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Abstract

This work evaluates the uncertainty of impact force and
location estimates using an entropy-based impact identi-
fication algorithm applied to a commercial wind turbine
blade. The effects of sensor placement, measurement
directions and distance between impacts and sensor loca-
tions are studied. Results show that impacts to a 35m
long wind turbine blade can be accurately located using a
single tri-axial accelerometer regardless of sensor location.
Uncertainties in impact force estimates are consistent
across sensor locations. When omitting acceleration in-
formation in the spanwise direction, the bias and variance
of force estimates is consistent, but when a single chan-
nel of acceleration data is used, both increase somewhat.
Impact force identification error was found to be uncor-
related with the distance between the impact and sensor
location. The entropy of the estimated force time history,
an indicator of the impulsivity of the estimate, was found
to be a good indicator of the quality of force estimate.
The bias and variance of impact force estimation error
was found to be directly correlated with the entropy of the
impact force estimate. When considering validation test
data from all possible sensor configurations, the entropy
of the recreated force estimates was a better indicator
of the force magnitude prediction interval than was the
specific sensor configuration. By classifying impact force
estimates based upon entropy values, impact force predic-
tion intervals were more precisely determined than when
all validation impact data were considered at once.

1. Introduction

Impact damage is a significant concern for most large
composite structures because this type of damage is often
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below the surface and not evident from visual inspection.
Composite damage mechanisms such as delaminations,
substructure disbonds and core crushing can substantially
reduce the strength of the structure without providing a
clear visual indication. Inspection for this type of damage
is often very time consuming and requires multiple inspec-
tion techniques to accurately identify the location and
extent of these numerous damage mechanisms (Hayman,
Wedel-Heinen, & Brondsted, 2008). Inspection of large
rotor blades is particularly expensive and challenging,
due to the size and inaccessibility of these blades. The
inspection burden could be significantly alleviated by
identifying the location and magnitude of applied impact
loads. However, in order to make an informed mainte-
nance decision based on these types of impact estimates,
the associated uncertainty must be well understood. To
this end, this work applies an entropy-based impact iden-
tification technique to a commercial wind turbine blade,
and then evaluates the performance and uncertainty of
impact location and force estimates.

Damaging impact loads are a concern for wind turbine
blades both while in operation and during transport
(Cripps, 2011; Veritas, 2006). Some examples of impact
loads in operation are hail, bird strikes, or ice shedding
from other blades. One study found that 7% of unfore-
seen malfunctions in 1.5MW wind turbines operating in
Germany have been attributed to rotor blade problems,
with an average down time of four days per failure(Hahn,
Durstewitz, & Rohrig, 2007). Unforeseen repairs on
wind turbines are especially costly, as these repairs are
around 500% more expensive than regularly scheduled
maintenance(Adams, White, Rumsey, & Farrar, 2011).
An impact load estimation technique such as the one
presented here has the potential to provide maintainers
the information they need to limit the progression of
damage by way of prompt repairs, schedule maintenance
in advance, and track the loading history of blades to
identify problematic trends.
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Impact identification methods have been widely stud-
ied (see, for example, (H. Inoue & Reid, 2001; Inoue,
Kishimoto, Shibuya, & Koizumi, 1992; Hu, Matsumoto,
Nishi, & Fukunaga, 2007; Stites, 2007; Yoder & Adams,
2008; Wang & Chiù, 2003)). These techniques are gener-
ally categorized as model-based techniques, based on an
underlying model of the system, and artificial neural net-
work based techniques, which are based on representative
response training data and computational algorithms. Al-
though neural network based techniques can be effective
at locating impacts using a large array of sensors, model-
based techniques are better suited to load estimation,
even in sparse sensing configurations. For instance, other
work from our research group (Budde, Yoder, Adams,
Meckl, & Koester, 2009; Budde, 2010; Stites, Escobar,
White, Adams, & Triplett, 2007; Stites, 2007; Yoder &
Adams, 2008) has shown the ability to estimate impact
load and position using a single sensor on filament-wound
rocket motor casings and helicopter blades. This work
builds on these previous efforts by developing an impact
identification algorithm capable of monitoring very large
and/or non-uniform structures with a single sensor.

2. Theory

This impact identification algorithm consists of two major
steps: (1) estimating a set of potential impact forces
assuming each of the possible input degrees of freedom,
and (2) determining which of these force estimates most
likely corresponds to the actual forcing location. The
first step of this process is the same as that presented
in (Yoder & Adams, 2008; Stites, 2007; Stites et al.,
2007; Budde et al., 2009); the distinction between this
algorithm and these other works is the method used to
determine the likely impact location.

Estimated impact loads at each potential input degree of
freedom are found by formulating and solving an overde-
termined inverse problem based on experimentally es-
timated frequency response functions and measured re-
sponses. Given Ni input degrees of freedom and No

output degrees of freedom, the response, {X(jω)}, can
be expressed in terms of the frequency response func-
tion matrix, [H(jω)], and forcing function, {F (jω)}, as
follows:

{X(jω)}(N0x1) = [H(jω)](NoxNi){F (jω)}(Nix1) (1)

For practical implementations, the number of response
channels would be significantly fewer than the number
of input degrees of freedom, that is, N0 � Ni. With
this constraint on the system configuration, the inverse
problem of solving for F (jω) based on H(jω), X(jω)
and the relationship given in (1) is underdetermined with
an infinite number of solutions. To reliably estimate the

impact forces based on measured data, an overdetermined
inverse problem is ideal in order to minimize the effects of
measurement noise and error in the estimated frequency
response functions. By assuming that the forcing function
acts at a single degree of freedom, k, (1) can be re-written
as follows:{

X(jω)
}

(N0x1)
=

{
Hk(jω)

}
(Nox1)

Fk(jω) (2)

With the force-response relationship in this form, the
force can be determined given the frequency response
function and any (non-zero) number of response channels.
This inverse problem is overdetermined when more than
one response channel is available. The linear least squares
estimate of the forcing function at a particular frequency,
Fk(jω), is found by pre-multiplying 2 by the pseudoin-
verse of the frequency response function matrix at that
frequency, {Hk(jω)}+. Other numerical methods could
also be used to solve for the least squares solution, but
the pseudoinverse approach is advantageous for real-time
impact monitoring because the computationally intensive
portion of the solution procedure, calculating the pseu-
doinverse, is done prior to monitoring the structure for
impacts, leaving only matrix multiplication to be done
in real time.

Because the actual location of impact is unknown, the
impact force must be estimated at each of the possible
input degrees of freedom, and then the force estimates
are analyzed to determine which of these force estimates
most likely corresponds to the actual impact location.
To determine which force estimate corresponds to the
true location, the estimated force time histories for each
location are analyzed to find which best matches the
assumption of an impulsive impact force. The impulsiv-
ity of the recreated force time histories is quantified by
evaluating the entropy of the impact force time histories.

Entropy in the context of information theory, is a measure
of the average quantity of information contained in each
event, in this case, in each sample of signal. The total
information of a signal is defined as the minimum number
of bits required to completely describe the signal. A
purely random signal has the highest possible entry, and
a completely uniform signal has zero entropy. For the
correct impact location, the estimated force time history
will closely resemble the actual impact force, which is very
concentrated and ordered. In comparison, the estimated
force time history at other locations will be much less
ordered, more dispersed, and more random. Therefore,
the estimated force time history with the lowest entropy
most likely corresponds to the actual location of impact.

The mathematical definition of entropy is based on a set
of N possible outcomes, xi, with probabilities p(xi). In
this case, the probability distribution used is a categorical
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distribution with the N possible outcomes corresponding
to the signal amplitude falling into one of N possible
ranges. The entropy, h, is computed as follows:

h =
N∑
i

−p(xi)log2(p(xi)) (3)

The maximum value that the entropy may take is log2(N),
corresponding to a uniform random distribution, and the
lowest value is zero, corresponding to a constant signal.
In this application, N was chosen to be 200, but the
impact identification algorithm was found to be fairly
insensitive to the choice of N .

The most important use of the entropy value is selecting
the most likely impact location, but the minimum entropy
value is also useful in evaluating how well the impact
force estimate meets the assumed impulsive shape. The
lower the minimum entropy value is, the better the force
estimate matches expectations of a simple impulsive load.
The relationship between the minimum entropy value
and the quality of the force estimate will be evaluated
with the experimental results of this study.

3. Experimental Setup

This impact identification technique was tested on a
commercial wind turbine blade from a 1.6MW turbine.
The blade was damaged in a lightning strike, and was
delaminated at the tip with a portion of the tip missing.
The blade was fastened at the root of the blade to a steel
fixture, and supported towards the end of the blade with
nylon straps. Figure 1 shows the blade and boundary
conditions.

Five tri-axial accelerometers were mounted to the blade to
test the influence of sensor placement on the accuracy of
impact identification. Accelerometer 1 is a PCB 356T18,
an ICP triaxial accelerometer with nominal sensitivity
of 1000mV/g. Accelerometers 2-5 are Silicon Designs
2460-050 DC coupled peizoresistive triaxial accelerom-
eters with nominal sensitivities of 80mV/g. A grid of
130 impact locations was marked on the section of the
blade between the root and the support. The vertical
spacing between points was approximately 0.36m, and
the horizontal spacing was roughly 0.91m. The sensor
and impact locations are shown in Figure 2.

To create the frequency response function model of the
blade, modal impact testing was carried out using a
5.5kg modal sledge hammer, model PCB 086D50. Peak
force amplitude for these impacts ranged from 542.2lbf to
2469.3lbf, with a mean value of 1205.4lbf and a standard
deviation of 371.5lbf. The bandwidth of excitation, as
measured by the first frequency where the amplitude
of the force spectrum drops to one tenth the maximum

(a)

(b)

Figure 1. Photographs of test specimen, showing (a)
attachment at the blade root, and (b) second blade

support

amplitude, ranged from 101.5Hz to 281.5Hz, with a mean
bandwidth of 174Hz, and a standard deviation of 31.5Hz.
Testing was conducted with ten impacts per point, sam-
pled at 2560Hz for a duration of 2 seconds per impact.
Frequency response functions were estimated with the
H1 estimator.

To test impact identification accuracy, a validation data
set was collected with two impacts per point. The impact
identification algorithm was applied to response data,
and the estimated location and impact magnitude were
compared to the known values to evaluate performance.

4. Results

In order to test the performance of the impact identifi-
cation algorithm on the blade, the response data from
each validation impact was passed through the algorithm,
and the estimated location and maximum force level was
recorded. Two key metrics will be used to evaluate the
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Figure 2. Illustration of the blade with approximate dimensions, sensor locations (enumerated in red), and impact
locations (marked in black)

accuracy of the estimate: 1) the location identification
accuracy, that is, how many of the validation impacts
were correctly located, and 2) the magnitude of the peak
force error, that is, the absolute value of the difference
between the estimated and measured peak force relative
to the measured peak force value.

To evaluate how sensor configurations affected the impact
identification accuracy, the data from each of the five
accelerometers was used individually to perform these
validation simulations. Although the data for these sen-
sors was collected simultaneously, only one sensor is used
at a time in these validation tests. Accuracy is evalu-
ated when data from all three measurement directions are
used, when data from two of the three measurement direc-
tions are used, and when data from a single measurement
direction are used.

The results of the validation simulation using all three
response channels per sensor are summarized in Table
1. Regardless of the sensor location, 100% of impacts
were accuracy located. The accuracy of the impact force
magnitude estimates was also fairly consistent between
sensor locations. The peak force identification error was
biased towards underestimating the peak magnitude of
the impact force by an average of 0.68%. The fifth sensor,
which was placed the furthest towards the blade tip and
closest to the trailing edge, performed the best of the
tested locations. The force estimates using the fifth sensor
had a median error of 3.3%, with 75% of the impact forces
estimated within 5.6% of the true peak force value, and
a maximum error of 21.2%. The sensor with the lowest
force accuracy was the fourth sensor, which was located
closer to the root of the blade and close to the leading
edge of the blade. The force estimation error for the
fourth sensor had a median value of 4% and a maximum
error of 35.8%.

From these results, the force accuracy shows no significant
dependence on the distance from the sensor. Figure 3 is
a scatter plot of the force error plotted against distance
from the sensor, showing the results of validation tests
using each of the available sensors. This plot illustrates
the independence of the force accuracy on the distance
from the sensor, even for very large distances. Most of
the largest force estimation errors that were observed

Table 1. Impact Identification Performance Using Each
Triaxial Accelerometer

Sensor
Force Estimation Error (%)

Quartile
Mean Max

1 2 3

1 1.7 4.1 6.4 4.8 27.9

2 1.7 3.8 6.4 4.9 30.7

3 1.8 4.2 6.6 4.8 25.6

4 2.0 4.0 6.8 5.0 35.8

5 1.6 3.3 5.6 4.2 21.2
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Figure 3. Force estimation error vs. distance from
sensors for all combinations of sensor and impact

location

were at locations relatively close to the sensor, but this
fact is probably in part due to the larger number of points
that are an intermediate distance from the sensor than
those very distant. Other impact force identification
techniques have shown a linear increase in error with
distance from the sensor (Seydel & Chang, 2001), so the
fact that distance and accuracy are largely uncorrelated
in this instance is significant.

The same type of validation test was repeated with only
two of the three response directions used, with the re-
sponse data in the axial direction ignored. Using this
subset of the data produces results very similar to those
when all three response channels per sensor are used.
The results are detailed in Table 2. Most of the mean
errors are marginally higher than when using all three
channels, but the median errors and maximum errors
are mostly lower. Based on these results, a bi-axial ac-
celerometer could be used just as effectively as a tri-axial
accelerometer, even on very large structures.
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Table 2. Impact Identification Performance Omitting
Data in the Axial Direction

Sensor
Force Estimation Error (%)

Quartile
Mean Max

1 2 3

1 1.9 3.9 6.6 4.8 28.1

2 1.6 3.8 6.4 4.8 30.3

3 1.8 4.2 6.6 4.9 25.4

4 2.0 4.0 6.7 4.9 35.7

5 1.6 3.3 5.5 4.2 21.1

The validation simulation results show that entropy of
the estimated force time histories is an effective measure
to discriminate between the force at the actual impact
location and the other erroneous force estimates. When
using two or three response channels, every impact was
correctly located, so the entropy value corresponding
to the impact location was always the least. To bet-
ter evaluate how effective the recreated force entropy
is in discriminating between correct and incorrect loca-
tions, the recreated force entropy is compared between
the actual impact locations and the other incorrect im-
pact locations. The results from all of the three channel
validation response simulations were considered, and his-
tograms of the recreated force entropy values for correct
and incorrect locations are shown in Figure 4. For this
comparison and the following entropy discussion, the sig-
nals were discretized to 200 amplitude values. Therefore,
a purely random signal would have log2(200) = 7.64 bits
of entropy. This comparison of entropy value distribu-
tions shows that the recreated force entropy is a very
effective discriminator between the correct and incorrect
locations. There is very little overlap between the two
distributions, the entropy of the incorrect locations is
tightly distributed, and the values of the correct location
entropy are much lower than those from the correspond-
ing incorrect locations. When entropy values from one
impact were considered, the value corresponding to the
correct location was always more than 1.5 times the in-
terquartile range of the other entropies, with some values
more than 10 times the interquartile range below the
other entropy values. This measure indicates that for
this set of data, not only is the entropy for the correct
location always lowest, it is always a clear outlier of the
distribution.

Entropy of the recreated force time histories effectively
locates impacts because the value characterizes how well
the force estimate meets the assumption of an impulsive
load. Therefore, noise and error in the force estimate
that alters the shape of the recreated force signal would
generally contribute to an increase in the entropy of the
force estimate. To evaluate the extent that the entropy

of the recreated force time history is related to error in
the force estimate, the force estimates were split into
seven categories according to entropy value. Boxplots
of the magnitude of force estimation error were plotted
for each of these entropy ranges in Figure 5, along with
a histogram showing the frequency of estimates within
each of these entropy ranges. Statistical measures corre-
sponding to each of these entropy ranges are detailed in
Table 3.

Both the average bias and variance of the force estimation
error are monotonically increasing with the entropy value
of the estimated force. Both the mean error and standard
deviation for the force estimates with entropy greater
than four are more than three times the corresponding
values for estimates with entropy less than 2.5. This
result is important because with an understanding of how
the recreated force entropy and force error are related,
the uncertainty in a force estimate can be characterized
based on the entropy value for that estimate.

To further investigate the quantification of impact load
uncertainty based on estimated force entropy, empirical
cumulative distributions of the magnitude of impact force
estimation error were investigated. These distributions,
shown in Figure 6, indicate the increasing uncertainty
and higher force estimation error for higher entropy forces.
Another important feature of these distributions is that
the distribution based on all force estimates is a poor
indicator of the uncertainty of force estimates with high
or low entropy values. Categorizing force estimates based
on recreated force entropy better characterizes the uncer-
tainty in that force estimate.

When considering all force estimates, 95% of validation
tests showed a peak force estimation error of less than
12.6%. In contrast, 95% of estimates with entropy of less
than 2.5 bits were accurate within 5.5%, while the 95th

percentile level was 22% for force estimates with more
than 4 bits of entropy. Therefore, the uncertainty for force
estimates in the lowest entropy range was significantly
overstated by the distribution of all estimates, and the
uncertainty for force estimates with the highest entropy
was significantly understated by the distribution of all
estimates.

5. Conclusions

The entropy-based impact identification technique ap-
plied here was able to identify the location and magnitude
of impact loads applied to a commercial wind turbine
blade using a single sensor regardless of sensor location.
Impact force identification accuracy was independent of
the proximity to the sensor, enabling even very large
structures like this one to be monitored with very few
sensors.
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Figure 4. Histograms showing the distribution of entropy values for force estimates corresponding to incorrect
locations (top) and correct locations (bottom)

Table 3. Peak force estimation error statistics corresponding to estimated force entropy

Entropy
Count

Magnitude of Peak Force Error (%)

Range Quartile
Mean

Standard

(bits) 1 2 3 Deviation

0 - 2.5 21 0.38 1.54 3.06 2.04 1.93

2.5 - 2.8 114 1.56 2.80 4.76 3.51 2.88

2.8 - 3.1 307 1.38 3.22 5.30 3.97 3.32

3.1 - 3.4 443 1.89 4.09 6.22 4.72 3.64

3.4 - 3.7 275 2.04 4.27 7.13 5.28 4.86

3.7 - 4 93 3.40 5.19 7.56 6.43 5.05

>4 47 3.03 4.3 8.87 6.97 6.19

The measure of recreated force entropy discriminates be-
tween force estimates from correct and incorrect locations
very well, with the entropy at the correct location always
being a statistical outlier. The value of the minimum
recreated force entropy was shown to be a good indication
of the uncertainty of that estimate. When categorizing
the impact force estimates based on entropy values, the
bias and variance of the peak force estimation errors
monotonically increased with increasing entropy values.
Comparing the 95th percentile force estimation accuracy
levels between these entropy ranges showed that the un-
certainty in force accuracy was more precisely identified
when force estimates were categorized by entropy.

Identifying impact loads on large composite structures
could significantly lower the associated inspection and
repair costs by enabling condition based maintenance

rather than scheduled wide area inspections and unsched-
uled repairs when damage progresses unexpectedly. This
impact identification technique allows for minimal sensing
configurations, and the method of characterizing the un-
certainty of these estimates allows these condition based
maintenance decisions to be well informed.
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Figure 5. Relationship between impact force identification error and entropy of the force estimate
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