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ABSTRACT 

Prognosis of rotating machinery is of vital importance to 
ensure ever increasing demands of availability, reduced 
maintenance expenditure and increased useful life are met. 
However, the prognosis of bearings typically employs 
techniques in the frequency or time-frequency domain due 
to the high frequency nature of the data involved (typically 
>20 KHz). This data quickly becomes unmanageable in 
practice and often has inferior prognostic horizons in 
comparison to those techniques which are based upon low 
frequency data analysis. 

This paper presents a novel methodology based upon the 
computation of the deviation from the empirically derived 
cumulative density function (CDF) of bearing data. For this 
purpose, the non-parametric, two sample, uni-variate 
Kolmogorov-Smirnov test is employed for the analysis. In 
particular, this paper focuses on mitigating the requirement 
of a-priori knowledge for bearing prognosis. 

Initially, assumptions regarding the underlying structure of 
high frequency bearing data are explored on publically 
available data, and found to deviate from what would be 
expected. 

Exploiting this, we use the non-parametric two-sample uni-
variate Kolmogorov-Smirnov test to define normal 
operational behaviour, whilst mitigating the requirement for 
a-priori knowledge. This reduces the computational 
complexity of the system whilst having the prospect to 
reduce the inherent noise within the high frequency bearing 
signal. 

Strong trends of degradation which can be used to derive 
prognostic maintenance conditions are observed, with sound 
statistical analysis performed. In particular, statistically 
significant degradation is found to occur 75 hours before 

failure occurred (representing identification at 54.2% of 
bearing life). Both the Kolmogorov-Smirnov   statistic and 
 -value are employed as health metrics to which 
degradation can be inferred from. A series of 4 experiments 
is presented, showing the versatility of the described 
technique and cases where the technique cannot be 
employed. 

The technique is validated on a failed bearing and then 
verified on an independent, healthy bearing, and is shown to 
correctly identify the bearing of question in each case, 
enabling the prioritisation of maintenance actions which can 
be used to assist in reducing overall maintenance 
expenditure. 

1. INTRODUCTION 

With the continually reducing cost of data storage and 
acquisition, prognosis of critical assets is cheaper than ever. 
However, the effective exploitation of all this data is not 
trivial. With more data comes more noise, more conflicting 
signals, the need for new analytical techniques and the 
ability to process this data in real time. 

As an example, storing data sampled at 20 KHz (20,480 
samples per second) requires 13.5GB of data per day, 
equating to almost 2 billion data points. This makes the 
identification of degradation within the data difficult, both 
in automated analysis and also for human operators who can 
be overloaded by the quantity of data. 

Although large quantities of data are collected for analysis, 
only a subset of this data refers to degraded or failed 
conditions; in some instances, even for common fault 
modes, less than 0.1% of the collected data can be used in 
analysis (Verma & Kusiak, 2011). As such, the use of 
cutting edge data-mining techniques for these issues is 
limited. However, this can be exploited through the use of 
statistical techniques to exploit the known normal behaviour 
of the data which has been collected. 

Data has been identified as a key enabler of next generation 
maintenance methodologies - such as E-Maintenance 
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(Levrat et al., 2008) - due to the benefit of 5 key points 
(Hameed et al., 2009): 

1. The ability to avoid premature breakdowns 

2. Reducing the cost of maintenance 

3. Enabling remote diagnosis 

4. Increasing production through effective 
maintenance scheduling 

5. Design refinement due to better quality analysis 

In this work, a robust uni-variate model for the effective 
diagnosis and prognosis of bearings is presented. Publically 
available data collected by the IMS centre and made 
available by NASA (Lee et al., 2007) is employed to derive 
a sound statistical time based feature which can be used to 
determine asset condition. By exploiting normal operational 
behaviour characterised by the distribution of high 
frequency data, deviation from expected behaviour can be 
identified by empirical analysis of the cumulative density 
function (CDF) of the data. For this purpose, the non-
parametric uni-variate Kolmogorov-Smirnov test is used to 
quantify the deviation from the known behaviour state to the 
degraded state, whilst quantifying statistically the likelihood 
of degradation being present. 

This overcomes the current limitations of statistical pattern 
recognition techniques employed in prognostics and health 
management by empirically defining the CDF and 
measuring deviations from this. This allows for non-
normally distributed data to be effectively analysed without 
the necessity to ―pre-whiten‖ data or use one-way statistical 
transforms on the data. 

The paper is organised as follows. Section 1 has introduced 
the motivation for this research, with Section 2 discussing 
the related literature. The dataset employed is described in 
Section 3. Following this, the analytical model is presented 
in Section 4, with experimental design in Section 5. Results 
are presented in Section 6 with discussions and conclusions 
following in Section 7and 8 respectively. 

2. RELATED WORK 

As previously stated, data-mining techniques are often 
ineffective in practice due to the large bias in favour of the 
majority class – typically normal operational behaviour – 
which reduces the incentive for machine learning algorithms 
to truly encapsulate failure behaviour. This occurs as in a 
dataset with 0.1% failure data, the system can achieve a 
classification accuracy of 99.9% by merely returning the 
default case (Godwin & Matthews, 2014). 

Many algorithms have been proposed to remove the 
inherent bias in unbalanced datasets (such as in the realm of 
prognosis). These fall into two main categories, namely 
under-sampling and over-sampling. Under-sampling 
removes data from the majority class to remove the bias, 

whereas over-sampling adds data to the minority class. As 
such, these techniques will often either reduce the 
information content in the data, or create synthetic data 
which needs to be validated and verified. For a full review 
of data balancing techniques, please refer to Baydar et al., 
2001. 

It should be noted that these techniques often require 
labelled data (Baydar et at., 2001). In practice, this is often 
not available (as failures are yet to occur), or it is too costly 
to manually label high frequency data. As such, analysis of 
high frequency data should be performed by statistical 
techniques which can exploit the high frequency nature of 
the data to increase the statistical power of the results. 

High frequency data is often employed for bearing 
prognosis due to the ability to extract time, time-frequency 
and frequency domain features. This enables the use of 
many different techniques to assist in the diagnostic and 
prognostic process. 

Amongst the most commonly used techniques for bearing 
diagnosis and prognosis is that of the fast Fourier transform 
(FFT) (Rai & Mohanty, 2007). This is a frequency domain 
signal that can be used to detect degradation and identify 
failure modes. Work done by (Zappalà et al., 2013) uses 
sideband analysis of key harmonic frequencies in order to 
monitor the degradation of components over time. As 
sideband analysis utilises specific harmonic frequencies, the 
relationship between the harmonic and the immediate 
sideband frequencies can be analysed as degradation occurs. 
As such, the technique can be applied where traditional 
frequency domain techniques are not as powerful (such as in 
non-stationary signal analysis), for instance, in wind turbine 
gearbox analysis (Zappalà et al., 2012). 

Various other techniques for frequency domain analysis 
have been explored for rotating machinery such as 
gearboxes and bearings. Typically, these involve the use of 
the power spectrum (Ho & Randall, 2000) or Cepstrum 
analysis (van der Merwe & Hoffman, 2002). 

The most commonly utilised domain for frequency analysis 
is that of the time-frequency domain. Within this, the use of 
the wavelet transform (Raffiee et al., 2010) is prevalent. 
Due to the ability to combine frequency domain information 
in conjunction with time domain data (Raffiee et al., 2010), 
many strong prognostic signatures can be identified in these 
techniques. 

The wavelet transform is employed due to its ability to 
remove noise from the data. As various wavelet functions 
exist (known as mother wavelets), different signatures and 
artefacts from high frequency data can be discovered and 
used for diagnostic and prognostic analysis (Lin & Zuo 
(2003), Peng & Chu (2004), Jardine et al., 2006). 

Recently, the use of time synchronous averaging (TSA) has 
become more prevalent in the literature for prognosis of 
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high frequency data such as bearings and gearboxes 
(Bechhoefer et al., 2013). This technique is a hybrid time-
frequency technique which employs a tachometer in order to 
deduce the current orientation of the rotating component. 
This enables further information to be gathered in the 
prognostic process, such as the identification of specific 
bearing roller elements which have degraded or if a specific 
gear tooth has degradation. Derivations of TSA exist which 
do not require a tachometer (Bechhoefer et al., 2009); 
however, these often simply estimate the tachometer signal. 
For a review of TSA techniques as applied to health 
assessment, please refer to the extensive review undertaken 
by (Bechhoefer et al., 2009). 

Within the time-domain, often statistical features are 
extracted from the signal. Commonly in the literature, 
skewness and kurtosis are employed for diagnosis and 
prognosis (Heng & Nor, 1998 and Tandon, 1994). Skewness 
is the third standardised moment and represents the 
asymmetry of an underlying distribution, whereas Kurtosis 
is the fourth standardised moment and represents the 
peaked-ness of the underlying distribution. 

In practice, due to the high frequency of the data, it is often 
assumed that the data is normally distributed due to the 
central limit theorem. As the behaviour of the normal 
distribution is well understood, we can exploit a-priori 
knowledge for prognosis. Typically, for a healthy bearing or 
gear, little to no skewness will exist in the data, and the 
peaked-ness of the data will typically be 3. However, these 
features are not reliable for a variety of reasons. When used 
in uni-variate models, it is possible for the underlying 
distribution of the data to change due to factors such as 
degradation, without effecting the skewness and kurtosis of 
the distribution. As such, the use of these features without 
additional context (additional features, a-priori knowledge 
or otherwise) should be avoided. 

It should also be noted that typically accelerometer data is 
employed for analysis in all three commonly used domains. 
However, the use of acoustic emission (AE) sensor data is 
becoming more widespread due to potentially increased 
sensitivity (Bechhoefer et al., 2009) in a variety of methods. 

Other time domain features can be used for diagnosis and 
prognosis. Amongst the most reliable time domain feature is 
that of oil analysis through the use of oil debris monitoring 
systems (Feng et al., 2012). These systems are able to 
monitor the particulate level in parts per million (PPM) in 
the oil of an asset in order to infer information regarding 
degradation or potential future failure modes (Feng et al., 
2012). These systems are used extensively within the wind 
industry for monitoring of the gearbox, which is of critical 
importance (Stephens, 1974). However, these sensors are 
currently prohibitively expensive for practical use in non-
mission-critical scenarios. 

As the use of skewness and kurtosis requires making 
assumptions regarding the underlying distribution of the 
data, and may not accurately reflect the true change in 
condition, new techniques are needed. A robust uni-variate 
nonparametric approach to mitigate these issues can be 
derived by employing empirical statistical techniques. To 
demonstrate this, publically available data is employed. 

3. DATASET DESCRIPTION 

For the following series of experiments, publically available 
data was employed for transparency. The data was collected 
by the centre for intelligent maintenance systems (IMS), 
with the support of the Rexnord Corporation, and made 
available by NASA (Lee et al., 2007). 

Four bearings (force lubricated) were installed onto a shaft 
which was kept at a constant 2000 RPM by an AC motor. A 
6000 lbs radial load was applied via a spring mechanism to 
the shaft. Rexnord ZA-2115 double row bearings were used, 
with data collection performed by a National Instruments 
DAQ 6062E. The accelerometers used in the experiment 
were PCB 353B33 High Sensitivity Quartz ICP 
accelerometers. Data was sampled at 20 KHz, equating to 
20,480 samples per second. Data was sampled every 10 
minutes until oil debris monitoring equipment reached a 
particulate count which indicated bearing failure. At this 
point the data collection was deemed complete, and the 
bearings were removed for inspection. All bearings 
exceeded their design life expectation. Vibration data 
pertaining to acceleration was collected during rotational 
operation, and is measured in G. 

4. MODEL DEVELOPMENT 

Due to the cases which exist when employing skewness or 
kurtosis in time series analysis for prognosis, new 
prognostic features must be developed. In order to ensure 
that new features do not suffer from the same pitfalls of 
skewness and kurtosis, 3 factors must be taken into 
consideration. 

Firstly, the technique should be nonparametric. As such, 
little to no assumptions regarding the underlying data is 
required. This would enable the technique to work as 
effectively on normally distributed data as data which is not 
ordinarily normally distributed, as is often the case in 
practice for prognostic applications. Secondly, the technique 
should be robust to noise. Noise is inherent in all real-world 
signals, and as such, techniques should be robust to this. By 
identifying data which may potentially be anomalous, this 
can be disregarded or exploited for further prognosis. 

Finally, the technique should accurately respond to changes 
in the condition of the asset. Skewness and kurtosis have the 
potential to remain constant whilst degradation occurs. 
Whilst this may seem trivial, cases such as this should 
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always be checked to ensure that degradation is always 
observed. 

As such, in this work, we propose the use of the two-sample 
Kolmogorov-Smirnov test (Stephens, 1974) for the 
diagnosis and prognosis of bearing condition. This is a non-
parametric uni-variate technique which can be employed to 
compare a sample with a given distribution to quantify and 
signify significant deviations. 

The two-sample test statistic quantifies the distance between 
two cumulative density functions (empirically derived or 
otherwise). This enables the test statistic to be used as a 
prognostic health index by fixing one sample to a known 
state of normal operation behaviour. Thus, it is expected that 
should degradation occur the distribution of the underlying 
data will change accordingly. Differing levels of statistical 
significance can be employed to identify inspection, 
maintenance and replacement thresholds, with a prognostic 
time series derived by plotting the changes of the statistic 
over time. 

The Kolmogorov-Smirnov test can be defined as follows 
(Stephens, 1974): 

               ( )       ( )    (1) 

Where      refers to the supremum of set  , and      and 
      refer to the empirical distribution function, defined as: 

 ( )   
 

 
∑      

 
       (2) 

Where I refers to the indicator function, defined as: 

      {
         
           

    (3) 

As such, the test statistic D (as in Eq. 1) represents the 
maximum difference between the empirically defined 
distribution    and   . 

Thus, for a given behaviour, it is possible to accurately 
measure the deviation from this behaviour and determine its 
statistical significance. This enables the creation of a health 
metric as described in the following Section. 

5. EXPERIMENTAL SETUP 

In order to determine deviations from a known state, a-priori 
knowledge of the know state must be utilised within the 
model. Previous work which utilises the Kolmogorov-
Smirnov test pre-whitens the data (Cong et al, 2011). Pre-
whitening of the data ensures that the data is effectively 
white noise mixed with the transient signal of the bearing. 
As such, it is possible to employ a one sample Kolmogorov-
Smirnov test for the purposes of bearing degradation 
assessment by sampling against a Gaussian distribution. 

Whilst this removes the need for a-priori knowledge as the 
effective sample from which degradation is measured, it 
also infers assumptions regarding the underlying data. 

For instance, with regards to the NASA bearing dataset, 
normality testing was performed via the highly sensitive 
Anderson-Darling test (Anderson & Darling, 1954). This is 
a one sample non-parametric test with higher power than the 
Kolmogorov-Smirnov test, and is computed by: 

        
 

 
∑ [    ][  ( ( ))     (   (     )]

 
     (4) 

Where  ( )   ([    ̅)]  ) where   refers to the CDF of 
the normal distribution, and  ̅   refer to the mean and 
standard deviation of the data (respectively). 

Within the 2nd set of NASA bearing data, 4 bearings across 
984 files were assessed for normality.  Of the 3936 
normality assessments, 16 samples (     ) of the bearing 
data were normally distributed (     ). As such, given 
the large sample size (20,480) of each sample, we can infer 
that the underlying structure of the data is not normal. This 
is expected; however, as previous work pre-whitens the 
data, it may be the case that pre-whitening of the data 
synthetically manipulates the data to ensure normality. 
Whilst this is effective, it is also computationally intensive, 
and has the ability to swamp or mask the true bearing signal 
(Bendre, 1989)  and increase noise within the signal. 

By replacing the normal distribution reference sample with 
a known behaviour, we remove the computational intensity, 
reduce the number of assumptions regarding the underlying 
data and also reduce the noise within the signal. 

In order to explore the use of the Kolmogorov-Smirnov test 
for the diagnosis and prognosis of bearing faults, three 
experiments were performed, with an additional experiment 
utilising the one sample Anderson-Darling test for 
comparison. 

In the first experiment, the Anderson-Darling test is used to 
quantify the deviation of the data from the normal 
distribution. This experiment explores the relationship 
between the normal distribution and the degradation of the 
bearing. It is expected that as the bearing degrades, the 
deviation will increase, and can be used to quantify the 
current level of degradation on the bearing. The second 
experiment employs the Kolmogorov-Smirnov test without 
the use of a-priori knowledge. In this case, each data sample 
is tested against the previous sample to quantify the 
degradation which has occurred in the previous 10 minutes. 
Significant degradation of the bearing which occurs between 
samples are expected to be revealed by this test. The third 
experiment employs a-priori knowledge to fix a sample 
point from normal behaviour within a bearing, from which 
all samples are then measured against. Although this 
requires the use of a-priori knowledge (in the form of 
normal operational behaviour), the authors believe this trade 
off is practical due to normal operational behaviour relating 
to the majority class. In order to validate the approach, in 
this experiment, data from a single bearing is employed (2nd 
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test, bearing 1). As this bearing is known to fail, this 
experiment is intended to prove the Kolmogorov-Smirnov 
test as a viable time domain feature for diagnosis and 
prognosis. In the final experiment, data from a healthy 
bearing is employed as the sample for the Kolmogorov-
Smirnov test. This mitigates the practical issues which occur 
in the third experiment (namely, use of data sampled from a 
bearing which failed which may not be available in practice) 
to increase the viability of the approach. As many bearings 
are subjected to identical conditions (for instance, in a 
production facility or wind turbine), by utilising known 
normal behaviour of a single bearing, the approach can 
systematically be applied to all of the assets in the facility 
individually. 

6. RESULTS 

In the first experiment, the Anderson-Darling test is 
employed as a non-parametric one sample statistical test to 
measure deviation from the normal distribution. As 
degradation is expected to cause deviations from this 
distribution in mean value, standard deviation, skewness, 
and kurtosis, this test should perform well. However, as can 
be seen in Figure 1, this is not the case. 

Figure 1 (a) presents a healthy bearing and a failed bearing 
over time (Bearings 1 & 2 from the 2nd set of test data (Lee 
et al., 2007)) as measured by the p-value of the Anderson-
Darling test statistic. Although the healthy bearing line 
remains stable, the test only identifies a single peak on the 
failed bearing. Although this is over 46 hours before failure, 
no progressive trend is observed. As degradation is often an 
exponential phenomenon, the log plot of Figure 1 (a) is 
taken and presented in Figure 1(b). This is the natural 
transformation of exponential data. Although degradation 
phenomena is observed much earlier due to this 
transformation (at over 67 hours before failure), there are 
many inconsistencies with the trend; for instance, 
degradation seems to decrease and increase over many 
cycles. Although this does provide insight into the 
underlying characteristics of the bearing, it violates the 
prognostic principles metrics must adhere to set out in 
section 4. The second experiment employs the two-sample 
non-parametric uni-variate Kolmogorov-Smirnov test to 
quantify degradation based upon the empirical CDF of the 
data. Each data sample is compared to the previous 
collected data sample to determine significance which may 
imply degradation has occurred. 

Figure 2 presents the Kolmogorov-Smirnov D statistic for 
both the same healthy and failed bearing as in the previous 
experiment. As can be seen in Figure 2(a), both time series 
appear to be highly correlated. A Pearson product-moment 
correlation coefficient was computed to assess the 
relationship between the healthy bearing, and the failed 
bearing, and were found to be highly correlated (     ). It 
is interesting to note that the peak which has been 

highlighted in Figure 2(a) is identified in both bearings, and 
may be due to external factors which occurred during the 
data collection process. Figure 2(b) presents the log-
transform of Figure 2(a). Again, it is difficult to separate the 
healthy bearing from the failed bearing as no obvious 
signatures are apparent. Figure 2(c) shows the  -value of the 
Kolmogorov-Smirnov test for each bearing. It can be seen 
that this is limited in its use for diagnosis and prognosis, due 
to many false positives in early life and many false 
negatives when degradation has occurred. The third 
experiment exploits these results by fixing the sample to a 
constant behaviour, from which deviations are then 
computed. Although this requires a-priori knowledge, this 
can be taken from OEM documentation. As in this case, it is 
essential that the fixed points contain no degraded 
behaviour, the point from which the sample is fixed directly 
correlates to the quality of the metric which is derived. As 
such, we exploit historical data in conjunction with OEM 
documentation and traditional reliability analysis to 
determine normal behaviour. As each bearing has a design 
life of 1 million revolutions and the experimental setup ran 
the bearings at 2000 RPM, we can easily determine from the 
time elapsed, a percentage of expected useful life. Due to 
the existence of infant mortality due to manufacturing 
defects as commonly presented by the so-called ―bathtub 
curve‖ (Leemis , 1995) we can then define a point or a set of 
points which are likely to correspond to normal operational 
behaviour. For simplicity, data taken from 10-15% of asset 
life was utilised in this experiment. The first 10% of asset 
life is not taken into consideration due to the possibility of 
manufacturing defects or potential infant mortality. 

Figure 3 shows the same healthy bearing and same failed 
bearing when a fixed sample is chosen for the two-sample 
Kolmogorov-Smirnov test. In practice, we would not 
retrospectively analyse the first 15% of bearing life, 
however, for completeness, this has been left in Figure 3. As 
can be seen in Figure 3(a), for the failed bearing, a strong 
prognostic signature is detected when employing the   
statistic from the Kolmogorov-Smirnov test. Exponential 
degradation is present, and can be identified as early as 75 
hours prior to failure. Initially, a linear trend is found to 
occur, this is followed by healing phenomena, which 
afterwards reverts to exponential degradation. Figure 3(b) 
depicts the logarithmic transform of same experiment, with 
the artefacts mentioned above highlighted. It should be 
noted that the same artefacts as in experiment two are 
observed at the beginning of the time series, which is of 
interest. The healthy bearing is found to be consistently 
healthier than the failed bearing, which is promising. 
Similarly, the  -value remains stable during operation, with 
exponential degradation occurring at the end of life. This 
shows the potential of the Kolmogorov-Smirnov test as a 
prognostic index for bearing health assessment. 

The   statistic is employed due to its many features which 
are complementary for reliability engineering analysis, and  



 
Figure 1. Anderson-Darling test for degradation, showing (a - top) raw values, and (b - below) the logarithmic transform. 

 
Figure 2. Two sample, transition based, Kolmogorov-Smirrnov showing (a - top) raw D-statistic, (b - centre) the logarithmic 

transform and (c - below) the associated significance (p-value).

prognostics in general. For instance, the   statistic is 
bounded between 0 (no difference in the distributions) and 1 
(maximum difference in the distributions). As such, it is 
expected to increases as degradation occurs (as in Figure 3). 
This bounding also provides a simple means to estimate the 
percentage of useful life used. 

Figure 3(b) shows the log-transform of Figure (A). This 
then presents the degradation which occurs as a linear 
phenomenon. This then enables further statistical analysis, 
such as regression analysis to perform remaining useful life 
(RUL) estimation for some given condition ( -value). In 
addition to the  -value being employed, the  -value of the 
test allows a natural extension of this analysis. If we are to 
check significant deviations (     ), the first consistent 
(repeated 3 times or more) significance is found 73 hours 
prior to failure, and remains significant until failure (on the 
failed bearing). For the healthy bearing, consistent 
significant deviations are found 17 hours prior to the end of 
the test, which may refer to the initial stages of degradation 
on the bearing. As such, the use of various  -values can be 
seen as an effective means for identifying inspection of 
maintenance activities for decision making within 
enterprise. 

In the final experiment, the fixed sample in the 
Kolmogorov-Smirnov test was derived as in the previous 
experiment, however, from an independent bearing which 
did not fail (Bearing 3, test 2 (Lee et al., 2007)). This 
experiment explores the versatility and generalisability of 
the technique. If the bearings are subjected to similar 
conditions, then normal behaviour of each bearing should be 
similar. As such, regardless of the bearing used to fix the 
first sample, the deviation from this should correlate highly 
to the results achieved in experiment 3. Figure 4 shows the 
healthy bearing and failed bearing when the fixed sample 
used for the analysis is from an independent bearing. As 
expected, this is similar to the results achieved in 
experiment 3. A Pearson product-moment correlation 
coefficient was computed to assess the relationship between 
the  -statistic of the failed bearing taken from experiment 3, 
and the  -value taken from the failed bearing in experiment 
4. These were found to be highly correlated (      ) . 
Similarly, a further Pearson product-moment correlation 
coefficient was computed to assess the same relationship for 
the healthy bearing. This was again found to be highly 
correlated  (     ) . This shows the effectiveness of the 
technique when applied to new bearings which are expected 
to operate in similar 



 
Figure 3. Two-sample, fixed Kolmogorov-Smirnov test, showing (a - top) raw D-statistic and (b - below) the log transform. 

 
Figure 4. Independent verification of experiment 3 (Figure 3(a)) showing raw D-value.

conditions to those which the fixed sample was derived 
from. 

With regards to the significance of the  -values derived 
from the final experiment in relation to the prognostic 
horizon, the sensitivity of the technique hinders the benefit 
gained. As in this case, a 6000 lbs radial load was applied to 
the shaft, this affects each bearing in a different way. As 
such, the underlying distributions are inherently different, 
and thus differ significantly. This then makes each 
observation appear to be significantly different. However, it 
is still possible to use the degree of significance as a means 
for prognosis, as the  -value continues to decrease in 
proportion to the degradation apparent in the bearing. 

7. DISCUSSION 

In the first experiment, the Anderson-Darling test was used 
as a one-sample test in order to mitigate the necessity of a-
priori knowledge. However, in this case, the data is not 
normally distributed and as such, this technique is not 
effective. In other systems where high frequency data is 
normally distributed, this may be more sensitive than the 
Kolmogorov-Smirnov test, and as such, should be used 
initially. 

The Anderson-Darling test is used in the initial analysis 
over the Shapiro-Wilk test due to the high frequency nature 
of the data involved. The Shapiro-Wilk test is highly 
sensitive for large sample sizes, and as such, rejects the null 
hypothesis often. 

As both the Anderson-Darling and Shapiro-Wilk tests are 
one-sample, they cannot be utilised to empirically derive the 
CDF of the underlying data, and as such, if the data is not 
normally distributed, cannot be used to identify deviations 
specifically from the distribution of the data in question. 

It is interesting to note that the artefacts at the start of the 
time series which can be observed in figures 2 through 4 do 
not occur in figure 1. This is likely due to the insensitivity 
of this test due to the underlying distribution of the data.  
The cause of these artefacts is currently unknown; as similar 
artefacts are observed throughout both bearings it has been 
inferred that this is due to the experimental setup and 
external factors associated with this. The artefacts in figures 
2 through 4 for the healthy bearing at approximately time 
step 700 are unexplained. This could potentially be due to 
the development of degradation on the failed bearing (from 
time step 550 as per figure 3) causing particulates in the oil 

Degradation 
Healing 
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which were transferred to this bearing and ultimately 
resulted in degradation on the healthy bearing. 

The reduction in D-value observed in figure 4 should also 
be noted. This is an artefact caused by employing a different 
bearing (with slightly different manufacturer tolerances and 
defects) in a different bearing position in the experimental 
setup as a reference. This was undertaken as a proof of 
concept and I practice, as each bearing will behave in a 
unique way, historical data pertaining to the bearing in 
question should be employed. 

With regards to fixing the data representing normal 
behaviour for the two-sample Kolmogorov-Smirnov test, it 
is essential that no degradation is incorporated into this 
sample. This is difficult to determine a-priori. 

One solution to this would be to use robust outlier analytical 
techniques to derive a sound subset across the full life of 
one bearing. As the operational behaviour of the bearing 
would dictate degradation to be outlying, this would 
effectively be removed. 

In practice, the use accelerometer data is not ideal for robust 
analysis due to the limited sensitivity of the data collection 
equipment. If robust techniques such as Median Absolute 
Deviation (MAD) are used to remove outliers, significant 
parts of the distribution tails are removed. This limits the 
effectiveness of the two-sample Kolmogorov-Smirnov test 
due to the resultant effect on the empirical CDF, which 
inherently increases the noise within the derived prognostic. 
The authors recommend not using robust outlier removal in 
conjunction with accelerometer data, as by their definition, 
outliers are inherently beneficial for prognosis. 

In the case where acoustic emissions (AE) sensors are 
employed, due to increased sensitivity, the use of robust 
outlier techniques can potentially be employed effectively. 

8. CONCLUSION 

This paper has shown the viability of the use the two-sample 
uni-variate Kolmogorov-Smirnov test as a means to derive 
low-frequency time-domain prognostic signatures from high 
frequency data. The versatility of the technique is explored 
with publically available data (Lee et al., 2007). 

Strong prognostic signatures are found for both bearings on 
which analysis was performed as early as 54.2% of the 
bearings life (for the failed bearing), and 89.6% of bearing 
life (for a bearing which ultimately did not fail). 

By empirically deriving the CDF function of the data, 
external conditions are inherently considered and taken into 
account by the prognostic system. Although this requires a-
priori knowledge (historical high frequency data), should 
this not be available, the empirical function could be 
approximated by establishing the underlying distribution 
and using the exact CDF of the chosen distribution. 

Although the technique is versatile, it cannot be applied to 
non-stationary techniques; the transient nature of the signal 
would almost certainly ensure that statistically significant 
deviations from the pre-defined normal behaviour are 
consistently observed whilst no degradation is present: this 
would violate the prognostic principles laid out previously. 
For the purposes of this work stationary is defined as a lack 
of temporal dependency of the marginal distribution (i.e., 
the distribution of the bearing values does not change with 
time). 

Future work will look to extend this analysis to non-
stationary signals for wind turbine gearbox analysis by 
normalising for loading transitions. The signal can be 
broken into a series of stationary signals with transient 
periods which can be identified by correlating the data with 
the onboard SCADA system. 
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