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ABSTRACT 

System operation is a real time, dynamic decision process, a 

continuous observation should be implemented to support 

timely decision. Real time condition monitoring and 

diagnosis is featured with ongoing event sequence. The 

more recent observation, the much detailed, accurate 

informat ion, and the more obsolete observations with much 

weak correlation to current faults and errors  vise versa.  

Dempster-Shafer evidence theory is best suitable for the 

problem of redundant sensors, insufficient data reasoning. 

However, D-S base applicat ions largely  focused on 

causational relationship between symptoms and effects, and 

the fusion process of evidences was performed regardless 

whatever order observed. As an improvement to the frame 

of discernment of the D-S theory, we purposed a time 

weighted evidence combination method. Observed events 

were extracted from mult iple time points to form a temporal 

evidence sequence. Basic probability assignment was 

altered by temporal weights in accordance with the time 

proximity between the observed events and current time. 

The temporal weights value set was in accordance with  its 

occurring time point. Evidences with same t imestamps 

should be allocated with the same temporal weights. An 

example was discussed to illustrate the temporal weight, D-

S ru le based assessment framework. In the framework, latest 

observed evidences stream were combined into the 

framework to improving fault recognition. 

1. INTRODUCTION 

Condition assessment for system operation is a real t ime, 

dynamic decision process, during that course, a continuous 

observation should be implemented to support timely  

condition assessment. Currently, as a method widely in the 

area of fault diagnosis applications, Dempster-Shafer 

evidence theory is best suitable for the problem of redundant 

sensors, reasoning of insufficient data which might be 

imprecise and incomplete(Yang, 2006)(Parikh,2001)  

As an extension of traditional probabilistic theory, the 

Dempster-Shafer Theory (DST) of evidence provides 

beneficial approaches to uncertain reasoning. In the network 

security area, DST was used as a method for incursion 

detection (Lan, 2010), intrusion priorit izing (Zomlot, 2011). 

In ubiquitous network and pervasive computing, DST was 

applied to recognize situation and activities in smart 

environment (McKeever, 2009). It also play an important 

role in bank fraud detection applications (Beranek, 2013). 

Some of these researches concerned the temporal property 

of evidence to improve performance of detection, for 

examples, McKeever tried to use a duration measure to 

generate the belief of event and evidence.  

Our research focused on the problem of temporal aspect of 

DST evidence. During the online condition monitoring, 

some observed information  might not up to date sufficiently  

while others may appears better timeliness. Outdated 

informat ion as one of three kind of major informat ion 

problems (Garvin, 1988), is not sufficiently fo r the task of 

fault detection. The more recent observations could provide 

much detailed, accurate information about current condition. 

This paper is organized as fo llows. In section 2, the classic 

Dempster-Shafer Theory of Ev idence is introduced, and the 

problem of application DST to online diagnosis for 

operation condition monitoring and failure detection and 

recognition is analyzed. Here we purposed a temporal 

weighted evidence combination method together with the 

procedure of application. In section 3, an example is 

discussed to illustrate how the temporal weight D-S rule 

combination method can be applied to online failure 

identification. Also we compared the result of classic D-S 

rules of combination with our method. 
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2. METHODOLOGY 

2.1. D-S evidence theory 

The Dempster-Shafer Theory (DST) or D-S theory of 

evidence was first introduced at 1960s(Dempster, 

1968)(Shafer, 1976). The DST is basically an extension of 

traditional p robabilistic modeling of uncertainty. Currently, 

the D-S theory of evidence was applied widely in fault  

diagnosis and recognize for its effect iveness to incomplete, 

inaccurate or conflict data.  

According to the classic D-S theory of evidence, the 

elements needed to model the problem could be summarized 

as following:  

A frame of discernment  , which should be a finite set of 

all of the possible hypotheses that are mutually exclusive; 

A mapping of  : 2 0,1m   , which defines the basic 

probability assignment(BPA) of each subset A   of 

hypotheses and satisfying ( ) 0;m   ( ) 1
A

m A


 . The BPA 

represents a certain piece of ev idence. 

A rule of D-S evidence combination, which could be used to 

yield a new BPA from two independent evidences and their 

BPAs. There are a number of possible combination rules in  

application (Sentz, 2002). One of them is the Dempster’s 

Rule, that could be defined as follows 

1 2

1 2

( ) ( )

( ) ( )
1

B C A

m B m C

m A m m A
K

   



    (1)

 

1 2( ) ( )
B C

K m B m C
 

 
              .  

 (2) 

B and C are subset of hypothesis. K  reflects the conflict  

between B andC , while the higher the K  , the greater the 

conflict between the evidences. It was proven that the 

Dempster rule of combination meets the commutative and 

associative laws, which could be depicted as such: 

1 2 3 1 2 3( ) ( )m m m m m m      

and  

1 2 2 1m m m m   . 

Therefore evidences are treated as equal, as well as the order 

of evidences dose not affect the result of evidence 

combination. 

2.2. Temporal Weighted Evidence Combination 

D-S rule of combination treat evidences equally from 

different sensor. However, that assumption generally  cannot 

hold during an online condition monitoring. System data 

and evidence unveiled gradually, sequentially, as time 

lapsing. What we have identified is only a fract ion of the 

facts. At the early stage of a fault or failure, the symptom 

could be dim and weak. As the system operation went on, 

the system performance appears variation, while some 

symptom may change as well, others could be expired or not 

valid any more. The creditability of past evidence is not 

static. Instead it should change in course of timeliness. 

Ev idence that is up-to-date should be assessed as a strong 

sample. The more recent observations could provide much 

detailed, accurate informat ion about current condition. At 

the same t ime, those past, obsolete evidences only have 

partial utility, appeared a weak correlation to current faults 

and errors(Garv in, 1988). 

Based on the weighted view of evidence (Yu, 2005), we 

purposed a temporal weighted combination ru les to solve 

the problems of timeliness of evidence. The weight of each 

evidences are based on their timestamp properties. The 

temporal weighted rule combination is: 

1 2

1 2

1,2 1 2

1 2

( ) ( )

( )
( ) ( )

w w

t t

B C A

w w

t t

B C

m B m C

m A
m B m C

 

 









             (3) 

where
1 2,w w is the temporal weights of time point 

1 2,t t  for 

evidence B and C ： 

exp( ( ))i iw K t T                         (4) 

in which T  is the current time (system time). K  is a user 

predefined constant, 0K  . 

Condition 

Monitoring

Event 

Extraction

Time Weight 

Estimate

Timestamp

And sequence 

generation

BPA 

assignment

Time Weighted 

Evidence 

Combination  
Figure 1. Schematic o f the method for time weighted 

evidence combination. 

 

From the equation (4), we could find some feature of iw : 

a) The temporal weight of the latest evidence is g reater than 

that of those previously evidences. 

b) The older of the evidence, the less timeliness and values 

of the belief, as well as its temporal weight. 

c) Evidences with time proximity have similar temporal 

weights. 

d)Temporal weight of on-going evidence has approximate 

value to 1, which represent it is the most up-to-date 

evidence. 
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The workflow of temporal weighted D-S evidence 

combination method is  described as Figure 1. Observed 

events were extracted from mult iple time point to  form a 

temporal evidence sequence. Basic probability assignment is 

altered by temporal weights in accordance with the time 

proximity between the observed events and current time. 

The temporal weights setup is in accordance with its 

occurring time point. Lately observed evidence could have 

better influence and support to the hypothesis than those 

older evidences. Evidences with same timestamps should be 

allocated with the same temporal weights. 

Considering the introduction of temporal weighted 

combination rules, the combination of multiple evidence is 

no longer commutative and  equally  treated, that means each 

time point we need to recalcu late the set of temporal weight 

iw , as shown in Figure 2. 

…

w3

…

…

D-S Rule of Combin-ation

m1(A1) m2(A2) mk(Ak)m3(A3)

m(A)

m1,2

m1,2,3

w1 w2

m1(A1) m2(A2) mk(Ak)m3(A3)

E1 E2 EkE3

Timeline

m(A)

wk…

w1

w1

w2

 
Figure 2. Time weighted D-S evidence combination.  

 

However, this approach might be faced with time 

complexity for the calculat ion of iw  at each time point. To  

simplified the framework, we merged the past combination 

result into a new evidence at each time point, as shown in 

Figure 3. The improved framework has better time 

performance while yield approximately result as Figure 2. 

 

m1,2

m1,2,3

w1 w2

w3

m1(A1) m2(A2) mk(Ak)m3(A3) …

E1 E2 EkE3 …

Timeline

m(A)

w1,2

wk

m1,2,..k-1

…

 
Figure 3. A improved framework of t ime weighted D-S 

evidence combination for mult iple symptoms . 

3. CAS E S TUDY 

In this case, we adopted the dataset of a power generator 

(Ray, 2007) as an example to  illustrate the temporal weight, 

D-S rule based assessment framework. During its operation, 

working condition and performance events was monitored 

periodically.  

We need to assess the on-going events and symptoms to 

identify the type of possible failure(s) in  a near real t ime 

manner. The challenge lies in that the observing events were 

ever changing and added in, while the early events and their 

informat ion might expired, the latest evidence need be 

combined into the frame to improv ing the accuracy of 

results. 

3.1. Dataset Preparations 

There are three kinds of power generator failures g iven by 

domain  specialist, namely , 1 2 3, ,h h h . The corresponding 

frame of discernment could be given with 

 1 2 3= , , ,h h h   

where   is the unknown type of failures. 

Event 1E , 2E  and 3E  were reported by system monitoring 

function, with the corresponding timestamps as 

1 2 31, 2, 3t t t   . So we have a sequence of symptom as 

 1 2 3,1 , ,2 , ,3E E E      . 

To simplify  the calculation, we choose the time-weighted 

constant ln 2K  . As a result, the time weight turns into 
( )

exp( ( )) 2 it T

i iw K t T


                      (5) 
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The BPAs for the hypothesizes of evidence
1E ,

2E  and 
3E  

were g iven.  

Event
1E was the symptom to failure types 

1 2 3, ,h h h  with a 

BPA of 0.7, so: 

 
1 1 2 3, , 0.7tm h h h   And  

1
0.3tm    

2E  was the symptom of failure 1h  with the belief of 0.9: 

 
2 1 0.9tm h   And  

2
0.1tm    

For event
3E which was a evidence for failures of 

2 3,h h , the 

BPA is 0.8, so that: 

 
3 2 3, 0.8tm h h   and  

3
0.2tm    

3.2. Temporal Combination of Evidence Sequence  

According to equation (5), the time weight could be given 

for sequence  1 2 3,1 , ,2 , ,3E E E      . 

Event
1E  was detected at 

1 1t  . W ith the new event 
2E  was 

detected at 
2 2t  , evidence 

1E  and evidence 
2E  need to be 

fused. Table 1 shows the combination rules for 
1, 2t tm ： 

 
According to equation (3),  

  1

1 2

1

12
1 2

, 1 1

12
1 2

( ) ( )

0.9

( ) ( )

t t

B C h

t t

t t

B C

m B m C

m h

m B m C

 

 



 







 

 
1 2, 1 2 3, , 0.06t tm h h h   

 
1 2, 0.04t tm    

With the event 3E  was detected at time 3 3t  ,new evidence 

added in and the result reflect the influence of up-to-date 

informat ion. Table 2 shows the combination rules for 

1, 2 3,t t tm ： 

 
The combination at time 

3 3t   as shown: 

 
1 2 3, , 1 0.299t t tm h   

 
1 2 3, , 2 3, 0.560t t tm h h   

 
1 2 3, , 1 2 3, , 0.077t t tm h h h   

 
1 2 3, , 0.063t t tm    

Here we had combine the sequence 

 1 2 3,1 , ,2 , ,3E E E       at 
3 3t  . 

 

In Table 3 we compared the results of classic D-S approach 

and our temporal weighted combination method. Apparently, 

from row 3 3t   we can see that the temporal weighted 

approach is more sensitive to latest, up-to-date evidence, 

which yield a higher belief for hypothesis set  2 3,h h  in 

favor of the newly observed evidence
3 ,3E  . Also we 

could infer from the line 
2 2t   that when the latest 

evidence was similar to the former ones, the output beliefs 

of temporal weighted combination method is only slightly 

different to classic D-S approach.  

 

 

Table 3. Comparison of temporal weighted combination 

method and classic D-S evidence combination 

Time BPA  
Classic 

D-S 

Temporal 

Weighted 

2 2t    
1 2, 1t tm h  0.9 0.9 

 
1 2, 1 2 3, ,t tm h h h  0.07 0.06 

 
1 2,t tm   0.03 0.04 

3 3t    
1 2 3, , 1t t tm h  0.511 0.299 

 
1 2 3, , 2 3,t t tm h h  0.227 0.560 

 
1 2 3, , 1 2 3, ,t t tm h h h  

0.034 0.077 

 
1 2 3, ,t t tm   0.227 0.063 

 

Table 2. Combination of 
1E ,

2E  and 
3E  

1,2 3

1 2 3, ( ) ( )
w w

t t tm B m C  

1,2 0.5w  3 1w   

 2 3,h h     

 
3 2 3, 0.8tm h h    

3
0.2tm    

 1h     1h  

 
1 2, 1 0.9t tm h   0 0.19 

 1 2 3, ,h h h   2 3,h h   1 2 3, ,h h h  

 
1 2, 1 2 3, ,

0.06

t tm h h h


 0.196 0.049 

    2 3,h h     

 
1 2, 0.04t tm    0.16 0.04 

 

Table 1. Combination of 
1E and

2E  

1 2

1 2
( ) ( )

w w

t tm B m C  

1 0.5w  2 1w   

 1h     

 
2 1 0.9tm h    

2
0.1tm    

 1 2 3, ,h h h   1h   1 2 3, ,h h h  

 
1 1 2 3, , 0.7tm h h h   0.753 0.084 

    1h     

 
1

0.3tm    0.493 0.055 
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4. CO NCLUSION 

The Dempster-Shafer Theory of evidence based model has 

been widely used to multi sensor fault detection and 

recognition. As an improvement to the DST, the temporal 

weighted evidence combination method could be beneficial 

to the balance of long term trend and abrupt fault 

recognition, especially fo r the on line health management 

applications, compared with the classic DST combination 

method. 

 

Our contribution could be summarized as follows: First, the 

problem of obsolete evidence of real time monitoring and 

diagnosis is analyzed. Then the temporal weighted evidence 

combination method is purposed. To make the method for 

efficiency, an improved framework that accumulates the 

past combination result is suggested. Furthermore, a case 

study was discussed to illustrate the temporal weighted D-S 

rule based assessment framework. 
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