective to diagnose 
planetary gearbox faults via stain sensor signal analysis.  In 
this paper, a research investigation on planetary gearbox 
fault diagnosis via strain sensor signal analysis is reported. 
The investigation involves using time synchronous average 
technique to process signals acquired from a single 
piezoelectric strain sensor mounted on the housing of a 
planetary gearbox and extracting condition indicators for 
fault diagnosis. The reported investigation includes analysis 
results on a set of seeded fault tests performed on a 
planetary gearbox test rig in a laboratory. The results have 
showed a satisfactory planetary gearbox fault diagnostic 
performance using strain sensor signal analysis. 

1. INTRODUCTION 

Gearboxes are widely used in almost every powertrain of 
rotating systems such as automobile, helicopter, wind 
turbine, and etc. According to Link et al. (2011), 
approximately 59% of the failure modes in wind turbines 
involved gear failures. Astridge et al. (1989) indicated that 
19.1% of all the helicopter transmission failures came from 
the gear failure. Gearbox failures are normally accompanied 
by unexpected increment in operation cost and catastrophic 
disaster followed by loss of life. Especially, the planetary 
gearbox (PGB) is one of the most critical components in 
generating uplift force in a helicopter transmission system 
and converting wind power to electrical power in a wind 
turbine drive train system. However, the fault detection of 
planetary gearbox is very complicate since the complex 
nature of dynamic rolling structure of planetary gearbox 
does not allow for direct attachment of sensors within the 
rotating elements. A large portion of planetary gearbox 
diagnostic system has been devoted to vibration analysis 
using accelerometers. A vibration analysis technique namely 
“vibration separation” was introduced by McFadden & 
Howard (1990), Howard (1990), and McFadden (1991). 
Vibration separation enables to decompose a raw vibration 
signal into multiple PGB component (e.g. sun, planet, or 
ring) oriented vibration signals by taking windowed 
vibration signals only when the vibration sensor, ring gear, 
planet gear, and sun gear are aligned inline. The windowed 
vibration signals are recombined specifically for the targeted 
gear component by utilizing the geometric properties of 
corresponding PGB. Subsequent studies by McFadden 
(1994), Samuel et al. (2004), and Lewicki et al. (2011) 
validated this research with slightly modified versions of the 
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technique. However, the fundamental idea of vibration 
separation remains unchanged. Wu et al. (2004) have shown 
the detectability of planet carrier crack in a planetary 
gearbox. In their study, raw vibration data and time 
synchronous average (TSA) data were transferred to 
frequency domain and wavelet domain to obtain 
differentiable features. In a paper by Patrick et al. (2007), a 
vibration data based framework for on-board fault diagnosis 
and failure prognosis of helicopter transmission component 
was presented. In their study, TSA pre-processed vibration 
data and particle filter based diagnostic and prognostic 
models were presented. Yu et al. (2010) compared a raw 
vibration signal and TSA signal with a wavelet transformed 
vibration signal to obtain desirable fault feature. Bartelmus 
& Zimroz (2009) showed that the spectral characteristics of 
vibration signal obtained from planetary gear help not only 
fault detection but also gear fault location. Feng & Zuo 
(2012) derived mathematical models of faulty planetary gear 
for detecting and locating fault by considering characteristic 
frequency of amplitude modulation (AM) and frequency 
modulation (FM) effects.  

In a recent paper, Feng & Zuo (2013) pointed out that 
vibration signals theoretically have the amplitude 
modulation effect caused by time variant vibration transfer 
paths due to the unique dynamic structure of rotating planet 
gears.  Therefore, it is difficult to diagnose PGB faults via 
vibration analysis.  One attractive solution to this problem is 
to use alternative sensor signals that have less sensitivity to 
AM effect for PGB fault diagnosis and prognosis.  Feng & 
Zuo (2013) have shown the effectiveness of torsional 
vibration analysis for PGB fault diagnosis using a torque 
sensor. The frequency characteristics of torsional vibration 
were shown to be solely sensitive to the AM and FM effects 
caused by gear faults under constant torque on input and 
output shafts.  Kiddy et al. (2011) used fiber optic strain 
signals for PGB fault diagnosis and showed a close 
relationship between strain measurement and torque 
changes. Even though promising, the research reported in 
the literature on using less AM effect sensitive signals for 
PGB fault diagnosis has certain limitations.  The torque 
sensors used by Feng and Zuo (2013) are more expensive 
than vibration and strain sensors and require special 
installation.  The fiber optic strain sensor array used by 
Kiddy et al. (2011) had to be embedded in the PGB in order 
to be effective.  The strain signals of fiber optic strain sensor 
can only be sampled at a maximum sampling rate up to 1 
kHz, which limits its coverage on shaft speed above 2060 
rpm.  Also in Kiddy et al. (2011), the strain signals were 
analyzed the same way as vibration signals. Fiber optic 
sensor signals were analyzed using vibration separation 
technique after low frequency components were filtered out.  
No effective signal analysis techniques have been developed 
for strain signals. Piezoelectric (PE) strain sensor is 
desirable in having an improved strain resolution and 
applicability of higher sampling rate in comparison with the 

conventional strain gauge sensors (Banaszak 2001) or the 
fiber optic strain sensors (Jiang et al. 2014). 

To overcome the above mentioned challenges in developing 
effective PGB fault diagnosis capability, a research 
investigation on planetary gearbox fault diagnosis via strain 
sensor signal analysis has been conducted and is reported in 
this paper.  The PE strain sensors based planetary gearbox 
fault diagnosis method can be considered as an attractive 
alternative to traditional vibration analysis based approaches. 
A key characteristic of PE materials is the utilization of the 
direct piezoelectric effect to sense structural deformation 
and the converse piezoelectric effect to actuate structures. 
Compared to the conventional strain gauge sensors and 
accelerometers, the PE strain sensors have certain 
advantages that could be summarized as follows: (1) ability 
to measure the first derivative of physical deformation with 
less sensitive AM and FM effect , (2) high linearity and 
sensitivity from their superior noise immunity as compared 
to differentiated sensing performance of conventional strain 
sensors (Lee & O’Sullivan, 1991, Banaszak 2001), (3) high 
frequency range ( Jiang et al. 2014), (4) space-efficiency 
without a structural change on the measuring target (Kon et 
al. 2007), and (5) negligible high temperature effect on the 
measurement output (Sirohi & Chopra, 2000, Jiang et al. 
2014). The aforementioned benefits allow for PE strain 
sensors to potentially have greater sensing resolution and 
accuracy. 

The remainder of the paper is organized as follows. Section 
2 gives a detailed explanation of the proposed methodology. 
In Section 3, the details of the seeded fault tests on a 
laboratory planetary gearbox test rig and the experimental 
setup used to validate the proposed methodology are 
provided. Section 4 presents the planetary gearbox fault 
diagnosis results from the seeded fault tests. Finally, Section 
5 concludes the paper. 

2. METHODOLOGY 

An overview of the proposed methodology is provided in 
Figure 1. First, the PE strain sensor signals and tachometer 
signals are digitized simultaneously. Then, a band pass filter 
is applied so that the band passed signals could contain the 
information related to the planetary gearbox conditions. 
Using the tachometer signals, the TSA signals can be 
obtained along with residual signal and energy operator 
(EO). Residual signal is the TSA signal with shaft and mesh 
frequencies being removed and EO is a type of residual of 
the autocorrelation function (Teager, 1992).  

In a related research on rotating machinery diagnostics, it 
has been shown that a deliberately chosen band pass filter 
improves diagnostic performance by removing shaft 
imbalance (Shiroishi et al., 1997).  Thus, a band pass filter 
with low frequency bandwidth (i.e., low pass filter) was 
applied to get the information associated with the gearbox 
condition while high frequency noises could be removed.  
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The major components of the methodology are explained in 
the following two sections. Section 2.1 provides a brief 
review of TSA and the computation of condition indicators 
(CIs) used for planetary gearbox fault diagnosis is explained 
in Section 2.2.  

 

 
 

Figure 1. Overview of the methodology. 

2.1. Time Synchronous Average 

TSA is one of the most widely utilized signal processing 
techniques to extract a periodic waveform from noisy 
signals of rotating machines. The underlying idea of TSA is 
to obtain a periodically repeated waveform of interest over 
N number of revolutions. Theoretically, when a rotating 
machine is running at a constant speed, the periodic 
waveform is intensified while any noises are suppressed 

with a noise reduction rate of	
ଵ

√ே
. 

Consider a signal ݔሺݐሻ composed of a periodic signal ݕሺݐሻ 
with known period ோܶ and additive noise	݁ሺݐሻ: 

ሻݐሺݔ  ൌ ሻݐሺݕ ൅ ݁ሺݐሻ (1)

Assuming the total number of ܰ observed periods, the TSA 
of ݔሺݐሻ can be expressed as: 

 ܽሺݐሻ ൌ
1
ܰ
෍ ݐሺݔ െ ݎ ோܶሻ

ேିଵ

௥ୀ଴

 (2)

As ܰ → ∞, the TSA signal ܽሺݐሻ approaches to ݕሺݐሻ. More 
details about TSA could be found in (Braun, 1975; 
McFadden, 1987; Bechhoefer and Kingsley, 2009). 

Basically, TSA chops up the raw sensor signal into multiple 
single revolution signals. Then, each revolution signals are 
resampled (via stretching or shrinking) so as to have same 
sample points in one revolution. Then, the final periodic 
signal is obtained by averaging the resampled signals. After 
TSA is computed, any kind of fault detection condition 
indicators can be evaluated.  Two major types of TSA 
techniques have been reported in the literature: TSA with 

tachometer as a reference signal and tachometer-less TSA. 
Since comparing those two techniques is beyond the scope 
of this paper, only the TSA with tachometer will be 
addressed herein. Even though successful TSA applications 
to many types of signals such as vibration and acoustic 
emission (AE) signals have been reported in the literature 
(Mcfadden, 1987; Bonnardot et al., 2005; and Qu et al., 
2014), application of TSA to PE strain signal processing for 
planetary gear fault diagnosis has not yet been reported.  

2.2. CIs for Planetary Gearbox Fault Diagnosis 

Table 1 provides the definitions of the CIs investigated for 
PGB fault diagnosis.  The CIs can be defined into five 
general types: root mean square (RMS), peak to peak (P2P), 
skewness (SK), kurtosis (KT), and crest factor (CF).  Each 
type of CI can be computed using different input signals.  In 
addition to TSA signals, other types of input signals can be 
generated: residual, narrow band (NB), AM, and FM.  
Residual is a TSA signal with the primary meshing and 
shaft components removed. The energy operator (EO) 
introduced by Teager (1992) is defined as the residual of the 
autocorrelation function as following: 

 
ாை,௜ݔ ൌ ௜ݔ

ଶ െ ௜ିଵݔ ⋅  ,௜ାଵݔ
(for ݅ ൌ 2, 3, … , ܰ െ 1) 

(3)

where ݔாை,௜ is the ith element of EO data; ݔ௜ is the ith element 
of the input data ூேݔ	 . NB signals could be obtained by 
applying a narrow band pass filter on the TSA data. The 
width of the narrow band can be selected based on the gear 
fault frequency.  In this paper, three narrow bands are 
selected based on sun gear fault frequency, planet gear fault 
frequency, and ring gear fault frequency, respectively.  
Finally, AM and FM signals are obtained by amplitude 
modulation and phase modulation of the narrow band 
filtered data. 

3. EXPERIMENTAL SETUP 

This section covers the experimental setup used to validate 
the PE strain sensor based planetary gearbox fault 
diagnostic technique. Figure 2 displays the planetary 
gearbox test rig used to collect the PE strain sensor data 
under different gear health and operating conditions. 

3.1. The Planetary Gearbox Test Rig 

The planetary gearbox test rig composes four main parts: (1) 
the data acquisition (DAQ) system, (2) the driving motor, (3) 
the gearbox, (4) the load generator. The DAQ system 
includes a National Instruments’ DAQ board with a 
maximum analog input sampling rate of 1.25 MHz, a PE 
strain sensor, and a signal conditioner from PCB 
Piezotronics. The driving motor is a 3-phase 10HP 
induction motor with a motor controller.  A Hall effect 
sensor was used as the tachometer paired with a toothed 
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Table 1. The definitions of the CIs. 

Input Signal ሺݔூேሻ 

TSA Residual EO NB AM FM 

CI 

      Description 
 
 
Equation 

Time 
synchronous 

averaged 
signal 
ሺ்ݔௌ஺ሻ 

TSA signal 
with the 
primary 

meshing and 
shaft 

components 
removed 
ሺݔோ௘௦ሻ 

Energy 
operator: a 

residual of the 
autocorrelation 

function 
ሺݔாைሻ 

Narrow 
band pass 

filtered 
ሺݔே஻ሻ 

Amplitude 
modulation 

of NB 
filtered 
signal 

ሺܯܣሺݔே஻ሻሻ

Frequency 
modulation 

of NB 
filtered 
signal 

ሺܯܨሺݔே஻ሻሻ

Root 
mean 
square 
(RMS) 

ூேሻݔሺܵܯܴ ൌ ඩ
1
ܰ
෍ݔ௜

ଶ

ே

௜ୀଵ

 .ூேሻ: measures the magnitude of a discretized signalݔሺܵܯܴ 

Peak to 
peak 
(P2P) 

ܲ2ܲሺݔூேሻ

ൌ
ሺmax
ଵஸ௜ஸே

ሺݔ௜ሻ െ min
ଵஸ௜ஸே

ሺݔ௜ሻሻ

2
 

ܲ2ܲሺݔூேሻ: measures the maximum difference within the data range. 

Skewness 
(SK) 

ூேሻݔሺܭܵ

ൌ

1
ܰ∑ ሺݔ௜ െ ሻேݔ̅

௜ୀଵ
ଷ

ቈට
1
ܰ∑ ሺݔ௜ െ ሻேݔ̅

௜ୀଵ
ଶ
቉
ଷ 

 ூேሻ: measures the asymmetry of the data about its mean value. A negative SKݔሺܭܵ
value and positive SK value imply the data has a longer or fatter left tail and the data 

has a longer or fatter right tail, respectively. 

Kurtosis 
(KT) 

ூேሻݔሺܶܭ

ൌ
ܰ∑ ሺݔ௜ െ ሻேݔ̅

௜ୀଵ
ସ

ൣ∑ ሺݔ௜ െ ሻேݔ̅
௜ୀଵ

ଶ
൧
ଶ 

.ூேሻ: measures the peakedness, smoothness, and the heaviness of tail in a data setݔሺܶܭ

Crest 
factor 
(CF) 

ூேሻݔሺܨܥ ൌ
ܲ2ܲሺݔூேሻ
ூேሻݔሺܵܯܴ

 
 ூேሻ to describe howݔሺܵܯܴ ூேሻ andݔூேሻ: measures the ratio between ܲ2ܲሺݔሺܨܥ

extreme the peaks are in a waveform. 

Note: ݔ௜ is ith element of the input data	ݔூே; ܰ is the length of the input data	ݔூே; max	ሺ⋅ሻ returns the maximal element of input data	ݔூே; 
min	ሺ⋅ሻ returns the minimal element of input data	ݔூே; ̅ݔ is a mean value of the input data	ݔூே defined as ∑ ௜ݔ

ே
௜ୀଵ /ܰ; NB, AM, and FM 

refers to a narrow band, amplitude modulation, and frequency modulation, respectively. 
 

 

Figure 2.  The planetary gearbox test rig for wind turbine 
simulator. 

 

wheel mounted on the motor shaft. The output shaft of the 
gearbox is connected to a generator and a grid tie to serve as 
a load generator. The structure of the PGB test rig is similar 
to those used in a wind turbine. In this study, a 
commercially available single stage planetary gearbox with 
a 5:1 speed reduction ratio was used. In Figure 3, a notional 
sketch of the planetary gearbox structure is provided. 
Amongst the three different planetary gearbox types, a 
specific planetary gearbox with standstill ring gear was used 
in this paper. For this type PGB, the number of teeth is 
linear to the radius of each gears pitch circle. This indicates 
that the gear ratio is also related to the angular velocity (߱ሻ 
of the gears. The gear ratio can be defined as:  

 
ܴ ൌ

߱ଵ

߱஺

ൌ 1 ൅
ଷݖ
ଵݖ

 (4)



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

5 

where ߱୧ is the angular velocity of the ݅୲୦ gear component; 
 ୧ is the number of teeth on the ݅୲୦ gear component; the gearݖ
component index subscripts 1, 2, 3, and A correspond to sun 
gear, planet gear, ring gear, and arm (i.e. planet carrier), 
respectively. The planet carrier rotation speed (i.e. output 
shaft speed) in frequency could be obtained as: 

 ௔݂ ൌ
ଵ݂

ܴ
 (5)

where ௜݂  is the rotation speed in frequency at the ݅୲୦  gear 
component. Also, a meshing characteristic frequency of 
planetary gearbox can be obtained as: 

 ଵ݂ଶ ൌ ଶ݂ଷ ൌ
ଵ݂ݖଵݖଷ

ሺݖଵ ൅ ଷሻݖ
ൌ ଵ݂ ⋅ ଷݖ

ܴ
 (6)

where ௜݂௝ is the relative rotation speed in frequency between 
the ݅୲୦ and ݆୲୦ gear component. 

 

Figure 3. Notional sketch of the planet gearbox structure. 
 

The most common three failure modes of a planetary 
gearbox are: sun gear fault, planet gear fault, and ring gear 
fault. Their corresponding fault frequencies are represented 
as follows: 

 ௙݂,ଵ ൌ ݏ ⋅ ሺ ଵ݂ െ ௔݂ሻ ൌ
ଵ݂ݖଷݏ

ሺݖଵ ൅ ଷሻݖ
 (7)

 ௙݂,ଶ ൌ 2ሺ ଶ݂ ൅ ௔݂ሻ ൌ
4݊ଵݖଵݖଷ
ሺݖଷ

ଶ െ ଵݖ
ଶሻ

 (8)

 ௙݂,ଷ ൌ ݏ ⋅ ௔݂ ൌ
ଵ݂ݖଵݏ

ሺݖଵ ൅ ଷሻݖ
 (9)

where ௙݂,௜  represents the fault frequency at the ݅୲୦  gear 
component; ݏ represents the number of planet gears in the 
gearbox. For more details, see (Bartelmus and Zimroz, 
2011). Tables 2 and 3 present the structural information and 
characteristic frequencies of the planetary gearbox used in 
this study. 

Table 2. The parameters of the planetary gearbox 

Parameter

Number 
of teeth 
on sun 

gear (ݖଵ)

Number 
of teeth 

on planet 
gear (ݖଶ) 

Number 
of teeth 
on ring 

gear (ݖଷ)

Number 
of planet 

gears 
 (ݏ)

Value 27 41 108 3 

 

Table 3. Characteristic frequencies of the planetary gearbox 
at varied input shaft speed. 

Input 
shaft 
speed 
( ଵ݂) 

Output 
shaft 
speed 
( ௔݂) 

Meshing 
frequency 

( ଵ݂ଶ ൌ
ଶ݂ଷ) 

Sun gear 
fault 

frequency 
( ௙݂,ଵ) 

Planet 
gear fault 
frequency 

( ௙݂,ଶ) 

Ring gear 
fault 

frequency 
( ௙݂,ଷ) 

10 2 216 24 10.67 6 

20 4 432 48 21.33 12 

30 6 648 72 32 18 

40 8 864 96 42.67 24 

50 10 1080 120 53.33 30 

* All the values are in unit of Hz.

3.2. Seed Gear Faults 

Three types of planetary gearbox faults were created: sun 
gear tooth fault, planet gear tooth fault, and ring gear tooth 
fault.  Each type of the gear fault was created by artificially 
damaging a tooth on a sun gear, planetary gear, and rig gear, 
respectively (see Figure 4). 

During the seeded fault tests, PE strain signals were 
collected with a sampling rate of 100 kHz.  The tachometer 
signals were simultaneously recorded along with the PE 
strain signals to get revolution stamps. Both the healthy 
gearbox and the gearboxes with seeded faults were tested at 
5 different input shaft speeds: 10 Hz, 20 Hz, 30 Hz, 40 Hz, 
and 50 Hz. At each speed, five samples were collected. In 
addition to the shaft speed variation, varying loading 
conditions were applied at the output shaft of the gearbox: 
0%, 25%, 50%, and 75% of the maximum torque of the 
planetary gearbox. At each loading condition, 25 samples 
(five samples per shaft speed for 5 speeds) were taken. In 
addition, the PE strain sensors were mounted at the same 
location of the gearbox for each data collection. 
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Figure 4. Seeded faults: (a) sun gear fault, (b) planet gear 
fault, (c) ring gear fault. 

4. RESULTS 

The validation results for the seeded fault tests conducted on 
the planetary gearbox test rig are provided in this section. 
Figure 5 shows a sample of the PE strain sensor signal and 
tachometer signal at 10Hz shaft speed for a duration of 0.3 
seconds. Since the toothed wheel associated with the 
tachometer in the test rig has eight teeth, each input shaft 
revolution results in 8 zero crossings. 

Before the TSA was computed, a band pass filter with a 
bandwidth of 1 Hz to 18 kHz was applied to the signals.  

 
Figure 5. Sample of the healthy PE strain sensor signal and 

tachometer signal at 10Hz shaft speed. 
 

Samples of the TSA signals of the PE strain sensor are 
provided in Figures 6 through 8. Figure 6 shows the TSA 
samples of the healthy gearbox with 50% loading at 

different shaft speeds. Figure 7 shows TSA samples with a 
shaft speed of 30Hz at different loading conditions. In 
Figure 8, TSA samples for different gearbox health 
conditions with shaft speed fixed at 30 Hz and loading at 50% 
are provided. 

 

Figure 6.  Samples of PE strain sensor signals of the healthy 
gearbox at different shaft speeds: (a) 10 Hz, (b) 20 Hz, (c) 

30 Hz, (d) 40 Hz, (e) 50 Hz. 
 

Once the TSA signals were obtained, then all of the CIs 
described in Section 2.4 were computed. Among the 
computed CIs, four of them were found effective: TSA 
RMS, TSA P2P, residual RMS, and residual P2P.  

Figure 9 shows the TSA RMS plots for different gearbox 
health conditions at different shaft speeds and loading 
conditions. As one can see from Figure 9, by using TSA 
RMS alone, the three gear faults can be clearly separated.  
As the loading increases, the separation of the gear faults 
gets better.  Also, by using TSA RMS alone, all the three 
gear faults can be clearly separated from the healthy 
condition.  The detectability of the gear faults gets better as 
the loading increases.  For all the 4 gearbox conditions, 
noted from Figure 9, the TSA RMS remains relatively 
stationary within the same loading condition regardless the 
change of the shaft speed.  This shows that the PGB gear 
fault diagnostic capability of the TSA RMS is heavily 
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affected by the torque level of the gearbox.  The vertical bar 
for each data point shown in Figure 9 represents a 95% 
confidence interval of the estimated TSA RMS mean. In 
order to check the statistical significance of the gear fault 
separation using TSA RMS, analysis of variance (ANOVA) 
test was conducted using the TSA RMS data. In this test, it 
was assumed that the shaft speed has no effect on TSA 
RMS within a loading condition.  

 

Figure 7.  Samples of the PE strain sensor signals at 
different loading conditions: (a) 0%, (b) 25%, (c) 50%, (d) 

75%. 
 

 

Figure 8.  Samples of the PE strain sensor signals of 
different gearbox conditions: (a) healthy gearbox, (b) sun 

gear fault, (c) planet gear fault, (d) ring gear fault. 
 

 

Figure 9. TSA RMS plots . 
 

The following hypotheses were established based on 
aforementioned assumptions: 

H଴: ଵߤ ൌ ଶߤ ൌ ଷߤ ൌ  ସߤ

Hଵ: at least	one	ߤ௜ ് 		௝ߤ
ሺfor ݅, ݆ ൌ 1,2,3, and	4; 	݅ ് ݆ሻ 

(10)

where ߤ௜ is mean TSA RMS of the ݅୲୦ gear health condition 
at a fixed loading condition, i = 1, 2, 3, and 4 represents 
healthy gearbox, sun gear fault, planet gear fault, and ring 
gear fault, respectively. Table 4 shows the summary of 
ANOVA results with a 99% confidence level. 

From Table 4, P-values for all loading conditions are 0.000. 
With a 99% confidence level, the null hypotheses should be 
rejected (α ൌ 0.01 ൐ 0ሻ. Therefore, it is safe to say that the 
separation of all the gear faults tested using TSA RMS is 
statistically significant at all loading conditions. 

Table 4. Summary of ANOVA results for TSA RMS. 
 
Loading Source DF SS MS F P 

0% 

Factor 3 0.0334141 0.0111380 1605.12 0.000

Error 96 0.0006662 0.0000069   

Total 99 0.0340802    

25% 

Factor 3 0.1481272 0.0493757 8261.04 0.000

Error 96 0.0005738 0.0000060   

Total 99 0.1487010    

50% 

Factor 3 0.4641124 0.1547041 10614.42 0.000

Error 96 0.0013992 0.0000146   

Total 99 0.4655116    

75% 

Factor 3 0.845794 0.281931 781.55 0.000

Error 96 0.034630 0.000361   

Total 99 0.880424    
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The results for other three CIs: TSA P2P, residual RMS, and 
residual P2P are presented in the same way as TSA RMS in 
the following.  The resulting plots of the CIs are provided in 
Figures 10 to 12 and the ANOVA results in Tables 5 to 7, 
respectively.  

Similar results like TSA RMS can be observed for other two 
CIs: TSA P2P and residual RMS.  However, the diagnostic 
performance of these two CIs at 0% loading condition is not 
as good as TSA RMS. A clear diagnosis of the gear faults 
can be observed at 25%, 50%, and 75% loading conditions. 
When the loading level reaches 25% or above, TSA P2P and 
residual RMS can be ranked like TSA RMS as the following 
order: ring gear fault -> planet gear fault -> sun gear fault -> 
healthy gear. For residual P2P, a clear diagnosis of the gear 
faults can be observed only when the loading level reaches 
to 50% or above.  

 

 
 

Figure 10. TSA P2P plots. 
 

Table 5. Summary of ANOVA results for TSA P2P. 
 
Loading Source DF SS MS F P 

0% 

Factor 3 0.1199638 0.0399879 611.06 0.000

Error 96 0.0062822 0.0000654   

Total 99 0.1262461    

25% 

Factor 3 0.775791 0.258597 1065.47 0.000

Error 96 0.023300 0.000243   

Total 99 0.799091    

50% 

Factor 3 1.615071 0.538357 2682.91 0.000

Error 96 0.019264 0.000201   

Total 99 1.634335    

75% 

Factor 3 3.25105 1.08368 787.88 0.000

Error 96 0.13204 0.00138   

Total 99 3.38309    

 

 

 

Figure 11. Residual RMS plots. 
 

Table 6. Summary of ANOVA results for residual RMS. 
Loading Source DF SS MS F P 

0% 

Factor 3 0.0001227 0.0000409 147.50 0.000

Error 96 0.0000266 0.0000003   

Total 99 0.0001493    

25% 

Factor 3 0.0006061 0.0002020 56.46 0.000

Error 96 0.0003436 0.0000036   

Total 99 0.0009497    

50% 

Factor 3 0.0025676 0.0008559 219.08 0.000

Error 96 0.0003750 0.0000039   

Total 99 0.0029427    

75% 

Factor 3 0.0038871 0.0012957 233.04 0.000

Error 96 0.0005337 0.0000056   

Total 99 0.0044208    

 

 

Figure 12. Residual P2P plots. 
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Table 7. Summary of ANOVA results for residual P2P. 
 
Loading Source DF SS MS F P 

0% 

Factor 3 0.0019954 0.0006651 76.63 0.000

Error 96 0.0008333 0.0000087   

Total 99 0.0028287    

25% 

Factor 3 0.0087545 0.0029182 79.85 0.000

Error 96 0.0035084 0.0000365   

Total 99 0.0122630    

50% 

Factor 3 0.0323371 0.0107790 193.51 0.000

Error 96 0.0053475 0.0000557   

Total 99 0.0376846    

75% 

Factor 3 0.0557005 0.0185668 239.39 0.000

Error 96 0.0074456 0.0000776   

Total 99 0.0631462    

 

Note that in Tables 5 to 7, even under the low loading 
conditions, the null hypothesis in (10) is rejected.  This is 
because all the faulty CIs are significantly different from the 
healthy CIs even though the difference among the faulty CIs 
is not statistically significant.  

5. CONCLUSIONS 

In this paper, a new piezoelectric strain sensor based 
planetary gearbox fault diagnostic methodology was 
presented. The presented method was accomplished through 
a combination of band pass filtering, time synchronous 
average, and condition indicators to extract diagnostic 
features for planetary gear box diagnosis. First, the PE strain 
sensor signal is band pass filtered so as to retain the 
information related to the gear conditions. Then, TSA signal 
is computed to obtain the periodically repeated waveform 
while white noise is suppressed.  The presented method was 
validated using data collected from seeded fault tests 
conducted on a planetary gearbox test rig in a laboratory.  
The validation results have shown that, by utilizing the TSA 
based PE strain sensor signal processing approach, fully 
separable diagnostic CIs towards all planetary gearbox fault 
types were captured regardless of shaft speed and output 
shaft loading condition.  The current planetary gearbox 
diagnostic methods mainly rely on vibration signal analysis.  
They provide limited fault diagnosis for planetary gearboxes.  
The PE strain sensor based diagnostic technique presented 
provides an attractive alternative to the current vibration 
analysis based approach. 
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