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ABSTRACT

This paper presents an approach of model-based diagnosis
for the health monitoring of hybrid systems. These systems
have both continuous and discrete dynamics. Modified Parti-
cle Petri Nets, initially defined in the context of hybrid sys-
tems mission monitoring, are extended to estimate the health
state of hybrid systems. This formalism takes into account
both uncertainties about the system knowledge and about di-
agnosis results. The generation of a diagnoser is proposed to
track online the system health state under uncertainties by us-
ing particle filter. To include more complex characteristics of
the system, as its degradations for prognosis purpose, an en-
riched formalism called Hybrid Particle Petri Nets is defined.

1. INTRODUCTION

Systems have become so complex that it is often impossi-
ble for humans to capture and explain their behaviors as a
whole, especially when they are exposed to failures. It is
therefore necessary to develop tools that can support oper-
ator tasks but that also reduce the global costs due to un-
availability and repair actions. An efficient diagnosis tech-
nique has to be adopted to detect and isolate faults leading
to failures. Diagnosis uses a behavioral model of the system
and online observations to determine the behavioral state of
the system. Uncertainties in diagnosis can be taken into ac-
count by giving as much information as possible about the
ambiguous state likelihood. On the other side, systems are
continuously degrading depending on operational conditions.
Knowing available information on the system, it is possible to
establish physical degradation laws or time-dependent fault
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probability distributions based on the feedback. It is then in-
teresting to take into account this temporal and/or stochastic
information about the system degradation. Health monitoring
consists in evaluating the current health state of the system
through a diagnosis and a degradation law value. The health
state is represented by a degradation measure for the system
in a specific behavioral state (Vinson, Ribot, Prado, & Com-
bacau, 2013). Its estimation is the first step to perform later
prognosis and to compute the remaining useful life (RUL) of
the system. A formal generic modeling framework for health
monitoring of complex heterogeneous systems has been pre-
sented in (Ribot, Pencolé, & Combacau, 2013) and encapsu-
lates knowledge about the system behavior and degradation
used by diagnosis and prognosis. Uncertainties in the model
and diagnosis results are taken into account by estimating in-
terval ranks for parameters. Another common framework for
diagnosis and prognosis has been proposed in (Roychoudhury
& Daigle, 2011). This article presents a state model that spec-
ifies the nominal behavior of the system and fault progression
over time. However, it only represents systems with a contin-
uous dynamics without discrete or hybrid aspect.

Recent industrial systems exhibit an increasing complexity
of dynamics that are both continuous and discrete. It has be-
come difficult to ignore the fact that most systems are hy-
brid (Henzinger, 1996). In previous works (Chanthery &
Ribot, 2013), we extended the diagnosis approach proposed
in (Bayoudh, Travé-Massuyes, & Olive, 2008) in order to in-
tegrate diagnosis and prognosis for hybrid systems. The ap-
proach uses hybrid automata and stochastic models for the
system degradation. The main drawback of this approach is
that the discrete event system oriented diagnosis framework
explodes in number of states and it does not seem the best
suited for the incorporation of the highly probabilistic prog-
nosis task. To have a more compact representation and to
capture all uncertainties related to the system, to the observa-
tions and to the diagnosis results, we propose to consider the
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formalism of Modified Particle Petri Nets (MPPN) defined
in (Zouaghi, Alexopoulos, Wagner, & Badreddin, 2011a).
Moreover this representation is intuitive and facilitates the
modeling task. MPPN are an extension of Particle Petri nets
(Lesire & Tessier, 2005) that combines a discrete event model
(Petri net) and a continuous model (differential equations).
The main advantage of MPPN is that uncertainties and hy-
brid dynamics are taken into account. Particle filter is used to
integrate probabilities in the continuous state estimation pro-
cess. MPPN have been used for supervision and planning, but
never for health monitoring, diagnosis and/or prognosis.

MPPN representation is useful in capturing all uncertainties
about the state knowledge and about the observations. As
wide as can be the range of feature representations provided
by MPPN, we did not succeed in modelling a characteristic
that depends on a discrete state and a continuous state of the
system. That is why we propose to define what we call Hy-
brid Particle Petri Nets (HPPN) in order to model both behav-
ior and degradation of hybrid systems in the context of health
monitoring. The HPPN formalism enriches MPPN to model
available knowledge about hybrid characteristics of the sys-
tem. The paper is organized as follows. Section 2 recalls the
MPPN framework and presents how it can be used for behav-
ioral health monitoring. In Section 3 a hybrid diagnosis tech-
nique is proposed based on the generation of a behavioral di-
agnoser using the MPPN formalism. The MPPN enrichment
is defined in Section 4 as Hybrid Particle Petri Nets to take
the system degradation into account by interacting with the
hybrid behavioral model. Some conclusions and future work
are discussed in the final section.

2. MODIFIED PARTICLE PETRI NETS FOR MONITOR-
ING

In this section, the Modified Particle Petri Nets (MPPN) for-
malism is described according to the work of (Zouaghi et al.,
2011a). First the model structure and its online process are
detailed and then a way to use it to represent system health
model is presented.

2.1. Definition

Modified Particle Petri Nets are defined as a tuple < P, T,
Pre, Post,X,C, γ,Ω,M0 > where:
• P is the set of places, partitioned into numerical places

PN and symbolic places PS .
• T is the set of transitions (numerical TN , symbolic TS

and mixed TM ).
• Pre and Post are the incidence matrices of the net, of

dimension |P | × |T |.
• X ⊂ <n is the state space of the numerical state vector.
• C is the set of dynamics equations of the system associ-

ated with numerical places, representing continuous state
evolution.

• γ(pS) is the application that associates tokens with each
symbolic places pS ∈ PS .

• Ω is the set of conditions associated with the transitions
(numerical ΩN and symbolic ΩS).

• M0 is the initial marking of the net.

MPPN can model system behaviors. A basic example of a
system behavior modeled with MPPN is illustrated in Fig-
ure 1.

pS1 = OK

pS2 = KO

pN3 = ON

pN4 = OFF

ΩS(tS1 ) =
occ(f)

ΩS(tS2 ) =
occ(f)

ΩS(tS3 ) =
occ(stop)

ΩS(tS4 ) =
occ(start)

π1

π2

π3

Figure 1. Example of MPPN.

There are four places in this MPPN: P = {pS1 , pS2 , pN3 , pN4 }.
Two symbolic places pS1 and pS2 represent the two discrete
modes of the system, respectively when the system is work-
ing well (OK) and when the system has failed (KO). Two
numerical places pN3 and pN4 represent the two continuous be-
haviors of the system, respectively when it is turned on (ON )
and when it is turned off (OFF ). There are four symbolic
transitions is this MPPN: T = {tS1 , tS2 , tS3 , tS4 }. They repre-
sent occurences of discrete events. tS1 and tS2 represent the
occurence of a fault event f respectively when the system is
turned on and turned off and let the system go from the OK
mode to the KO mode. tS3 represents the occurence of a mis-
sion event stop that turns off the system when it is turned on
and is in OK mode. Finally, tS4 represents the occurence of a
mission event start that turns on the system when it is turned
off and is in OK mode.

A numerical place pN ∈ PN is associated with a set of dy-
namics equations representing the continuous behavior of the
system. Numerical places thus model continuous dynamics
of the system. Numerical places are marked by a set of parti-
cles πi

k = [xik,w
i
k] with i ∈ {1, ..., |MN

k |} where MN
k is the

set of all the particles in the net at time k. Particles are de-
fined by their corresponding numerical state vector xik ∈ X
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and their weight wi
k ∈ [0, 1] at time k. The set of particles

represents an uncertain distribution over the value of the nu-
merical state vector.

Symbolic places model the behavioral modes of the system.
A symbolic place pS ∈ PS is marked by configurations δjk
with j ∈ {1, ..., |MS

k |} where MS
k is the set of configurations

in the net at time k. The set of configurations represents all
the possible current modes of the system.

The marking of the net is composed of tokens, that can be
numerical tokens (particles) or symbolic tokens (configura-
tions). The marking Mk of the MPPN at time k consists of
both kinds of tokens:

Mk = {MS
k ,M

N
k } (1)

For example, in Figure 1, the numerical place pN3 is marked
by the set of particles {π1, π2} and the symbolic place pS1
is marked by a configuration. The marking of the illustrated
MPPN is then Mk = {[0, 1]′, [{π1, π2}, {π3}]′}.

A transition models a change in the continuous dynamic and/or
a change of the system mode. A symbolic transition is condi-
tioned by an observable discrete event. A numerical transition
is conditioned by a set of constraints on continuous observ-
able variables. Finally, a mixed transition is conditioned by
an observable discrete event and a set of constraints on con-
tinuous observable variables.

2.2. Firing Rules

This section recalls the basic ideas of MPPN firing rules.
More formal details about the firing rules of the different
transitions can be found in (Gaudel, Chanthery, Ribot, & Le
Corronc, 2014). A numerical transition tNj ∈ TN is associ-
ated with conditions ΩN (tNj ), where ΩN (tNj )(π) = 1 if the
particle satisfies the conditions. For example, if π = [x,w]
follows the constraint equation c and b is a trigger value, a nu-
merical condition can be defined as ΩN (tNj )(π) = (c(x) > b).
ΩS(tSj ) = occ(e) represents the conditions assigned to a sym-
bolic transition tSj ∈ TS . occ(e) is a boolean indicator of the
occurrence of the discrete event e : occ(e) = 1 if e has oc-
curred. Then, a configuration δ satisfies the condition ΩS(tSj )

when ΩS(tSj )(δ) = 1, ie. when the event e has occurred.

The numerical firing uses the concept of classical firing with
the particles satisfying the numerical condition and the con-
cept of pseudo-firing (ie. duplication) for the configurations.
The duplication of configurations represents uncertainty about
the occurrence of an unobservable discrete event. An exam-
ple of a numerical firing from marking at time k to marking
at time k+ 1 is illustrated in Figure 2(a). In this example, tN1
only has a numerical condition because it is a numerical tran-
sition. Particle π3 satisfies the numerical condition ΩN (tN1 )
and thus is moved through the transition tN1 to pN4 . The con-
figuration in place pS1 is duplicated in pS2 .

pS1

pS2

pS5

pS6

pS9

pS10

pS1

pS2

pS5

pS6

pS9

pS10

pN3

pN4

pN7

pN8

pN11

pN12

pN3

pN4

pN7

pN8

pN11

pN12

ΩN (tN1 ) ΩS(tS2 ) ΩS(tM3 ) ΩN (tM3 )

ΩN (tN1 ) ΩS(tS2 ) ΩS(tM3 ) ΩN (tM3 )

π1
π2

π3

π1

π2

π3

π4
π5

π6

π4
π5

π6

π4
π5

π6

π7
π8

π9

π7

π8

π9

k

k + 1

(a) (b) (c)

Figure 2. Illustration of firing rules of numerical (a), sym-
bolic (b) and hybrid (c) transitions.

The symbolic firing uses the concept of pseudo-firing for par-
ticles and configurations. The pseudo-firing of all the tokens
models uncertainty about the occurence and the non occur-
rence of an observable discrete event. Figure 2(b) illustrates
an example of a symbolic firing. The symbolic transition tS2
only has a symbolic condition. No token satisfies the condi-
tion ΩS(tS2 ), however all tokens are duplicated.

Mixed transitions are introduced in (Zouaghi et al., 2011a)
to model the interaction between discrete events and system
continuous dynamics. In the referred article, they were called
”hybrid transitions”. A mixed transition merges a symbolic
transition with a numerical transition to correlate discrete ob-
servations with continuous observations. The firing of the
symbolic transition only depends on a discrete event, but the
simultaneous firing of the numerical transition models the de-
pendency of the mixed transition on the symbolic part be-
cause discrete events are part of the process behavior. A
mixed transition tMj ∈ TM is then associated with both nu-
merical conditions ΩN (tMj ) and symbolic conditions ΩS(tMj ).

The mixed firing uses the concept of classical firing with the
particles satisfying the numerical condition and the concept
of pseudo-firing with the configurations satisfying the sym-
bolic condition. The pseudo-firing of configurations models
uncertainty about the occurrence of an observable discrete
event which is supported by a change of continuous dynam-
ics. An example of a mixed firing is illustrated in Figure 2(c).
tM3 is a mixed transition therefore it has a symbolic condi-
tion and a numerical condition. The configuration in place
pS9 is duplicated because it satisfies the symbolic condition
ΩS(tM3 ). Regarding the numerical part, particles π8 and π9

satisfy ΩN (tM3 ) and so they are moved through tM3 . Fur-
thermore, π7 stays in place pN11 because it does not satisfy
ΩN (tM3 ).

Heterogeneous systems are defined as systems that have a dis-
crete, continuous or both discrete and continuous dynamics.
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MPPN can easily model heterogeneous systems by using only
the symbolic or numerical subpart of the model or both in the
case of hybrid systems.

2.3. State Estimation

The problem of hybrid state estimation in MPPN has been
introduced in (Zouaghi et al., 2011a) and consists of a predic-
tion step and a correction step, illustrated in Figure 3.

For the sake of clarity in this paper we assume that a hybrid
state is represented by a couple (pSi , p

N
j ) of a symbolic place

and a numerical place. The initial marking of the MPPN is
M0 = {MS

0 ,M
N
0 } and the estimated marking at time k is

M̂k = {M̂S
k , M̂

N
k } where M̂k = M̂k|k. The observations

start at time k = 1, O1 = (OS
1 , O

N
1 ) where OS and ON

respectively represent the observations corresponding to the
symbolic part and the numerical part.

(1) The prediction is based on the evolution of the MPPN
marking and on the estimation of the particle values. It
aims at determining all possible next states of the system
M̂k+1|k = {M̂S

k+1|k, M̂
N
k+1|k}. A noise is added during

the particle values update to take into account uncertainty
about the dynamics equations and thus about the contin-
uous system model.

(2) The correction is based on the update of the prediction
according to new observations on the system.
(a) A numerical correction, based on particle filter al-

gorithms, produces a probability distribution PrDN

of the particles M̂N
k+1|k+1 over the value of the nu-

merical state vector. At this step, particle weights
are updated using a probability distribution func-
tion depending on a random noise that models un-
certainty about continuous observations ON

k+1.
(b) A symbolic correction then computes a probabil-

ity distribution PrDS over the symbolic states of the
system, depending on discrete observations OS

k+1

and on PrDN making the process hybrid.

Finally, in order to update the complete predicted marking
M̂k+1|k, a decision making method is required. The result of
the whole state estimation process is the estimated marking at
time k + 1, M̂k+1|k+1 = {M̂S

k+1|k+1, M̂
N
k+1|k+1}.

Modified Particle Petri Nets have been originally designed
to monitor hybrid system mission in (Zouaghi, Alexopoulos,
Wagner, & Badreddin, 2011b). The main advantage provided
by MPPN is the way they manage uncertainties. In this arti-
cle, we will focus on a way to use them in a context of health
monitoring.

2.4. Application to Health Monitoring

The main objective of the system health monitoring is to de-
termine the health state of the system at any time (Chanthery
& Ribot, 2013). Diagnosis is used to identify the probable

MS
0 MN

0

Prediction

Correction

M̂S
k M̂N

k

Prediction

Correction

M̂S
k+1 M̂N

k+1

State

State

(pS , pN )

(pS , pN )

(OS
1 , O

N
1 )

Observations

(OS
k+1, O

N
k+1)

Observations

Figure 3. Hybrid sate estimation process of MPPN.

causes of the failures by reasoning on system observation.
Thus diagnosis reasoning consists in detecting and isolating
faults that may cause a system failure. Results of the diagno-
sis function lead to the current health state of the system. To
perform model-based health monitoring of a hybrid system, it
is necessary to represent both behavioral model and degrada-
tion model of the system. We are interesting in representing
changes in system dynamics when one or several anticipated
faults happen. Thinking that way, we define a health mode by
a discrete health state coupled to a continuous behavior. Then
health state estimation partially relies on common techniques
for continuous variable estimation. As long as the system
does not encounter any fault, it is in a nominal mode. We as-
sume that tracked faults are permanent. This means that once
a fault happens, the system moves from a nominal mode to a
degraded mode or faulty mode. Without repair, system evo-
lution is unidirectional and ends with a failure mode whereas
the system is not operational anymore. This evolution is il-
lustrated in Figure 4.

Figure 4. Unidirectional system evolution without mainte-
nance or repair action.

Regarding the degradation model, we consider that faults in
the system age depending on a stress level that is relative not
to a behavior but to a health mode.
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With the definition of the MPPN abstraction provided in pre-
vious sections, it is possible to model hybrid system behavior.
Indeed, MPPN numerical places can be used to represent sys-
tem dynamics, and symbolic places can be used to represent
the different discrete health states of the system. Systems dy-
namics are then represented by differential equations. Thus,
a hybrid state (pSi , p

N
j ) will represent a health mode of the

system. We designate by Q = {qm} the set of health modes
of our system:

qm = (pSi , p
N
j ) ∈ Q if ∃tl ∈ T, (pSi , pNj ) ∈ (Post(tl))

2

(2)
where Post(tl) is the set of output places of tl.

Using places that way, it becomes possible to use the sym-
bolic conditions to model the occurrence of observable dis-
crete events belonging to Σo and unobservable discrete events
belonging to Σuo (faults, mission events, interaction with the
environment, etc ...). Σ = Σo ∪ Σuo is defined as the set of
discrete events of the system.

An example of a system behavioral model is described in Fig-
ure 5. In this example, the system has three different dy-
namics represented by pN5 , pN6 , pN7 and four different health
states pS1 , pS2 , pS3 and pS4 . By using Equation 2, five health
modes are distinguishable. Health modes q1 = (pS1 , p

N
5 ) and

q2 = (pS1 , p
N
6 ) are two nominal modes changing from the one

to the other when condition ΩS(tS1 ) = occ(e1) or condition
ΩS(tS2 ) = occ(e2) is satisfied. These conditions represent re-
spectively the occurrence of observable events e1 ∈ Σo and
e2 ∈ Σo supporting a change of behavior between pN5 and
pN6 . Health modes q3 = (pS2 , p

N
6 ) and q4 = (pS3 , p

N
6 ) are two

degraded modes reachable from health mode q1 by satisfy-
ing the conditions ΩS(tS3 ) = occ(f1) and ΩS(tS4 ) = occ(f2)
respectively. These two conditions represent respectively the
occurrence of two unobservable fault events f1 ∈ Σuo and
f2 ∈ Σuo. Finally, q5 = (pS4 , p

N
7 ) is a failure mode in which

both f1 and f2 occurred and is reachable from the two de-
graded modes. Therefore ΩN (tS5 ) = occ(f1) is associated
to the occurrence of f1 and ΩS(tS6 ) = occ(f2) is associated
with the occurrence of f2.

While the design of the degradation model and its interac-
tion with the behavioral model will be presented in Section 4,
Section 3 will present a methodology to build a state tracker
object called a diagnoser from the behavioral system model.

3. BEHAVIORAL DIAGNOSIS

In health monitoring, diagnosis is used to track system cur-
rent health state. To do so, a common way is to generate
a diagnoser of the system from the system model (Sampath,
Sengupta, Lafortune, Sinnamohideen, & Teneketzis, 1995).
The diagnoser is basically a monitor that is able to process
any possible observable event on the system. It consists in
recording these observations and providing the set of possi-

pS1

pS2

pS3

pS4

pN5

pN6

pN7

ΩS(tS1 )

ΩS(tS2 )

ΩS(tS3 )

ΩS(tS5 )

ΩS(tS4 )

ΩS(tS6 )

Figure 5. Example of system behavioral model using MPPN.

ble faults whose occurrence is consistent with these observa-
tions.
Concerning hybrid systems, one approach is to build a hy-
brid diagnoser (Bayoudh et al., 2008) from a hybrid automa-
ton describing the system. The major idea is to abstract the
continuous part of the system to only work with a discrete
view of the system. This abstraction is done by using con-
sistency tests, that take the form of a set of analytical redun-
dancy relations (ARR). The diagnoser method is then directly
applied on the resulting discrete event system. In previous
works (Chanthery & Ribot, 2013), we extended this approach
in order to integrate diagnosis and prognosis for hybrid sys-
tems. The main drawback of this approach is that the DES
oriented diagnosis framework seems not the best suited for
the incorporation of the highly probabilistic prognosis task.
With the MPPN representation, we succeed in capturing all
the uncertainties about the state knowledge, but also about
the observations. Consequently, we have to develop a new
diagnoser build from an MPPN. Moreover, the classical di-
agnoser is a finite state machine. If this theoretical object
is very interesting for studying properties on system, like di-
agnosability or controllability, it is absolutely not suited for
embedded systems, because the number of states of the diag-
noser explodes for large models. Consequently, we choose to
build a diagnoser based on a MPPN model for the following
reasons:

• there is no lack of information during the diagnoser gen-
eration,

• MPPN model captures all the uncertainties,

• this representation is more compact than hybrid automa-
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ton description, so the problem of embeddability of the
diagnoser is reduced.

The diagnoser takes as input the MPPN specifying the behav-
ior of the system and the set of online observations on the
system. The output of the diagnoser is an estimation of the
health state of the system. Next sections describe how to gen-
erate a diagnoser from an MPPN specifying the behavior of a
system, then define what is finally called a diagnosis and how
this object may be used for health monitoring.

3.1. Diagnoser Generation Based on MPPN

The goal of this section is to generate a MPPN that is able to
monitor the system current health state thanks to the obser-
vations. Let suppose that the MPPN specifying the behavior
of the system is a tuple < P, T, Pre, Post,X, F, γ,Ω,M0 >
as defined in Section 2.1. The set of places of the diagnoser
remains the same as the one of the system. Concerning the
transitions, there are two aspects to take into account.

First, it is necessary to follow the continuous behavior of the
system with information issued from the observed variables
of the system. A set of analytical redundancy relations (ARR)
can be generated from the set of differential equations C of
the system model. In the linear case, ARRs can be com-
puted by using the parity space approach (Staroswiecki &
Comtet-Varga, 2001). The parity space approach has been ex-
tended to multi-mode systems in (Cocquempot, El Mezyani,
& Staroswiecki, 2004). In our case, a relation ARRi is as-
sociated to each numerical place pNi . A numerical condition
ΩN (tl) associated with a transition tl linking two numeri-
cal places pNi and pNj carries ARRij satisfaction test, with
(i, j) ∈ {1, ..., |PN |}2 and l ∈ {1, ..., |T |}. This means that
ΩN (tl)(π) is satisfied when ARRij is satisfied for π. ARRs
are satisfied if the observations satisfy the model constraints.
Since ARRs are constraints that only contain observable vari-
ables, they can be evaluated online with the incoming obser-
vations given by the sensors. It is thus possible to check the
consistency of the observed system behavior with the pre-
dicted one.

Secondly, because the diagnoser only captures the observ-
able behavior of the system, a condition representing the oc-
curence of an unobservable discrete event would never be sat-
isfied. Consequently, all the symbolic conditions representing
the occurences of unobservable events are removed from Ω
without loss of information. Concerning the observable dis-
crete part of the system, occurrences of observable discrete
events will be used as symbolic condition triggers.

Once the system behavioral model is defined and all numer-
ical conditions are computed from the ARRs generation, the
corresponding diagnoser can be generated with the following
steps:

Step 1: Add corresponding numerical conditions ΩN (tSj )

to every symbolic transition tSj ∈ TS , with j ∈ {1, ..., |T |}.
As a result, the symbolic transition tSj will be upgraded into
a mixed transition tMj ∈ TM .

Step 2: Remove, from any mixed transition tMj ∈ TM ,
symbolic conditions ΩS(tMj ) covering the occurrence of an
unobservable event, because these conditions would never
be satisfied. Consequently, the mixed transition tMj is trans-
formed in a numerical transitions tNj ∈ TN .

Ambiguity: Hybrid system diagnosis consists in determin-
ing the health state of the system wherein observations are
consistent. Diagnosis challenge is the ability to diagnose an-
ticipated but unobservable faults in the system. In this con-
text, modeling unobservable events can lead to ambiguity in
the diagnoser. Indeed, the occurrence of several faults that
can not be distinguishable with the observations of the sys-
tems will lead to ambiguous health states for the diagnoser.
Therefore, a third step is needed during the diagnoser gener-
ation to track ambiguity. To do so, it is necessary to define a
merger property to merge two numerical transitions. Two nu-
merical transitions are mergeable if they are conditioned by
the same dynamics change and if they share the same sym-
bolic places in their sets of inputs places. In a more formal
way, let Pre(tj) be the set of input places of a transition
tj ∈ T :

Pre(tj) = {pi|Pre(i, j) 6= 0, i ∈ {1, ..., |P |}} (3)

As well, Post(tj) is the set of its output places:

Post(tj) = {pi|Post(i, j) 6= 0, i ∈ {1, ..., |P |}} (4)

Definition 1 Two numerical transitions (tNi , t
N
j ) ∈ (TN )2,

with (i, j) ∈ {1, ..., |TN |}2 and i 6= j are mergeable if :

(Pre(tNi ) = Pre(tNj )) ∧ (Post(tNi )∩PN∩Post(tNj ) 6= ∅)
(5)

Note that condition (5) implies that the two transitions share
the same numerical condition: ΩN (tNi ) = ΩN (tNj ).

Step 3: Merge all mergeable transitions while there is at
least two mergeable transitions using the following merging
definition:

Definition 2 The merging of two mergeable numerical tran-
sitions (tNi , t

N
j ) ∈ (TN )2, with (i, j) ∈ {1, ..., |TN |}2 and

i 6= j is defined by two steps as follows:

6
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(1) Creation of a new transition tNij characterized by:
Pre(tNij ) = Pre(tNi )
Post(tNij ) = Post(tNi ) ∪ Post(tNj )
ΩN (tNij ) = ΩN (tNi )

(6)

(2) Introduction of tNij and deletion of tNi and tNj in T :

T = (T\{tNi , tNj }) ∪ {tNij} (7)

The resulting diagnoser of the model in Figure 5, after com-
puting the third steps above, is presented in Figure 6.

pS1

pS2

pS3

pS4

pN5

pN6

pN7

ΩS(tM1 ) ΩN (tM1 )

ΩS(tM2 ) ΩN (tM2 )

ΩN (tN3 )

ΩN (tN5 ) ΩN (tN6 )

Figure 6. Example of diagnoser of system using MPPN.

In Figure 6, performing Step 1 has generated numerical con-
dition ΩN to every transition. Indeed, all transitions where
supported by a change of dynamics that can be observed with
the generation of the ARR. After this step on this example, all
transitions are upgraded into mixed transitions. As there were
unobservable events, symbolic conditions associated with the
occurrence of f1 and f2 have been removed from the diag-
noser model during Step 2, transforming t3, t4, t5 and t6 into
numerical transitions. Finally, because transitions t3 and t4
were generating a change of dynamics from pN1 to pN2 , they
were mergeable and thus have been merged into one single
numerical transition tN3 .

3.2. Behavioral Diagnosis Results

The behavioral diagnosis is defined at each clock tick as the
state of the diagnoser. By using the MPPN, the diagnosis
∆k at time k is the distribution of health mode believes that
depends on particle values and weights and is deduced from

the marking of the diagnoser at time k :

∆k = M̂k = {M̂S
k , M̂

N
k } (8)

The marking M̂k indicates the belief on the fault occurrences.
It gives the same information than a classical diagnoser mode
in terms of faults occurrences, with the same ambiguity. The
difference is that in a classical diagnoser, every possible di-
agnosis has the same belief degree. With MPPN-based di-
agnoser, the ambiguity is valued by the knowledge about the
weights of each particle of the marking.

Consequently, using the diagnosis results for health manage-
ment becomes easier. Indeed, in the case of classical diag-
noser, it is very difficult to ”choose” a belief state for the sys-
tem in case of decision making. It is then very important to
obtain the less ambiguous diagnosis as possible. In the case
of MPPN-based diagnoser, each possible state of the system
is valued, so it is easy to evaluate the more probable state at
each clock tick.

4. DEGRADATION DIAGNOSIS

The previous part describes a way to use MPPN to monitor
health state of the system based on its behavioral model. It is
often interesting to take into account another level of repre-
sentation to illustrate a different level of dynamics, or a more
aggregate view of the system. For instance, in the frame-
work of health monitoring, it is worth to look at the system at
another level to take into account the degradation dynamics.
Getting some information about the degradation of the system
is a huge advantage for elaborating a more precise diagnosis
and to perform prognosis.

Next sections describes what we call Hybrid Particle Petri
Nets (HPPN). HPPN give a theoretical framework to repre-
sent MPPN at a higher level called the hybrid level. The pur-
pose of this hybrid level is to represent some hybrid states
characteristics, and not only continuous behavior or discrete
state. A set of dynamics equations is used to follow hybrid
information we are focused on. To point out this new hybrid
level, we assume that places, transitions, conditions and to-
kens used in Section 2 and Section 3 are part of the behavioral
level. Because of the new hybrid level, the enriched formal-
ism is called Hybrid Particle Petri nets. The set of dynamics
equations we focus on with the hybrid level represent com-
ponent degradation laws, that depend on the health modes of
the system. The update of the degradation value at each clock
tick defines a degradation diagnosis function. The applica-
tion of HPPN for health monitoring is then illustrated on an
example.

4.1. Hybrid Level

A Hybrid Particle Petri Net is described as an enriched MPPN
< P, T, Pre, Post,X,C,H,F , γ,Ω,M0 > where:

7
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• P is the set of places, partitioned into numerical places
PN , symbolic places PS and hybrid places PH .

• T is the set of transitions (numerical TN , symbolic TS ,
mixed TM and hybrid TH ).

• H ⊂ <n is the state space of the hybrid state vector.
• F is the set of dynamics equations of the system associ-

ated with hybrid places, representing hybrid state evolu-
tion.

• Ω is the set of conditions associated with the transitions
(numerical ΩN and symbolic ΩS and hybrid ΩH ).

Hybrid places are used to compose the hybrid level and rep-
resent possible hybrid states of system. In HPPN, a hybrid
state is a couple (pSi , p

N
j ). For the sake of clarity in the paper,

we will use pHl = (pSi , p
N
j ) to indicate that hybrid place pHl

represents the hybrid state (pSi , p
N
j ). Because hybrid states

are combinations of symbolic places and numerical places,
the set of hybrid states for a given behavioral model is always
finite. However, only couples that are part of the set of output
places of the same transition are considered as hybrid states.
Formally:

pHl = (pSi , p
N
j ) ∈ PH if ∃tm ∈ T, (pSi , pNj ) ∈ (Post(tm))2

(9)
Hybrid states that do not satisfy Condition 9 are considered
as intermediate states. This means there is no information in
the model about these hybrid states.

A hybrid place is marked by hybrid tokens hik = [sik, η
i
k]

with i ∈ {1, ..., |MH
k |} where MH

k is the set of all the hybrid
tokens in the net at time k. A hybrid token is defined by a
couple sik = (δjk, π

l
k) of tokens running in the behavioral level

and its corresponding hybrid state vector ηik ∈ H . The whole
marking at time k of the HPPN is Mk = {MS

k ,M
N
k ,M

H
k }.

Now that hybrid tokens have been described, we are going to
detail their creation and deletion rules.

Creation: Because of their dependencies on configurations
and particles, new hybrid tokens are created at the same time
of creation of a configuration or a particle. If a hybrid token
hi depends on a particle πl that is duplicated during the par-
ticle filter step in a new particle π′l, then hi is also duplicated
in h′i but h′i depends on the new particles π′l.

Deletion: A hybrid token hi depending on a configuration
δj and a particle πl is deleted when δj or πl is deleted during
the online process of the behavioral level.

Considering the two rules above, the hybrid level online pro-
cess totally depends on the behavioral level online progress.
However, the two processes are simultaneous.

Any hybrid place is linked with all other hybrid places through
a hybrid transition tHj ∈ TH .

∀pi ∈ P , Mk(pi) is the set of tokens in pi at time k and
mk(pi) = |Mk(pi)| is the number of tokens in pi at time k.

Definition 3 A hybrid transition tHj ∈ TH is fire-enabled
at time k if:

∃pHi ∈ Pre(tHj ), mk(pHi ) ≥ Pre(i, j) (10)

A hybrid place is associated with a set of dynamics equa-
tions representing a hybrid state characteristic. The idea is
to let evolve a hybrid token hi = [si, ηi] in the hybrid level
in accordance to the symbolic and numerical places in which
are evolving its associated configuration δjk and its associated
particle πl

k, with si = (δj , πl).

To formally define the firing of hybrid transitions, we need to
define the following notations. P (δj) = pSj and P (πl) = pNl
denote the projections of δj and πl on the set of places P .
Then, P (si) = (pSj , p

N
l ) denote the hybrid place of a couple

si = (δj , πl).

Every hybrid transition carries a hybrid condition ΩH(tHj )

which is satisfied if ΩH(tHj )(hi) = 1. Hybrid tokens hi are
moved to another hybrid place p′H if P (si) = p′H . Formally:

∀hi = [si, ηi], ΩH(tHj )(hi) =

{
1 if P (si) = p′H

0 otherwise
(11)

SHk (pH) is the set of hybrid tokens in pH satisfying the con-
dition ΩH(tHj ) at time k:

Equation 11 implies that every transition tHj has only one hy-
brid output place p′H and sees all the other hybrid places pH

as input places. More formally:

Definition 4 The firing of a fire-enabled hybrid transition
tHj ∈ TH at time k is defined by:{

MH
k+1(pH) = MH

k (pH)\SHk (pH)

MH
k+1(p′H) = MH

k (p′H) ∪ SHk (pH)
(12)

An example of hybrid transition firing in a hybrid level is
shown in Figure 7. In the example, there are two hybrid
places pH1 = (pS1 , p

N
1 ) and pH2 = (pS2 , p

N
2 ). At time k, the

two hybrid tokens h1k = [s1k, η
1
k] and h2k = [s2k, η

2
k] are fol-

lowing the characteristic of the hybrid state represented by
pH1 , so hybrid transitions tH1 and tH2 are fire-enabled. P (s1k)
is (pS1 , p

N
1 ) but P (s2k) is (pS2 , p

N
2 ) so ΩH(tH2 )(h2) is satisfied

and h2 is moved through tH2 . Thus, h2 is in the hybrid place
pH2 at time k + 1 and follows the characteristic of the hybrid
state (pS2 , p

N
2 ).

This enrichment evolves all the possible hybrid states of the
system alongside according to their corresponding laws. In-
deed, because tokens in the behavioral level are changing of
places during the prediction step (see Section 2.3 (1)), hybrid

8
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pH1

pH2

ΩH(tH1 )

ΩH(tH2 )

k

k + 1

pH1

pH2

ΩH(tH1 )

ΩH(tH2 )

h1
h2

h1

h2

Figure 7. Illustration of firing rules of hybrid fire-enabled
transitions.

tokens are simultaneous changing of places and their values
are updated as follows:

∀hik+1|k ∈ M̂
H
k+1|k(pHj ), ηik+1 = F j

k+1(ηik) (13)

where F j
k ∈ F is the set of dynamics equations associated

with the hybrid place pHj . Because ηik+1 depends on ηik, the
continuity of the value ηi can be ensured. Figure 8 illustrates
the evolution of the value η2 of hybrid token h2 of Figure 7.
It shows that η2k+1 is computed with the dynamics equation
F 2
k+1. F 2

k+1 is associated with pH2 and depends on η2k the
value of η2 at time k. This dependency ensures the continuity
between F 1

k and F 2
k+1 at time k + 1.

Figure 8. Illustration of the continuities of hybrid token val-
ues.

If F is not empty, the values ηik can be taken into account
in the decision making process at time k that determine the
marking at time k + 1 of the behavioral level.

If the set of hybrid characteristicsF is empty, the hybrid level
directly monitors the hybrid state of the system over a dis-
tribution of hybrid tokens considering the particles weights.
Moreover, considering a HPPN A, if F = ∅ hybrid tokens
has no value (ηi = 0) so they can be considered as config-

urations in another HPPN B. As well, if F 6= ∅, values ηi

of hybrid tokens evolve depending on the hybrid places and
thus they can be considered as particle for HPPN B. By this
way, hybrid tokens can go through a particle filter, making the
hybrid level values having an effect on the configurations and
particles of the behavioral level of HPPN A. Following this
reasoning, we understand that the HPPN formalism is recur-
sive. MPPN/HPPN can model hybrid systems, so by using
only numerical places, numerical transitions and particles, its
is possible to monitor continuous systems. As well, by us-
ing only symbolic places, symbolic transitions and configu-
rations, it is possible to monitor discrete systems. This means
that the HPPN formalism is also generic and can model differ-
ent kind of systems such as heterogeneous systems. Finally,
because HPPN is recursive, generic and can model discrete,
continuous and hybrid systems, HPPN can be considered as a
holistic method.

4.2. HPPN for Health Monitoring

This section introduces a way to represent uncertainty about
degradation for each health mode of the system using proba-
bility measures.

The system description is enriched with a set of degrada-
tion laws modeling the degradation depending on hybrid state
stress levels. The set of degradation laws is supposed to be
accurately known. F = {F qm , qm ∈ Q} is the set of degra-
dation laws associated with health modes of the system. F qm

is a vector of degradation laws for each anticipated fault in
the health mode qm = (pSi , p

N
j ). For example, in a system

where nf faults are considered:

F qm(t) =


fqm1 (t)
fqm2 (t)

...
fqmnf

(t)

 (14)

where fqmj represents the probability distribution of the fault
fj at any time in the health mode qm.

In the context of health monitoring, we need the formalism
of the hybrid level to include health mode degradation laws
in our model. We propose to consider health modes as hybrid
states of an HPPN. Thus health modes are represented by hy-
brid places (see Section 2.4) and the set of degradation laws
will be the set of dynamics equations associated with hybrid
places.

Figure 9(b) represents the degradation laws model of the ex-
ample of Figure 5. This system has five health modes (see
Section 2.4), thus the corresponding hybrid level has five hy-
brid places pH8 = (pS1 , p

N
5 ), pH9 = (pS1 , p

N
6 ), pH10 = (pS2 , p

N
6 ),

pH11 = (pS3 , p
N
6 ) and pH12 = (pS4 , p

N
7 ). Therefore five hybrid

transitions tH7 , tH8 , tH9 , tH10 and tH11 deliver accesses to the five

9
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Hybrid level
pH8 = (pS1 , p

N
5 )

pH9 = (pS1 , p
N
6 )

pH10= (pS2 , p
N
6 )

pH11= (pS3 , p
N
6 )

pH12= (pS4 , p
N
7 )

ΩH(tH7 )

ΩH(tH8 )

ΩH(tH9 )

ΩH(tH10)

ΩH(tH11)

h1h2

h3

Behavioral level

pS1

pS2

pS3

pS4

pN5

pN6

pN7

ΩS(tM1 ) ΩN (tM1 )

ΩS(tM2 ) ΩN (tM2 )

ΩN (tN3 )

ΩN (tN5 ) ΩN (tN6 )

π1π2
π3

(a) (b)

Figure 9. Example of diagnoser of system using HPPN.

hybrid places when associated hybrid conditions are satisfied
(Equation 11). All the transitions are not represented in the
figure because of the complexity of the representation.

4.2.1. Diagnoser Generation Based on HPPN

The diagnoser generation step does not change the degrada-
tion model during its computation. The degradation model is
added to the behavioral diagnoser (Section 3.1) as a hybrid
level. The result of the whole generation step is a HPPN-
based diagnoser that monitors both the behavior and the degra-
dation of the system.

Figure 9 shows the complete diagnoser of the system exam-
ple presented in this paper. It illustrates the interactions be-
tween the behavioral level (a) and the hybrid level (b) of the
diagnoser. Two configurations and three particles are run-
ning in the behavioral level. One configuration is in the sym-
bolic places pS1 and the other one in the symbolic place pS2 .
All three particles π1, π2 and π3 are in numerical place pN6 .
Therefore, three hybrid tokens are running in the hybrid level.
h1 and h2 are in the hybrid place pH9 because they are linked
to configuration in pS1 and respectively π1 and π2. However,
h3 is in the hybrid place pH10 because it is linked to the con-
figuration in pS2 and π3.

4.2.2. Diagnosis Results

Using HPPN-based diagnoser, the diagnosis ∆k of the system
at time k is the complete marking of the diagnoser, indicating

the distribution of health mode believes depending on particle
values and weights and hybrid token values:

∆k = M̂k = {M̂S
k , M̂

N
k , M̂

H
k } (15)

The marking {M̂S
k , M̂

N
k } represents the belief on the health

modes through a probabilty distribution. The marking M̂H
k

represents a degradation distribution over the health modes.
Because each hybrid token depends on a particle and a con-
figuration, its degradation value is linked with the belief of
its health mode. Consequently, the belief and the degrada-
tion value can be correlated in case of decision making in the
context of health management.

5. CONCLUSION AND FUTURE WORK

This paper formally introduces the HPPN approach to model
the monitoring of hybrid systems. The MPPN method is
enriched to consider another level to represent a hybrid dy-
namics. The method takes into account uncertainty about
the knowledge of the system and uncertainty during the on-
line process, such as continuous and discrete observations.
The article then proposes to use HPPN to build a diagnosis
methodology in a health monitoring context. HPPN can be
used to model a diagnoser to monitor both discrete and con-
tinuous behaviors of the system, but also to consider the sys-
tem degradation depending on the hybrid state of the system.
The methodology is illustrated with an academic example.
The building of such a diagnoser is a first step to perform
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prognosis and health management of hybrid systems under
uncertainty. Moreover, diagnosis results can be used as prob-
ability distributions for decision making.

In future works, we will implement this work and test it on
an embedded system. The prognosis methodology will be
formally described considering the InterDP framework intro-
duced in (Chanthery & Ribot, 2013) that interleaves diagnosis
and prognosis methods to let results be more accurate.
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