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ABSTRACT

For many systems, automatic fault diagnosis is critical to en-
suring safe and efficient operation. Fault isolation is per-
formed by analyzing measured signals from the system, and
reasoning over the system behavior to determine which faults
have occurred, based on models of predicted faulty behav-
ior. For dynamic systems, reasoning may be performed using
qualitative analysis of the differences between measured sig-
nals and their predicted values, in which observations take
the form of qualitative symbols. Such an approach is quick
to isolate faults, but depends critically on correct generation
of the qualitative symbols from the signals. In this paper, we
develop an approach to qualitative event-based fault isolation
for dynamic systems that is robust to incorrect qualitative ob-
servations. Observations are treated as uncertain, where mul-
tiple interpretations of an observation, each with its own prob-
ability, are considered. By interpreting observed symbols in a
probabilistic manner, the approach degrades gracefully as the
number of incorrectly-generated symbols increases. The ap-
proach is demonstrated on an electrical power system testbed,
and experiments using real data obtained from the hardware
demonstrate the improved fault isolation performance in the
presence of incorrect symbol generation.

1. INTRODUCTION

For many systems, automatic fault diagnosis is critical to
ensuring safe and efficient operation. Within fault diagno-
sis, the task of fault isolation is concerned with an analy-
sis of observed behavior in order to determine which fault
has occurred. In many approaches, observations are trans-
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formed into a discrete symbolic (e.g., qualitative) form over
which reasoning can be performed (Puig, Quevedo, Escobet,
& Pulido, 2005; Koscielny & Zakroczymski, 2000). For dy-
namic systems, these discrete observations take the form of
events (Daigle, Koutsoukos, & Biswas, 2009).

In qualitative fault isolation, residual signals are computed
as the differences of observed behavior and predicted nomi-
nal behavior (Mosterman & Biswas, 1999). Deviations of the
residual signals are then abstracted into symbolic, qualitative
representations, called fault signatures, to facilitate diagnos-
tic reasoning (specifically, +, -, and 0 symbols, represent-
ing increase, decrease, and no change from nominal, respec-
tively). Fault models describe the potential sequences of fault
signatures produced by faults, forming a qualitative event-
based fault isolation approach (Daigle et al., 2009). Such
an approach is quick to isolate faults, but depends critically
on correct generation of these qualitative fault signatures.
When the transformation from observed quantitative signals
into observed qualitative fault signatures does not produce the
correct result, the wrong information will be used to isolate
faults, and this incorrect signature generation will, therefore,
lead to incorrect diagnoses.

In this paper, we develop an observation-robust approach to
qualitative event-based fault isolation for dynamic systems as
an extension and generalization of the approach in (Daigle
et al., 2009). Here, observation-robust means that the ap-
proach is still successful, to some degree, when encounter-
ing incorrect observations (henceforth, by observation we
mean the version of the quantitative signal transformed into
a qualitative symbol). By considering the qualitative obser-
vations as uncertain, and interpreting them in a probabilis-
tic manner, the approach degrades gracefully as the number
of incorrectly-generated symbols increases. The approach is
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demonstrated on the Advanced Diagnostics and Prognostics
Testbed (ADAPT) (Poll et al., 2007) an electrical power sys-
tem testbed that has served as a benchmark diagnostic system
in the diagnostics community (Poll et al., 2011; Sweet, Feld-
man, Narasimhan, Daigle, & Poll, 2013). Using real experi-
mental data obtained from the ADAPT hardware, we demon-
strate the improved fault isolation performance in the pres-
ence of incorrect symbol generation.

Several previous works have used probabilistic solutions for
different tasks of the fault diagnosis problem. In (Ricks &
Mengshoel, 2009) the authors use Bayesian Networks (BNs)
to represent probabilistic multi-variate models, which are ap-
plied to the ADAPT hardware, as we do in this paper. Other
works have also applied BNs or Dynamic BNs (DBNs) for
fault diagnosis, e.g., in (Pernestål, 2009) the author uses
DBNs to improve the diagnosis of automotive vehicles, and
in (Alonso-Gonzalez, Moya, & Biswas, 2011; Roychoud-
hury, 2009; Roychoudhury, Biswas, & Koutsoukos, 2010)
DBNs are used for fault diagnosis. In all these cases, the
probabilistic solutions are used to model the systems un-
der conditions of uncertainty and then to perform diagnosis.
However, more sources of uncertainty appear in the fault di-
agnosis process due to, for example, improper threshold se-
lections or incorrect symbol generation. Our approach in this
paper uses a model based on physical equations of the system,
and performs fault diagnosis using this model. The proba-
bilistic methods are then used to reduce the uncertainty in
fault isolation due to incorrectly-generated symbols. An ap-
proach similar to our work is presented in (Ying, Kirubarajan,
Pattipati, & Patterson-Hine, 2000), in the sense that a proba-
bilistic solution is used to perform fault diagnosis in systems
with imperfect diagnosis tests. However, the diagnosis ap-
proach and the probabilistic solution are different than those
used in this paper.

The remainder of the paper is organized as follows. Sec-
tion 2 formulates the problem for event-based fault isolation.
Section 3 reviews the standard event-based fault isolation ap-
proach, and Section 4 extends the approach to be observation-
robust. Section 5 describes implementations of the standard
and robust frameworks based on qualitative fault isolation,
and presents the case study and results. Section 6 concludes
the paper and discusses future work.

2. PROBLEM FORMULATION

In this section, we define the fault isolation problem that we
aim to solve. We assume an event-based fault isolation frame-
work, where faults are isolated based on the analysis of a
sequence of observable events produced as a result of the
fault occurrence (where, in the nominal case, no such events
are produced). The approach is related to discrete-event di-
agnosis (Sampath, Sengupta, Lafortune, Sinnamohideen, &
Teneketzis, 1996) and, more closely, the concept of chroni-

cles (Cordier & Dousson, 2000). For the purposes of defining
the problem and describing the fault isolation approach, we
present a generalized theoretical framework for event-based
fault isolation. In Section 5, we will describe a specific im-
plementation of this framework for dynamic systems (Daigle
et al., 2009).

First, we have the set of faults, F , that may occur in the sys-
tem. Faults produce observable events, called fault signa-
tures.
Definition 1 (Fault Signature). A fault signature for a fault f
denoted by σf , is an event that is observed as a consequence
of the occurrence of f . The set of fault signatures for f is
denoted as Σf . The set of fault signatures over a set of faults
F is denoted as ΣF , i.e., ΣF =

⋃
f∈F

Σf .

These events are produced in some temporal order. A fault
trace is a one particular fault signature sequence that may be
observed.
Definition 2 (Fault Trace). A fault trace for a fault f denoted
by λf , is a sequence of fault signatures from Σf resulting
from the occurrence of f .
Definition 3 (Maximal Fault Trace). A fault trace λf for a
fault f is maximal if there is no extension λfσf that is also a
fault trace for f .

The set of all possible maximal fault traces for a fault is called
its fault language.
Definition 4 (Fault Language). The fault language of a fault
f ∈ F denoted by Lf , is the set of all maximal fault traces
for f . The union of fault languages for a set of faults F is
denoted as LF , i.e., LF =

⋃
f∈F

Lf .

We assume that we have considered all possible faults in F ,
and that the fault languages are complete.
Assumption 1 (Completeness of F ). We assume that F is
complete, i.e., there is no other fault f /∈ F that can occur.
Assumption 2 (Completeness of Lf ). We assume that for
every fault f ∈ F , Lf is complete, i.e., there is no other
maximal fault trace λf /∈ Lf that may occur as a result of f .

By Assumptions 1 and 2, whenever some fault trace λ oc-
curs, it must have been produced by some fault f ∈ F , and
it must belong to Lf for at least one f ∈ F . These assump-
tions are quite standard in model-based diagnosis. In some
approaches, e.g., (Hofbaur & Williams, 2002; Narasimhan
& Brownston, 2007), an unknown fault is considered, which
is consistent with everything. In our approach, such a fault
could be included by adding a new f where Lf contains all
possible traces.

So, associated with each fault is a set of fault traces, where
the maximal fault traces are collected into a fault language.
When a fault occurs, a specific event sequence will be ob-
served that belongs to the fault language. In this framework,
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Algorithm 1 F ∗ ← FaultIsolation(F )

1: F ∗ ← F
2: λ← ∅
3: while σi observed do
4: λ← λσi
5: F ∗ ← FindConsistentFaults(F ∗, λ)
6: end while

fault isolation reduces to matching observed fault traces to
predicted fault traces, to determine which fault has occurred.
So, the fault isolation problem is defined as follows.
Problem. Given an observed fault trace, λ, find the most
likely single fault f that produced λ.

Here, we aim to find the most likely fault, because the ob-
served fault trace may not always be generated correctly, due
to various reasons, such as improperly tuned quantitative sig-
nal thresholds. If this is the case, we must find the most
likely fault that explains the (incorrectly) observed trace, be-
cause the observed trace may not be found in any Lf . The
standard fault isolation approach (Section 3) assumes the ob-
served trace is always correct, whereas the new robust ap-
proach (Section 4) does not make that assumption, in order to
handle incorrectly observed fault traces in a robust fashion.

3. EVENT-BASED FAULT ISOLATION

In the standard fault isolation approach, we assume that fault
traces are correctly observed.
Assumption 3. All observed fault signatures are correct, i.e.,
if fault signature σ occurs, it is observed as σ.

Therefore, given Assumptions 1–3, when a fault occurs and
we observe a fault trace, this trace must belong to the fault
language of at least one fault. The function of the fault iso-
lation algorithm is simply to find which faults are consistent
with the observed fault trace.

The fault isolation algorithm is presented as Algorithm 1. Ini-
tially, the set of isolated faults, F ∗, is set to the complete set
of faults, F . The initial observed fault trace λ is the empty
event sequence. While new fault signatures are observed, we
update the observed fault trace, and reduce F ∗ to the set of
faults consistent with the new trace.

The FindConsistentFaults algorithm, presented as
Algorithm 2, eliminates fromF ∗ faults that are no longer con-
sistent with the trace extended with σi. A fault f is consistent
with an observed trace λ if there is a fault trace λf in its fault
language where λ is a prefix (v), i.e., the fault can generate
the observed sequence of events so far. If the fault is indeed
consistent, it is retained, otherwise, it is removed from F ∗.

Basically, we continue to observe new symbols, and F ∗ re-
duces. If the system is diagnosable, i.e., all faults are distin-
guishable from each other (via their fault languages), then F ∗

will reduce to a single fault. A fault fi is distinguishable from

Algorithm 2 F ∗ ← FindConsistentFaults(F ∗, λ)

1: for all f ∈ F ∗ do
2: if ¬ exist λf ∈ Lf such that λ v λf then
3: F ∗ ← F ∗ − {f}
4: end if
5: end for

fj in this framework if there is no trace in Lfi that is a prefix
of a trace in Lfj .
Example 1. Consider a set of three faults, F = {f1, f2, f3},
where Lf1 = {cab, acb}, Lf2 = {abc, bac}, and Lf3 =
{cb, ca, ab}. Say that we observe first the fault signature a.
Each of the faults may produce a as the first fault signature,
so F ∗ = {f1, f2, f3}. Say we next observe b. Now, f1 can-
not produce a trace starting with ab, so it is eliminated, and
F ∗ = {f2, f3}. Say we next observe c. Now, f3 cannot pro-
duce a trace beginning with abc, and so f2 is isolated as the
fault.

Let us say we observe a trace that does not belong to any
fault language. There are three explanations for this: (i) an
unknown fault has occurred (violation of Assumption 1), (ii)
a valid trace is missing from a fault language (violation of
Assumption 2), or (iii) the trace was observed incorrectly (vi-
olation of Assumption 3). For (i) and (ii), there is nothing that
can be done, so we limit ourselves only to situation (iii). So,
what happens when the trace is observed incorrectly?
Example 2. Consider again the fault set from the previous
example. Say we observe c, then we have F ∗ = {f1, f3}.
Say we then observe b, then we have F ∗ = {f3}. Say we
then observe a, then we have F ∗ = ∅, i.e, all faults were
eliminated. One explanation is that the a fault signature was
falsely observed (i.e., a false alarm), in which case the true
fault is f3.

The result of an incorrectly observed trace is an incorrect fault
isolation result. Either all candidates will be eliminated, as in
the example above, or the wrong fault will be isolated (if the
observed trace belongs to a fault language of a fault that did
not occur). In practice, it is not unlikely that a trace may be
incorrectly observed, e.g., from noisy sensor signals, overly
sensitive fault detection thresholds, etc. Clearly, Algorithm 1
is not robust in this case. A more robust approach is necessary
to handle a violation of Assumption 3.

4. ROBUST EVENT-BASED FAULT ISOLATION

As described in Section 3, Algorithm 1 makes Assumption 3,
i.e., there is only one interpretation of an observed trace,
which is what was observed. In practice, however, traces may
be incorrectly observed, and so we must drop Assumption 3
in order to be robust to this situation, i.e., to make the ap-
proach observation-robust. In more detail, by observation-
robust, we mean that the approach performs optimally when
all observations are correct, and its performance degrades
gracefully as the number of incorrect observations increases.
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In practical terms, this means that the true fault is diagnosed
to have the highest probability of being the one that occurred,
when all observations are correct. Further, its assigned proba-
bility decreases when incorrect observations are encountered,
where, up to a certain point, it remains the most probable fault
given the observations.

In order to still perform in the face of incorrect observations,
we must differentiate between an observed trace and an in-
terpreted trace. For a given observed trace, there are several
potential interpreted traces. An observed trace may or may
not belong to any Lf . Any valid interpretation of it, however,
must be a prefix of some trace in LF . That is, given an ob-
served trace, we must generate all correct ways to interpret it,
given the set of considered faults. Each interpreted trace will
have its own probability and its own diagnosis. Given the set
of interpreted traces, their probabilities, and their diagnoses,
we can extract a combined diagnosis that provides, for every
fault resulting from an interpreted trace, a probability of its
occurrence.

Say that so far we have an interpreted trace of λ, and a new
symbol σi is observed. How do we extend λ given σi? We
assume there is a known set of signatures, Σσi

, that can be
observed as σi. At a minimum, this set contains σi itself. So,
when σi is observed, it could have been any signature in Σσi

that actually occurred. However, only a subset of these can
extend λ and be consistent with a given set of faults. To be
consistent, they have to be a prefix of some trace found in LF
(since an interpreted trace must belong to LF ).
Example 3. Consider again the set of three faults, F =
{f1, f2, f3}, where Lf1 = {cab, acb}, Lf2 = {abc, bac},
and Lf3 = {cb, ca, ab}. Say that Σa = {a, b}, Σb = {b, a},
and Σc = {c}. Say that the trace bca is observed, what are
the possible interpreted traces? First b is observed and that
can be interpreted as either a or b; so far the interpreted traces
are a and b. Next c is observed, which can be interpreted
only as c; so the interpreted traces are ac and bc. Then a is
observed, which can be interpreted as either a or b, so the po-
tential interpreted traces are aca, acb, bca, bcb, however, only
acb belongs to a fault language and is valid.

Σσi
may also contain special signatures that represent false

alarms, which we denote using ε with a subscript denoting
the event associated with the false alarm (e.g., εa for a false
alarm of event a). For example, we could observe some sig-
nature σ, but it may be possible that no signature occurred and
σ is to be interpreted as a false alarm. In this case, we require
a special false alarm signature. The fault languages must in-
clude traces that contain false alarm signatures in order for
them to be interpreted from an observed trace. Note that such
signatures are not required for the standard approach due to
Assumption 3. We require also a false alarm “fault” to be
included in F , for which its traces contain only false alarm
signatures. It is not actually a fault but used to represent the

situation where so far, only false alarm signatures have been
interpreted from the observed signatures.
Example 4. Consider the same situation as in the previous
example, except with false alarm signatures εa, εb, and εc.
The fault languages are extended by traces where a, b, and
c can be replaced with these signatures, respectively, e.g.,
Lf1 , in addition to cab, has εcab, cεab, and caεb, as well
as εacb, εbca, εaεbc, etc. Here, we have Σa = {a, b, εa},
Σb = {b, a, εb}, and Σc = {c, εc}. We require then also the
false alarm fault E, which has all traces of the three signa-
tures εa, εb, and εc. Say again that the trace bca is observed,
what are the possible interpreted traces? First b is observed
and that can be interpreted as either a, b, or a false alarm in
b, εb. Then c is observed which is really either c or εc, so
the potential interpreted traces are ac, aεc, bεc, εbc, εbεc (bc is
not included since it does not belong to any fault language).
Next a is observed which is either a, b, or εa. The interpreted
traces are then acb, aεcb, bεca, bεcεa, εbca, εbcεa, εbεca, and
εbεcεa.

The algorithm for robust fault isolation is given as Algo-
rithm 3. We keep a set of tuples, L, containing an interpreted
trace λ, its probability p, and its diagnosis F ∗. Initially, the
set contains only one tuple, which is the empty trace ε, with a
probability of 1 and the complete fault set F as its diagnosis.
When a new signature σi is observed (ln. 2), we go through
each interpreted trace λ. First, we find all new signatures that
would (i) belong to Σσi , and (ii) can extend λ to produce a
valid fault trace (ln. 5). For each of these possible next signa-
tures, we extend the trace with it (ln. 7), assign the new trace’s
probability (lns. 8–15), and obtain its diagnosis (ln. 16). We
then add the new tuple (λ′, p′, F ∗) to the set of new tuples L′
(ln. 17), which replaces L (ln. 20). Finally, we construct the
merged diagnosis F∗, which is a set of tuples of a fault and
its probability.

To compute the probability of a trace, we assume that there is
a probability of observing the correct signature, pc. We can
compute the probability of the interpreted signature, pσ , as pc
if it matches the observed signature σi. If it does not match,
we assume that all other signatures are equally probable, so it
is assigned as (1− pc)/(|Σ| − 1) if σi is possible to observe,
and 1/|Σ| if not. The probability of the trace extended by σ is
then the probability of the original trace times the probability
of σ.

The diagnosis that is merged over all traces is computed as
described in Algorithm 4. Each fault is assigned initially a
probability of 0. Then, for each interpreted trace, the proba-
bility of the fault given that trace, p(f |λ), is computed as the a
priori probability of the fault divided by the sum of the proba-
bilities of that fault diagnosed for that trace. This probability
is then added to the probability of the fault, p(f). After going
through all traces, each fault is assigned its total probability.
The set F∗ is created by adding tuples for all faults and their
probabilities.
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Algorithm 3 F∗ ← RobustFaultIsolation(F )

1: L ← {(ε, 1, F )}
2: while σi observed do
3: L′ ← ∅
4: for all (λ, p, F ∗) ∈ L do
5: Σ← {σ : σ ∈ Σσi and exists λ ∈ LF∗ such that λσ v

λ}
6: for all σ ∈ Σ do
7: λ′ ← λσ
8: if σ = σi then
9: pσ ← pc

10: else if σi ∈ Σ then
11: pσ ← (1− pc)/(|Σ| − 1)
12: else
13: pσ ← 1/|Σ|
14: end if
15: p′ ← p · pσ
16: F ∗ ← FindConsistentFaults(F ∗, λ′)
17: L′ ← L′ ∪ {(λ′, p′F ∗)}
18: end for
19: end for
20: L ← L′
21: L ← Prune(L)
22: F∗ ← ConstructF(F,L)
23: end while

Algorithm 4 F∗ ← ConstructF(F,L)

1: F∗ ← ∅
2: for all f ∈ F do
3: p(f)← 0
4: end for
5: for all (λ, p, F ∗) ∈ L do
6: for all f ∈ F ∗ do
7: p(f |λ)← pf∑

f ′∈F∗
pf ′

8: p(f)← p(f) + p · p(f |λ)
9: end for

10: end for
11: for all f ∈ F do
12: F∗ ← F∗ ∪ {(f, p(f))}
13: end for

Clearly, the number of interpreted traces, in the worst case,
grows exponentially with each new observed symbol. Each
new symbol can be interpreted in a number of ways and all
current interpreted traces need to be extended with all pos-
sible interpretations. In order to control the computational
complexity of the algorithm, a pruning step is added (ln. 21).
Interpreted traces may be removed from L by, for example,
keeping only the N most probable traces, or keeping only
traces above a probability threshold po. After removing traces
from L, the trace probabilities must be normalized.
Example 5. Consider again the scenario in the previous ex-
ample. The diagnostic tree is shown in Fig. 1. Initially, any
of the faults are possible, including the false alarm fault E.
The branches in the tree represent the possible interpreted
traces from the observed trace bca. The standard approach
would have only one branch. We assume that pc = 0.9,
and the arrows are labeled with the interpreted symbol and
its probability, leading to the new diagnosis and its proba-
bility. Since bca does not belong to any fault language, the

standard approach would fail, whereas in this approach, we
have many potential diagnoses that are ranked probabilisti-
cally, depending on the probabilities assigned to the inter-
preted symbols. For example, take the leftmost branch, where
b is correctly observed. This happens with 90% probabil-
ity, and immediately leads to {f2} as the diagnosis, since
no other fault can produce a b as the first signature. Then
c is observed. Since there is no fault that can produce bc,
the only valid interpretation, given that b was correctly ob-
served, is that c was incorrectly observed and the interpreted
signature is εc, i.e., a false alarm of symbol c. Then a is ob-
served, which can be interpreted only as a or εa, but not as
b since no fault produces two b signatures in any trace. In
either case, the diagnosis remains f2. The rightmost branch,
on the other hand, represents the case where all observations
were false alarms, and thus the diagnosis is E. For a given
fault, its total probability over all interpreted traces can be
computed. If we assume that all faults are equally likely, then
p(f2|bca) = 0.81 + 0.09 + 0.005/3 + 0.0045/3 = 0.9032.

Clearly, the selection of values for pc and po will determine
the final computed probabilities of candidates for a given ob-
served trace. A higher value of pc will assign a higher prob-
ability to the most consistent candidates and a lower value
to the remaining candidates, i.e., the candidate probability
distribution will have a smaller variance. Similarly, a lower
value of pc will cause the candidate probability distribution
to have a larger variance. If po is too high, and a trace is
incorrectly observed, then it is possible that the correct can-
didate can be eliminated. Therefore, both pc and po have to
be selected to best represent the confidence in the symbol ob-
servation process.

5. CASE STUDY

In this section, we describe the application of the new robust
event-based fault isolation framework to ADAPT. We use the
qualitative event-based fault isolation (QFI) framework de-
veloped in (Daigle et al., 2009) and apply the robust method-
ology to it. We first describe the QFI framework and how it
maps into the general event-based framework described ear-
lier, then describe the ADAPT system. Finally, we describe
experimental results using data from ADAPT.

5.1. Qualitative Event-Based Fault Isolation

In the QFI framework in (Mosterman & Biswas, 1999; Daigle
et al., 2009), signatures capture qualitative deviations in mag-
nitude and slope of residual signals, where a residual is com-
puted as the difference between a measured value of a sen-
sor and its expected (model-predicted) value. So, for a given
residual r, we can have six different signatures: (i) an increase
in magnitude, (ii) a decrease in magnitude, (iii) an increase in
slope, (iv) a decrease in slope, (v) a false alarm in the mag-
nitude, and (vi) a false alarm in the slope. For each poten-
tial fault, we can use a dynamic system model to determine
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{f1, f2, f3, E}: 1.00

b:

c:

a:

a, 0.05b, 0.90 εb, 0.05

εc, 1.00

b,1.00

{f2}: 0.90 {f1, f2, f3}: 0.05

c, 0.90 εc, 0.10 c, 0.90 εc, 0.10

{f2}: 0.90 {f1}: 0.045 {f1, f2, f3}: 0.005

a, 0.90 εa, 0.10

{f2}: 0.81 {f2}: 0.09 {f1}: 0.045

b,1.00

{f1, f2, f3}: 0.005

a, 0.90 εa, 0.05

{f1, f2, f3, E}: 0.05

{f1, f3}: 0.045 {f1, f2, f3, E}: 0.005

a, 0.90 εa, 0.10

{f1, f3}: 0.0405 {f1, f3}: 0.0045 {E}: 0.00025{f1, f2, f3}: 0.0045

Figure 1. Example diagnostic tree.

which signatures are possible, as described in (Mosterman &
Biswas, 1999).

Fault traces in this framework obey a certain set of con-
straints. First, for a given residual r, the magnitude sym-
bol must always be observed before the slope symbol, and
magnitude and slope symbols can be observed only once per
residual (including false alarm signatures). Second, the order
of signatures between residuals must respect relative resid-
ual orderings (Daigle, Koutsoukos, & Biswas, 2007), which
express the intuition that faults manifest in some residuals
before others. Like signatures, these can be derived from a
dynamic system model (Daigle, 2008). Third, once a false
alarm signature occurs for the magnitude, we cannot observe
any more signatures for that residual. Aside from these re-
strictions, false alarms can occur at any time. In this frame-
work, fault traces do not need to be precomputed but can be
computed online (Daigle et al., 2009).

More information on this framework and its implementation
may be found in (Daigle, Roychoudhury, & Bregon, 2013;
Daigle, Bregon, & Roychoudhury, 2011). For the purposes of
this paper, it suffices to say that we build a dynamic model in
order to compute residuals, and these are analyzed in a statis-
tical manner to generate observed signatures. This involves
the use of thresholds on the residuals. The major practical
problem here is tuning of the thresholds, which can be time-
consuming in order to achieve the desired false alarm/missed
detection trade-off. If these are not perfectly tuned, signatures
can be incorrectly generated. In practice, this is quite difficult,
so, using an approach that is robust to incorrect signatures is
much desired. We compare two different diagnosers, (i) the
QED algorithm, which implements the FaultIsolation
algorithm; and (ii) probabilistic QED (pQED), which imple-
ments the RobustFaultIsolation algorithm. Except

for the fault isolation algorithm, the two diagnosers are the
same.

5.2. ADAPT

In this paper, we apply our new methodology to the Advanced
Diagnostics and Prognostics Testbed (ADAPT), an electrical
power distribution system that is representative of those on
spacecrafts. ADAPT serves as a testbed through which faults
can be injected to evaluate diagnostic algorithms (Poll et al.,
2007). ADAPT has been established as a diagnostic bench-
mark system through the industrial track of the International
Diagnostic Competition (DXC) (Kurtoglu et al., 2009; Poll
et al., 2011; Sweet et al., 2013). In particular, this paper is
focused on diagnosing faults on a subset of ADAPT, called
ADAPT-Lite.

A system schematic for ADAPT-Lite is given in Fig. 2. A
battery (BAT2) supplies electrical power to several loads,
transmitted through several circuit breakers (CB236, CB262,
CB266, and CB280) and relays (EY244, EY260, EY281,
EY272, and EY275), and an inverter (INV2) that converts dc
to ac power. ADAPT-Lite has one dc load (DC485) and two
ac loads (AC483 and FAN416). There are sensors throughout
the system to report electrical voltage (names beginning with
“E”), electrical current (“IT”), and the positions of relays and
circuit breakers (“ESH”, “ISH”). Finally there is one sensor
to report the operating state of a load (fan speed, “ST”) and
another to report the battery temperature (“TE”). Models and
additional details for ADAPT-Lite can be found in (Daigle et
al., 2011, 2013).

Our list of potential faults includes failures in the relays, cir-
cuit breakers, fan, DC load, and AC load. We consider also
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Figure 2. ADAPT-Lite schematic.

under- and over-speed faults of the fan, and offset, drift, and
intermittent offset faults in the DC and AC loads.

5.3. Experiments

Using scenarios available from the DXC, we ran QED and
pQED on a set of 30 nominal scenarios and 71 fault scenar-
ios. The same fault detectors were used for both algorithms,
so that we can show that, when incorrect signatures are gen-
erated, pQED performs better than QED, with the same in-
formation. The settings are nonoptimal in order to better
highlight the differences in the approaches when multiple in-
correct observations are encountered; improving the settings
would of course improve the performance of both algorithms,
but make it harder to compare the performance in nonoptimal
conditions.

We first consider an example scenario, to illustrate the dif-
ferent diagnosis approaches. We then summarize the perfor-
mance of the approaches over all scenarios.

As an example, consider a resistance drift fault in AC483.
The fault is injected at 60 s and detected at 63 s with a de-
crease in IT240. QED reduces the candidate list to a failure
in AC483, a positive resistance offset in AC483, a positive re-
sistance drift in AC483, a failure in CB236, CB262, CB266,
EY244, and DC485, a resistance increase in DC485, a resis-
tance drift in DC485, a failure in EY244, EY260, EY272,
EY275, EY284, FAN416, an under-speed fault in FAN416,
and a failure in INV2. A - signature for the slope of the IT240
residual is then computed, for which only the drift faults are
consistent. An increase in E242 is detected at 120 s, followed
by the generation of a + signature for its slope. QED elim-
inates all faults, because it expects IT267 to deviate before
E242. On the other hand, pQED retains the drift faults as can-
didates, but lowers their probabilities. Before the E242 devia-
tion, the two drift faults had a probability of 38.77% each. Af-
ter, the probability reduces to 3.92%, and they are still at the
top of the candidate list. With the subsequent signatures for
E242, probability decreases, as this is more evidence of other
potential faults, but they remain the most probable. However,

then E240 deviates, again before IT267 as expected, and this
reduces their probability further, and they drop to the eighth
and ninth most probable (at this point it is more likely that
the detection of a negative slope (rather than no change in
slope) was incorrect, and so failures in the circuit breakers
and relays become more likely). In this case, no deviation
was detected in IT267. With a more sensitive threshold, a de-
viation in IT267 could have been detected first, and the drift
faults would have remained the most probable. Although this
is not the most optimal result, at least the true fault was con-
tained in the final diagnosis, albeit not at the highest level of
probability.

5.3.1. Summary of Results

Over the nominal scenarios, both algorithms (since they use
the same fault detectors) correctly detected a fault (true pos-
itives) 69 of 71 times, with 2 missed detections (false nega-
tives). There were no false alarms detected.

For the fault scenarios, QED ends with a list of candidates that
are consistent with the observed symbols. Ideally, this list is
a singleton, containing the true fault. If, given the available
diagnostic information, this is not possible, then we desire
that it has the true fault in its final candidate list. In fact,
QED never obtains the true fault as the single candidate, as
diagnosability is not high enough to achieve that condition.

QED has the correct fault in its candidate list in 24 of 69
scenarios. This means that there are incorrect signatures gen-
erated in at least 45 scenarios. This can be improved with
better fault detector tuning, however we keep these settings
in order to demonstrate the improvement pQED provides. In
32 of these 45 scenarios, QED actually eliminates all faults,
as no faults were consistent with the (incorrect) observations.

For pQED, we used pc = 90%, and pruned candidates with
probability less than 0.1%. If pQED does not prune, then
it will always have the correct candidate in its candidate list
(but perhaps with a low probability assignment). With the
pruning threshold used, pQED has the correct candidate in
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its final list 63 of 69 times, which is a significant improve-
ment over QED. For the 6 times in which it did not have the
true fault, there were too many incorrect observations, bring-
ing down the probability of the true fault low enough that all
traces containing the fault were pruned.

Of course, it is not enough the pQED has the correct fault
in its list, as this depends solely on the pruning threshold.
We are interested in the probability assignment of the true
fault within the final candidate list. pQED diagnoses the true
fault as the fault with highest probability 38 of 69 times. This
is better than the 24 of 69 times for QED. Since QED does
not rank its final candidates, pQED’s result is actually signif-
icantly better and more useful. For the times when the true
fault is not ranked the highest, it is at least contained in the
final candidate list for most of the time.

6. CONCLUSIONS

In this paper, we presented a robust approach to event-based
fault isolation that drops the observation correctness assump-
tion in order to improve robustness of fault isolation when
events are incorrectly observed. We applied this framework
to a qualitative event-based fault isolation framework. Exper-
iments using real data from an electrical power system testbed
demonstrated the approach and its improved robustness.

Future work will focus on extending the approach to multiple
fault isolation, and extending the probability framework to
account for conditional probabilities.

ACKNOWLEDGEMENTS

M. Daigle’s and I. Roychoudhury’s funding for this work was
provided by the NASA System-wide Safety and Assurance
Technologies (SSAT) Project. A. Bregon’s funding for this
work was provided by the Spanish MICINN DPI2013-45414-
R grant.

REFERENCES

Alonso-Gonzalez, C., Moya, N., & Biswas, G. (2011). Dy-
namic bayesian network factors from possible conflicts
for continuous system diagnosis. In Proc. of the 14th
int. conf. on advances in ai (pp. 223–232). Berlin:
Springer-Verlag.

Cordier, M.-O., & Dousson, C. (2000, June). Alarm driven
monitoring based on chronicles. In Proceedings of
the 4th symposium on fault detection supervision and
safety for technical processes (p. 286-17291).

Daigle, M. (2008). A qualitative event-based approach to
fault diagnosis of hybrid systems. Unpublished doc-
toral dissertation, Vanderbilt University.

Daigle, M., Bregon, A., & Roychoudhury, I. (2011, Octo-
ber). Qualitative Event-based Diagnosis with Possible
Conflicts: Case Study on the Third International Diag-

nostic Competition. In Proceedings of the 22nd inter-
national workshop on principles of diagnosis (p. 285-
292). Murnau, Germany.

Daigle, M., Koutsoukos, X., & Biswas, G. (2007, April).
Distributed diagnosis in formations of mobile robots.
IEEE Transactions on Robotics, 23(2), 353–369.

Daigle, M., Koutsoukos, X., & Biswas, G. (2009, July).
A qualitative event-based approach to continuous sys-
tems diagnosis. IEEE Transactions on Control Systems
Technology, 17(4), 780–793.

Daigle, M., Roychoudhury, I., & Bregon, A. (2013, Octo-
ber). Qualitative event-based diagnosis with possible
conflicts: Case study on the fourth international diag-
nostic competition. In Proceeedings of the 24th inter-
national workshop on principles of diagnosis (p. 230-
235).

Hofbaur, M., & Williams, B. (2002, May). Hybrid diagnosis
with unknown behavioral modes. In Proceedings of the
13th international workshop on principles of diagnosis
(pp. 97–105).

Koscielny, J., & Zakroczymski, K. (2000). Fault isolation
method based on time sequences of symptom appear-
ance. In Proceedings of ifac safaprocess. Budapest,
Hungary.

Kurtoglu, T., Narasimhan, S., Poll, S., Garcia, D., Kuhn, L.,
de Kleer, J., . . . Feldman, A. (2009, June). First in-
ternational diagnosis competition – DXC’09. In Pro-
ceedings of 20th international workshop on principles
of diagnosis (p. 383-396).

Mosterman, P. J., & Biswas, G. (1999). Diagnosis of con-
tinuous valued systems in transient operating regions.
IEEE Transactions on Systems, Man, and Cybernetics,
Part A: Systems and Humans, 29(6), 554-565.

Narasimhan, S., & Brownston, L. (2007, May). HyDE —
a general framework for stochastic and hybrid model-
based diagnosis. In Proc. of the 18th int. workshop on
principles of diagnosis (pp. 162–169).
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