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Abstract

Complex hybrid systems are present in a large range of
engineering applications, like mechanical systems, elec-
trical circuits, and embedded computation systems. The
behavior of these systems is made up of continuous and
discrete event dynamics that increase the difficulties for
accurate and timely online fault diagnosis. The Hy-
brid Diagnosis Engine (HyDE) architecture offers flexi-
bility to the diagnosis application designer to choose the
modeling paradigm and the reasoning algorithms. The
HyDE architecture supports the use of multiple model-
ing paradigms at the component and system level. How-
ever, HyDE faces some problems regarding performance
in terms of time and space complexity. This paper fo-
cuses on developing efficient model-based methodologies
for online fault diagnosis in complex hybrid systems.
To do this, we propose a diagnosis framework where
structural model decomposition is integrated within the
HyDE diagnosis framework to reduce the computational
complexity associated with the fault diagnosis of hybrid
systems. As a case study, we apply our approach to a di-
agnostic benchmark problem, the Advanced Diagnostics
and Prognostics Testbed (ADAPT), using real data.

Anibal Bregon et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution 3.0 United
States License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and
source are credited.

1. Introduction

Nowadays, complex hybrid systems are present in many
engineering applications, from electrical circuits to em-
bedded computation systems. Their behavior is made
up of continuous and discrete event dynamics, making
accurate and timely online fault diagnosis more difficult.
This paper focuses on developing efficient model-based
methodologies for online fault diagnosis in complex hy-
brid systems. Hybrid systems modeling and diagnosis
have been approached by the DX community, and sev-
eral proposals have been made based on hybrid model-
ing (Mosterman & Biswas, 1999), hybrid state estima-
tion (Hofbaur & Williams, 2004), or a combination of
on-line state tracking and residual evaluation (Benazera
& Travé-Massuyès, 2009; Bayoudh et al., 2008). In all
cases, the solution requires to somehow model and even-
tually fully or approximately estimate the set of possi-
ble states, and to diagnose the current set of consistent
modes. A major restriction, however, is that each tech-
nique uses its own modeling paradigm and the reasoning
algorithms implement a single strategy. This does not fa-
cilitate the generation of flexible, integrated, reasoning
solutions by the inclusion of additional diagnosis strate-
gies, thus restricting the diagnostic capabilities of the
hybrid diagnoser.

In (Narasimhan & Brownston, 2007), the authors pro-
posed a general framework for stochastic and hybrid
model-based diagnosis called Hybrid Diagnosis Engine
(HyDE). HyDE offers flexibility to the diagnosis appli-
cation designer to choose the modeling paradigm and the
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reasoning algorithms. The HyDE architecture supports
the use of multiple modeling paradigms at the compo-
nent and system level. Several alternative algorithms
are available for the various steps in diagnostic reason-
ing. This approach is extensible, with support for the
addition of new modeling paradigms as well as diagnos-
tic reasoning algorithms for existing or new modeling
paradigms. However, HyDE faces some problems regard-
ing performance in terms of space and time complexity.

Recently, we have proposed to use structural model de-
composition for efficient fault diagnosis and prognosis
in continuous systems (Bregon, Biswas, & Pulido, 2012;
Daigle et al., 2011a, 2012). In (Roychoudhury et al.,
2013), we generalized those ideas and proposed a com-
mon model decomposition framework, where we solve
the model decomposition problems for three separate
system health management tasks, namely, estimation
(used for residual generation that is usually required for
fault detection and fault identification), fault isolation,
and prediction (used for fault prognostics). The basic
idea of the approach is to partition the global system
model into submodels based on the set of measurements.
This way, we will have submodels that are smaller than
the global system model, leading to efficiency improve-
ments and potential for concurrent computation.

In this paper, we integrate structural model decomposi-
tion as in (Roychoudhury et al., 2013) within the HyDE
diagnosis framework. Structural model decomposition is
used to decompose the HyDE models, thus reducing the
computational complexity associated with the fault di-
agnosis of hybrid systems. This work contributes in two
different aspects. First, we propose an online diagnosis
approach for hybrid systems where the system model is
partitioned into submodels, which are implemented us-
ing the HyDE modeling framework. Then, the global
diagnosis result is provided by the combination of the
local diagnosis results corresponding to the submodels.
Second, we apply our approach to a real system, the Ad-
vanced Diagnostics and Prognostics Testbed (ADAPT)
with satisfactory results.

The rest of the paper is organized as follows. Section 2
presents the HyDE diagnosis framework. Section 3 dis-
cusses the basic ideas of structural model decomposition.
Section 4 proposes an integrated framework where struc-
tural model decomposition is used to reduce HyDE’s
computational burden. Section 5 shows results for the
case study. Section 6 reviews the related work and cur-
rent approaches for hybrid systems fault diagnosis and
structural model decomposition. Finally, Section 7 con-
cludes the paper.

2. HyDE

HyDE (Hybrid Diagnosis Engine) (Narasimhan &
Brownston, 2007) combines ideas from consistency-
based, control-theory-based and stochastic diagnosis ap-
proaches to provide a general, flexible and extensible ar-
chitecture for stochastic and hybrid diagnosis. HyDE
supports the use of multiple modeling paradigms and is
extensible to support new paradigms. HyDE also offers
a library of algorithms to be used in the various steps
of the diagnostic reasoning process. The key features of
HyDE are:

• Diagnosis of multiple discrete faults.

• Support for hybrid models, including autonomous
and commanded discrete switching.

• Support for stochastic models and stochastic reason-
ing.

• Capability for handling time delay in the propaga-
tion of fault effects.

Next we present the HyDE modeling approach and rea-
soning procedure.

2.1. HyDE Models

HyDE models have two parts, the transition model and
the behavior model. The transition model describes
the components that make up the system, the various
operating modes of the system (including faulty ones),
and the conditions for transitions between the operating
modes. The behavior model specifies the behavior evo-
lution and has three parts: the propagation model, inte-
gration model, and dependency model. The information
in the propagation model allows the estimation of un-
known variable values from known variable values. The
dependency model captures information about the de-
pendencies between variables, models, and components.
The integration model describes how the variables’ val-
ues are propagated across time steps. HyDE supports
the representation of each of the behavior models in more
than one paradigm.

2.2. HyDE Reasoning

HyDE reasoning is the maintenance of a set K of
weighted candidates (ki, wi). A candidate represents the
hypothesized trajectory of the system inferred from the
transition and behavior models, knowledge of the ini-
tial operating modes of all components and initial val-
ues of all variables, and the sensor observations reported
to HyDE. The candidates’ weights are a way of rank-
ing them and depend on several factors, including prior
probabilities of transitions and the degree of fit between
model predictions and observations. Although weights
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are in the range [0, 1], weight is not a probability mea-
sure.

Each candidate contains a possible trajectory of system
behavior evolution represented in the form of a hybrid
state history and transition history. The hybrid state is a
snapshot of the entire system state at any single instant.
It associates all components with their current operating
modes and all variables with their current values. Appli-
cations run HyDE at discrete time steps, typically but
not necessarily when observations are available. Time
steps need not be periodic. For each time step that
HyDE reasons about, a candidate contains two hybrid
states, one at the beginning of the time step and one at
the end, as well as the set of transitions taken by the
system between the previous and current time steps.

At time step 0, the candidate set is initialized with can-
didate(s) derived from the initial hybrid state of the sys-
tem. Once the initial candidate set has been created,
HyDE’s reasoning process uses the same sequence of op-
erations for each time step. The reasoning process can be
divided into three categories of operations (Narasimhan
& Brownston, 2007):

1. Candidate Set Management maintains the candidate
set. The operations include updating the weights of
all candidates, pruning candidates that do not sat-
isfy minimum weight requirements, adding new can-
didates (the next best ones from the candidate gen-
erator) when necessary, and optionally re-sampling
or normalizing the distribution of weights.

2. Candidate Testing deals with operations on a single
candidate. The operations include determining the
occurrence of any transitions, estimating the hybrid
states at the beginning and end of a time step, com-
paring against observations to update weight of the
candidate as well as reporting inconsistencies.

3. Candidate Generation creates candidate generators
from inconsistencies reported by Candidate Test-
ing and supplies the next-best potential (untested)
candidate to Candidate Set Management when re-
quested. This is achieved using a conflict directed
search. First reported inconsistencies are used to
generate conflicts, i.e., the subset of operating modes
that cannot all be true at the same time. The con-
flicts are then used to guide a search for new candi-
dates by optimizing some candidate property (typi-
cally weight or size).

As we have mentioned, the size of the system model
(HyDE uses the global model of the complete system)
directly affects the computational complexity for each
one of the steps in the reasoning process. Our proposal
on this work is to use structural model decomposition to

divide the global system model into minimal submodels
such that the complexity in the reasoning process is re-
duced. The next section describes our structural model
decomposition approach to compute minimal submodels.
Then, in Section 4 we will show in detail how these min-
imal submodels are integrated within the HyDE frame-
work.

3. Structural Model Decomposition

In this section, we briefly present our structural model
decomposition framework (Roychoudhury et al., 2013).
We begin with the definition of a model.

Definition 1 (Model). A model M is a tuple M =
(V,C), where V is a set of variables, and C is set of
constraints. V consists of five disjoint sets, namely, the
set of state variables, X; the set of parameters, Θ; the
set of inputs, U ; the set of outputs, Y ; and the set of
auxiliary variables, A. Each constraint c = (εc, Vc) ∈ C
consists of an equation εc involving variables Vc ∈ V .

Input variables u ∈ U are known/measured; and the
output variables y ∈ Y correspond to (measured) sen-
sor signals. Parameters θ ∈ Θ include explicit model
parameters that are used in the model constraints. Θ
does not need to include all parameters in the equations,
only those that must be included explicitly (e.g., for joint
state-parameter estimation or fault isolation). These pa-
rameters, by definition, are not computed in terms of
any other variables, and, in this way, appear as inputs.
Since the state variables X are, by definition, enough to
describe the future behavior of the system, the auxiliary
variables a ∈ A are not strictly needed, however, they
make the model easier to parse, develop, and implement.

As shown in Defn. 1, a constraint c = (εc, Vc) includes
an equation εc over the set of variables Vc. Note that
c does not impose any computational causality on the
variables Vc, i.e., although εc captures the information
about how to compute a variable v ∈ Vc in terms of
all other variables in Vc, the constraint does not specify
which v ∈ Vc is the dependent variable in equation εc.
We write a constraint c1 = (εc1 , Vc1) by its equation,
e.g., as follows:

a+ b = c+ d (c1)

where Vc1 = {a, b, c, d}.

In order to define for a constraint c which variable
v ∈ Vc is the dependent variable that is computed by
the others using the constraint, we require the notion of
a causal assignment.

Definition 2 (Causal Assignment). A causal assign-
ment α to a constraint c = (εc, Vc) is a tuple α =
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(c, vout
c ), where vout

c ∈ Vc is assigned as the dependent
variable in equation εc.

Unlike a constraint, a causal assignment defines a com-
putational causality (or computational direction) to a
particular variable vout

c ∈ Vc in the constraint in which
it can be computed in terms of all other variables in Vc.
We write a causal assignment of a constraint using the
constraint’s equation in a causal form. For example, for
constraint c1 above choosing vout

c1
= d:

d := a+ b− c (α1)

where Constraint c1 is rewritten with a := symbol to
explicitly denote that the direction of computation is
from variables a, b, and c to d.

We say that a set of causal assignments A, for a model
M is valid if

• For all v ∈ U ∪Θ, A does not contain any α such that
α = (c, v), i.e., U and Θ are not computed in terms of
any other variables.

• For all v ∈ Y , A does not contain any α = (c, vout
c )

where v ∈ Vc − {vout
c }, i.e., no variable is computed in

terms of any y ∈ Y .
• For all v ∈ V−U−Θ, A contains exactly one α = (c, v),

i.e., other than the variables in U and Θ, every variable
must have exactly one constraint to compute it.

A causal model is a model extended with a valid set of
causal assignments.

Definition 3 (Causal Model). Given a model M∗ =
(V,C), a causal model forM∗ is a tupleM = (V,C,A),
where A is a set of valid causal assignments.

Given a model, we generate submodels that allow for
the computation of a given set of variables using only
local inputs. Given a definition of the local inputs (in
general, selected from V ) and the set of variables we
wish to be computed by the submodel (selected from
V − U −Θ), we create from a causal model M a causal
submodel Mi. We obtain a submodel in which only a
subset of the variables in V are computed using only
a subset of the constraints in C. In this way, each
submodel computes its variable values independently
from all other submodels. A submodel can be defined
as follows.

Definition 4 (Causal Submodel). A causal submodel
Mi of a causal model M = (V,C,A) is a tuple Mi =
(Vi, Ci,Ai), where Vi ⊆ V , Ci ⊆ C, and Ai is a set of
(valid) causal assignments for Mi.

Note that, in general, Ai is not a subset of A, because
since we allow to select local inputs from Y , these vari-
ables become local inputs, i.e., appear in Ui, and the

causal assignment in A that computes these variables is
changed to a form where some other variable in the cor-
responding constraint is selected as the dependent vari-
able. As a result, these causal assignments will be dif-
ferent, but the rest of the causal assignments in Ai will
still be found in A.

The procedure for generating a submodel from a causal
model is given as Algorithm 1 (Roychoudhury et al.,
2013). Given a causal model M, a set of variables
U∗ ⊇ U that includes the input variables inM as well as
some other variables previously not in U that are consid-
ered as local inputs, and a set of variables to be computed
V ∗, and a preferences list, P (explained below), the Gen-
erateSubmodel algorithm derives a causal submodelMi

that computes V ∗ using a subset of U∗.

In the following we briefly describe the algorithm, see
(Roychoudhury et al., 2013) for additional details. In
Algorithm 1, the queue, variables, represents the set of
variables that have been added to the submodel but have
not yet been resolved, i.e., they cannot yet be computed
by the submodel. This queue is initialized to V ∗, the
set of variables that must be computed by the submodel.
The algorithm then loops until this queue has been emp-
tied, i.e., the submodel can compute all variables in V ∗

using only variables in U∗. Within the loop, the next
variable v is popped off the queue. We then determine
the best constraint to use to resolve this variable with
the GetBestConstraint subroutine (Subroutine 2). We
add the constraint to the submodel and the causal as-
signment for the constraint in the form that computes v.
We then need to resolve all the variables being used to
compute v, i.e., all its predecessors in the causal graph.
Each of these variables that have not already been vis-
ited (not already in Vi), are not parameters (not in Θ),
and are not local inputs (not in U∗) must be resolved
and so are added to the queue. Then the variables are
added to the submodel and the loop continues until the
queue is emptied.

The goal of the GetBestConstraint subroutine is to
find the best constraint to resolve v. The subroutine
constructs a set C that is the set of constraints that
can completely resolve the variable, i.e., resolves v with-
out further backward propagation (all other variables in-
volved in the constraint are in Vi ∪ Θ ∪ U∗), and then
chooses the best according to a preferences list P . If
no such constraint exists, then the constraint that com-
putes v in the current causal assignment is chosen, and
further backward propagation will be necessary. Here,
we are preferring minimal resolutions of v, i.e., those
that do not require backward propagation, because then
the submodel will be minimal in the number of variables
and constraints needed to compute V ∗.
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Algorithm 1 Mi = GenerateSubmodel(M, U∗, V ∗, P )
1: Vi ← V ∗

2: Ci ← ∅
3: Ai ← ∅
4: variables← V ∗

5: while variables 6= ∅ do
6: v ← pop(variables)
7: c← GetBestConstraint(v, Vi, U

∗,A, P )
8: Ci ← Ci ∪ {c}
9: Ai ← Ai ∪ {(c, v)}

10: for all v′ ∈ Vc do
11: if v′ /∈ Vi and v′ /∈ Θ and v′ /∈ U∗ then
12: variables← variables ∪ {v′}
13: end if
14: Vi ← Vi ∪ {v′}
15: end for
16: end while
17: Mi ← (Vi, Ci,Ai)

In general, a variable v is involved in many constraints,
however, exactly one of these constraints, in the given
causal assignment, computes v. If this constraint does
not completely resolve v, we find the constraints in which
v is used to compute some output variable y ∈ Y ∩ U∗.
We consider modifying the causal assignment so that
such a y (used now as an input) is used to compute v,
instead of v being used to compute y. This can only
be performed if, for the causal assignment in which y
is being used to compute v, all other variables involved
in the constraint are in Vi ∪ Θ ∪ U∗, in which case this
constraint in this new causal assignment can completely
resolve v. If no constraint can be found that completely
resolves v, then the constraint that in the current causal
assignment computes v will have to be used, and back-
ward propagation will be necessary. Otherwise, we select
the most preferable constraint that completely resolves
v. Preference among constraints (in which an output
would be transformed to an input) is computed using
a preferences list P , that contains a partial ordering of
all the outputs in the model of the form yi / yj , mean-
ing that yj is preferred over yi. The subroutine goes
through every pair of constraints and removes from the
list of most preferable constraints, C ′, any constraint
that uses a measured variable that is less preferable to
one involved in another constraint. Of those remaining,
an arbitrary choice is made. The preferences list can be
used to prefer measured variables with less noise over
those with more noise.

In the following sections, we show how this model decom-
position approach can be integrated within the HyDE
diagnosis framework to reduce the computational com-
plexity associated with the diagnosis of faults in hybrid
systems.

Subroutine 2 c = GetBestConstraint(v, Vi, U
∗,A, P )

1: C ← ∅
2: cv ← find c where (c, v) ∈ A
3: if (Vcv − v) ⊆ Vi ∪ U∗ then
4: C ← C ∪ {cv}
5: end if
6: for all y ∈ Y ∩ U∗ do
7: cy ← find c where (c, y) ∈ A
8: if v ∈ Vcy and (Vcy − v) ⊆ Vi ∪ U∗ then
9: C ← C ∪ {cy}

10: end if
11: end for
12: if C = ∅ then
13: c← cv

14: else if cv ∈ C then
15: c← cv

16: else
17: C′ ← C
18: for all c1, c2 ∈ C where c1 6= c2 do
19: y1 ← find y where (c1, y1) ∈ A
20: y2 ← find y where (c2, y2) ∈ A
21: if (y1 / y2) ∈ P then
22: C′ ← C′ − {c1}
23: end if
24: end for
25: c← first(C′)
26: end if

4. Integration Proposal

The three main steps in the reasoning process of HyDE
are simulation, comparison and candidate generation.
These steps are performed for each currently consistent
candidate in the candidate set. In this section, we show
how the inclusion of structural model decomposition af-
fects each one of these steps, thus proposing a framework
where decomposed models can be implemented within
HyDE.

In the simulation step, the behavior of the system is sim-
ulated using the global model of the system. The goal
of the simulation step is to predict expected values of
variables in the model that correspond to sensed obser-
vations. The main problem regarding this simulation
step in HyDE is related to the time and memory perfor-
mance of HyDE. Our proposal here is to use structural
model decomposition so several smaller simulation tasks
can be run. The advantage of using minimal submod-
els for simulation is its smaller size when compared to
the size of the global model. However, as we will explain
later, computing HyDE models from minimal submodels
will affect the comparison and the candidate generation
steps in the reasoning process of HyDE as well.

In order to implement minimal submodels in HyDE, we
have to look at the models used by HyDE, which are sim-
ilar to simulation models. They describe the expected
behavior of the system under nominal and fault condi-
tions. The model can be constructed in modular and
hierarchical fashion by building component subsystem
models (which may themselves contain component sub-
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system models) and linking them through shared vari-
ables/parameters. The component model is expressed
as operating modes of the component and conditions
for transitions between these various modes. Faults are
modeled as transitions whose conditions for transitions
are unknown (and have to be inferred through the rea-
soning process). Finally, the behavior of the components
is expressed as a set of variables/parameters and rela-
tions governing the interaction among them (for exam-
ple, equations). The relation between HyDE components
and our structural decomposition framework is summa-
rized as follows:

• HyDE model variables are related to variables V in
our model.

• The propagation model is specified as constraint
predicates over model variables. Constraints may
be Boolean expressions if the variables are Boolean;
algebraic and ordinary differential equations for
interval- and real-valued variables, and equality or
inequality for all variables. These are related to the
constraints, C, and causal assignments, A, in our
model description.

• Candidates ki in HyDE are related to parameters θi

in our model.

• The integration model in HyDE is related to vari-
ables X in our model.

The comparison step then takes the predictions from the
simulation step and the sensed observations and deter-
mines if they are consistent with each other or not. This
step is performed only for those variables specified to
be output variables (some sensed variables are desig-
nated inputs and will not be involved in the comparison
step). Typically the percentage difference is compared to
a threshold defined in the noise characteristics for each
sensor specified when building the HyDE model. When
HyDE is run without model decomposition only a sub-
set of the sensed variables (those designated as output)
are used in comparisons, while with minimal submodels
all sensed variables will be used in comparisons. How-
ever this overhead is quite insignificant when compared
to computational complexity of the simulation and can-
didate generation steps.

The third and final step is candidate generation, which is
typically the most computationally intensive step. When
the comparison step results in inconsistencies, a best
first search is performed over the unknown transition
space to identify potential candidates. When predicted
values and sensed observations for a set of variables
do not match, then all unknown transitions that could
have influenced those inconsistent variables are consid-
ered suspects. There are two such flavors of dependen-
cies. A component may have behavioral constraints in

the current mode that affect the inconsistent variables
and unknown transitions take the component to a differ-
ent mode that influences the inconsistent variables in a
different way. For this a dependency graph that maps de-
pendencies between variables of the system through cur-
rently active behavioral constraints is generated. Back
propagation through this graph starting from the incon-
sistent variable, identifies all suspected components. For
each suspected component, all unknown transitions from
the current mode of that component are selected as po-
tential candidates. Among these transitions those that
lead to component modes that influence the inconsistent
variable(s) in the same way as the current component
mode are eliminated.

The second flavor of influences are from components that
do not affect the inconsistent variables in the current
mode but have unknown transitions to modes that do
influence the inconsistent variables. To identify such
components a global dependency graph is generated that
maps all dependencies in all modes of all components.
Back propagation through this graph would then iden-
tify additional potential candidates that could possibly
fix the inconsistencies.

When HyDE is used without model decomposition, the
dependency graphs and candidate generation represent
the entire model, which results in complexity that is ex-
ponential in the total number of unknown transitions
that influence in the model. After model decomposition
the HyDE model is decomposed into independent sub-
models each of which has its own dependency graph that
is not connected to the other submodels. As a result, the
candidate state space is significantly reduced. While this
approach works for nonsensor faults, sensor faults pose a
problem when using a decomposed model. Since a sensed
observation can be used as input in other submodels a
sensor fault would result in inconsistent variables in all
of the submodels involving the sensor as an input or an
output. In such cases we need a mechanism to report a
single sensor fault instead of a fault from each submodel.

Such a mechanism is implemented in HyDE by rep-
resenting the sensor as a single component. However
inside the component there will be a variable for each
submodel that the sensor appears in. When the sensor
is used as an observation then its corresponding variable
in the HyDE model is marked as an output variable,
whereas if the observation is used as an input in the
decomposition the corresponding variable is marked as
an input variable in the HyDE model. The modes of the
sensor component (that include nominal faulty modes)
are shared by all of these variables. In other words these
variables are connected to the rest of the variables in
their submodels through independent behavioral con-
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straints in the sensor component’s modes. This would
result in nonconnected dependency graphs but referring
to shared component modes. As a result the back propa-
gation would identify the shared component as a suspect.

Example 1. Consider a sensor component S1 with an
associated variable v1 that appears in two submodels
M1 and M2. In M1 it appears as an output variable
v1o and in M2 it appears as input variable v1i. Let the
output variable associated with M2 be v2. When S1 is
faulty then we will notice an inconsistency in the output
M1 (the predicted value for v1o would be nominal, but
because of the sensor fault, the observed value for v10

will not be consistent) as well as M2 (since we will sim-
ulate a faulty v1 value through M2, the predicted value
for v2 will not match the observed value). The depen-
dency graph associated with M1 will have edges going
back from v1o to other variables represented in relations
in M1. The edge to v10 (going back from v1) will be
labeled as depending on S1 being in the nominal node
(which is the current operating mode of S1). The de-
pendency graph for M2 will go backwards from v2 and
will ultimately reach v1i through relations represented in
M2. In this case the edge out of v1i (going back into v1i)
would be labeled as depending on S1 too. In this case
when we see v1o and v2 inconsistent, S1 will be selected
as the most likely common explanation (unless there is
another double fault with one component fault in M1
and another component fault in M2 that is more proba-
ble as defined by prior probabilities in the model). This
example sensor component is illustrated in Fig. 1. The
model inside sensor v1 is displayed below the v1 compo-
nent for convenience. In the nominal and faulty modes of
operation, there will be independent constraints relating
v1predictedo with v10 and v1i with v1predictedi. This will
break the propagation path from M1 at v1o and start
an independent propagation path from v1i to M2.

This approach allows us to gain the benefits of reduced
computational complexity of the model decomposition
without adding an additional diagnostic fusion step that
might have been necessary if each submodel was com-
pletely independent.

5. Case Study

In this section we present our case study, a subset
of the Advanced Diagnostics and Prognostics Testbed
(ADAPT) (Poll et al., 2007), called ADAPT-Lite, which
is an electrical power distribution system. We first
briefly present the ADAPT-Lite system and then we
show results that we obtained by using our integration
approach.

5.1. ADAPT-Lite

A schematic of ADAPT-Lite is given in Fig. 2. Sensors
prefixed with an “E” are voltage sensors, those with an
“IT” are current sensors, and those with “ISH” or “ESH”
are for states of circuit breakers and relays, respectively.
TE228 is the battery temperature sensor, and ST516 is
the fan speed sensor. Note that the inverter converts DC
power to AC, and E265 and IT267 provide rms values
of the AC waveforms. Here, vB and iB are the battery
voltage and current, v0 is the voltage across C0, vs is
the voltage across Cs, e is the inverter efficiency, vinv

is the inverter voltage on the DC side, Rinv is the DC
resistance of the inverter, Rdc is the DC load resistance,
Jfan is the fan inertia, and Bfan is a damping param-
eter. Additional details on ADAPT-Lite may be found
in (Daigle & Roychoudhury, 2010).

5.2. Diagnosis Results

For the case study we used test scenarios generated for
the Diagnostic Competition 2011 (DXC 2011) (Poll et
al., 2011). Specifically we used all of the 30 nominal
scenarios and picked 66 fault scenarios that considered
only discrete, abrupt and persistent faults. For these
scenarios we ran the full HyDE model (we will call it
HyDE) and the decomposed HyDE model (we will call
it HyDE+SMD).1. Equations for the ADAPT model and
its submodels can be found in (Daigle et al., 2011b). We
then compared the diagnosis as well as the number of
candidates that were tested before arriving at the diag-
nosis. For the nominal scenarios both models performed
about the same with HyDE+SMD using less computa-
tional time. However this time saving was very insignif-
icant (order of milliseconds). One of the reasons for this
is that the full ADAPT model is relatively small and
behavioral constraints were mostly algebraic.

Both models were tuned to not generate any false pos-
itives when run on the nominal scenarios. The results
of running the faulty scenarios are presented in Table
1. Each row in the table represents a fault in ADAPT.
Regarding the columns, the first column identifies the
faulty component and the kind of fault; the second and
third columns indicate the time of fault injection and its
magnitude; the fourth (resp. seventh) column shows the
HyDE (resp. HyDE+SMD) diagnosis result; the fifth
(resp. eighth) column indicates the number of candi-
dates that HyDE (resp. HyDE+SMD) needs to explore
immediately after the fault detection; the sixth (resp.
ninth) column shows the HyDE (resp. HyDE+SMD)
classification errors (either a false positive or a false neg-
ative); finally, the tenth column shows the difference in
the number of fault candidates considered for each one

1SMD stands for Structural Model Decomposition.
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Figure 1. HyDE PC Sensor Model.

Figure 2. ADAPT-Lite schematic.

of the approaches. For an easier evaluation of the results
obtained, Table 2 summarizes these results by giving the
total number of candidates tried and classification er-
rors for both of the approaches. Table 2 distinguishes
between sensor and nonsensor faults.

Since the candidate generation takes a significant
amount of time (order of seconds), the computational
time can be considered to be directly proportional to
the number of candidates tested. From the results we
can see that there are two main advantages from com-
bining HyDE with structural model decomposition.

First we see that the number of errors is reduced from 19
to 11. The reason for this will be apparent when we see
how the simulation step is performed in the two cases.
When only HyDE is used, the full model is simulated
and any errors introduced because of model approxi-
mations (parameters in the model are estimated from
data and are based on the best fit available and hence
are approximate) get propagated through the model and
accumulate. As a result at the comparison step some

variables are incorrectly determined to be inconsistent
when they are not (false positives). This problem can be
addressed by increasing the threshold used for compar-
ison but that would lead to some valid inconsistencies
to not be detected at all (false negatives). When using
HyDE+SMD this problem is substantially mitigated by
the fact that simulation results (and any associated er-
rors) do not get propagated to other submodels (instead
the actual sensed input values are used). This results in
more accurate predictions (assuming sensor values used
as inputs are not too noisy) which leads to better diag-
nostic accuracy.

The second advantage is that fewer candidates are tested
in the candidate generation step. As shown in the re-
sults, a total of 277 candidates for sensor faults and 44
candidates for nonsensor faults are tested when using
HyDE. On the other hand, when HyDE+SMD is used,
a total number of 54 candidates are tested for sensor
faults and 20 for candidate faults. The reason for this
is that the candidate generation step does not have to

8
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Table 1. Diagnosis Results

Fault At
Time Magnitude HyDE

Diagnosis

HyDE
Candidates

Tried

HyDE
errors

HyDE+SMD
Diagnosis

HyDE+SMD
Candidates

Tried

HyDE+SMD
errors

Difference in
Candidates

Tried
IT240.Offset 72.00 5.40 IT240.Offset 14 0 IT240.Offset 1 0 13
IT240.Offset 101.00 0.30 NONE 0 1 IT240.Offset 1 0 0
E242.Offset 158.00 −2.00 NONE 0 1 E242.Offset 1 0 0
IT240.Stuck 83.00 16.88 IT240.Stuck 15 0 IT240.Stuck 2 0 13
IT267.Offset 192.00 −0.20 NONE 0 1 NONE 0 1 0
IT281.Offset 101.00 1.80 IT281.Offset 7 0 IT281.Offset 1 0 6
ESH244A.Stuck 49.00 0.00 ESH244A.Stuck 2 0 ESH244A.Stuck 2 0 0
IT267.Offset 104.00 0.70 IT267.Offset 11 0 IT267.Offset 1 0 10
IT281.Offset 47.00 0.20 NONE 0 1 NONE 0 1 0
ST516.Offset 168.00 90.00 ST516.Offset 9 0 ST516.Offset 1 0 8
ST516.Offset 121.00 −30.00 NONE 0 1 NONE 0 1 0
ST516.Stuck 58.00 0.00 ST516.Stuck 10 0 ST516.Stuck 2 0 8
ISH236.Stuck 41.00 0.00 ISH236.Stuck 2 0 ISH236.Stuck 2 0 0
ST516.Offset 203.00 −300.00 ST516.Offset 9 0 ST516.Offset 1 0 8
E240.Stuck 102.00 23.90 NONE 0 1 E240.Offset 1 1 0
E242.Stuck 173.00 0.00 E242.Stuck 4 0 E242.Stuck 2 0 2
E265.Stuck 41.00 0.00 E265.Stuck 7 0 E265.Stuck 2 0 5
IT281.Offset 101.00 −0.70 NONE 0 1 IT281.Offset 1 0 0
ST516.Offset 112.00 240.00 ST516.Offset 9 0 ST516.Offset 1 0 8
IT267.Offset 174.00 0.10 NONE 0 1 NONE 0 1 0
E240.Offset 138.00 −5.10 E240.Offset 2 0 E240.Offset 1 0 1
IT267.Offset 187.00 −1.40 IT267.Offset 11 0 ERROR 3 1 8
IT267.Stuck 49.00 2.38 IT267.Stuck 12 0 IT267.Stuck 2 0 10
IT240.Offset 199.00 −1.70 IT240.Offset 14 0 IT240.Offset 1 0 13
IT281.Offset 132.00 −0.05 NONE 0 1 NONE 0 1 0
E281.Stuck 80.00 21.38 ERROR 6 1 E281.Stuck 2 0 4
IT240.Offset 69.00 −4.20 IT240.Offset 14 0 IT240.Offset 1 0 13
IT281.Stuck 152.00 0.00 ERROR 8 1 IT281.Stuck 1 0 7
TE228.Offset 175.00 5.00 TE228.Offset 1 0 TE228.Offset 1 0 0
E265.Offset 39.00 8.00 E265.Offset 6 0 E265.Offset 1 0 5
AC483.FailedOff 79.88 N/A EY272.StuckOpen 1 1 EY272.StuckOpen 1 1 0
DC485.FailedOff 51.73 N/A EY284.StuckOpen 1 1 EY284.StuckOpen 1 1 0
FAN416.FailedOff 87.92 N/A FAN416.FailedOff 1 0 FAN416.FailedOff 1 0 0
INV2.FailedOff 167.99 N/A INV2.FailedOff 1 0 INV2.FailedOff 1 0 0
CB236.FailedOpen 170.97 N/A CB236.FailedOpen 1 0 CB236.FailedOpen 1 0 0
CB262.FailedOpen 188.72 N/A CB262.FailedOpen 1 0 CB262.FailedOpen 1 0 0
CB266.FailedOpen 129.80 N/A ERROR 13 1 CB266.FailedOpen 1 0 12
CB280.FailedOpen 135.03 N/A CB280.FailedOpen 1 0 CB280.FailedOpen 1 0 0
EY244.StuckOpen 35.35 N/A EY244.StuckOpen 1 0 EY244.StuckOpen 1 0 0
EY260.StuckOpen 176.83 N/A EY260.StuckOpen 1 0 EY260.StuckOpen 1 0 0
EY272.StuckOpen 62.87 N/A EY272.StuckOpen 1 0 EY272.StuckOpen 1 0 0
EY275.StuckOpen 141.90 N/A EY275.StuckOpen 1 0 EY275.StuckOpen 1 0 0
EY284.StuckOpen 83.83 N/A EY284.StuckOpen 1 0 EY284.StuckOpen 1 0 0
DC485.FailedOff 59.08 N/A EY284.StuckOpen 1 1 EY284.StuckOpen 1 1 0
FAN416.FailedOff 105.22 N/A FAN416.FailedOff 1 0 FAN416.FailedOff 1 0 0
INV2.FailedOff 120.70 N/A INV2.FailedOff 1 0 INV2.FailedOff 1 0 0
CB236.FailedOpen 35.66 N/A CB236.FailedOpen 1 0 CB236.FailedOpen 1 0 0
CB266.FailedOpen 60.89 N/A ERROR 13 1 CB266.FailedOpen 1 0 12
EY260.StuckOpen 80.06 N/A EY260.StuckOpen 1 0 EY260.StuckOpen 1 0 0
EY272.StuckOpen 39.27 N/A EY272.StuckOpen 1 0 EY272.StuckOpen 1 0 0
ISH236.Stuck 46.00 0.00 ISH236.Stuck 2 0 ISH236.Stuck 2 0 0
ST516.Offset 187.00 −243.00 ST516.Offset 9 0 ST516.Offset 1 0 8
TE228.Offset 101.00 21.00 TE228.Offset 1 0 TE228.Offset 1 0 0
IT240.Offset 203.00 −2.30 IT240.Offset 14 0 IT240.Offset 1 0 13
ST516.Offset 188.00 420.00 ST516.Offset 9 0 ST516.Offset 1 0 8
IT281.Offset 99.00 1.70 IT281.Offset 7 0 IT281.Offset 1 0 6
IT267.Offset 163.00 0.20 NONE 0 1 IT267.Offset 1 0 0
IT267.Offset 146.00 −0.30 IT267.Offset 11 0 IT267.Offset 1 0 10
IT281.Stuck 140.00 0.00 ERROR 8 1 ERROR 2 1 6
IT240.Stuck 95.00 18.26 IT240.Stuck 15 0 IT240.Stuck 2 0 13
E242.Offset 138.00 −3.00 E242.Offset 3 0 E242.Offset 1 0 2
E281.Stuck 83.00 23.42 E281.Stuck 5 0 E281.Stuck 2 0 3
IT240.Offset 178.00 1.50 NONE 0 1 IT240.Offset 1 0 0
IT267.Offset 172.00 −2.00 IT267.Offset 11 0 IT267.Offset 1 0 10
ST516.Offset 131.00 −300.00 ST516.Offset 9 0 ST516.Offset 1 0 8

Table 2. Summary of Diagnosis Results
Kind of
Fault

Sum of HyDE
Candidates

Tried

Sum of HyDE
errors

Sum of HyDE+SMD
Candidates

Tried

Sum of HyDE+SMD
errors

Nonsensor faults 44 5 20 3
Sensor faults 277 14 54 8
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back propagate past submodel boundaries when using
HyDE+SMD. To understand this further first we look at
how the unknown transition probabilities are set up. All
nonsensor faults are considered to have the same prob-
ability and have higher probabilities than sensor faults.
Among sensor faults (we consider only offset and stuck)
the offset fault is considered more probable than stuck
fault. In the full HyDE model when we see some incon-
sistent variables all components upstream of the sensors
have to be considered suspect. However in the case of
HyDE+SMD all components upstream of the sensor only
in that submodel have to be considered suspect. For sen-
sor faults we see an even more marked improvement in
performance because of the special mechanism used to
represent sensors in HyDE+SMD. In this case when we
see two submodels to have inconsistent variables, the first
explanation is the sensor that appears as output in one
and input in the other. In the HyDE case all nonsensor
faults upstream have to be considered before the sensor
fault is considered, resulting in more candidates being
tested. For HyDE+SMD we notice that we always test
1 (if actual fault is offset) or 2 (if actual fault is stuck
then offset is tested first and then stuck is selected) can-
didates only.

As examples we will consider one nonsensor fault (DC485
Failed) and one sensor fault (IT281 Offset). The HyDE
and HyDE+SMD model fragments containing these two
components are illustrated in Fig. 3 and Fig. 4. For
the DC485 Failed scenario using only HyDE we see that
IT281 and IT240 are inconsistent and HyDE identifies
EY284, DC485, CB280, EY260, EY244 and CB236 as
possible suspects (based on the intersection of what is
upstream of IT240 and IT281). When EY284 is tested
it is consistent (EY284 and DC485 failures cannot be
distinguished because they do not have any sensors in
between them). When using HyDE+SMD only IT281
is detected to be inconsistent and now only EY284 and
DC485 are picked as suspects since only those 2 compo-
nents are present in the submodel that contains IT281 as
output. In this case also EY284 is tested first and found
to be consistent (resulting in the same diagnostic error
due to lack of diagnosability).

When we consider the IT281 Offset scenario, HyDE gen-
erates EY284, DC485, CB280, EY260, EY244, CB236
and IT281 as suspects. Since nonsensor faults have
higher probability, it considers the 6 nonsensor faults
first, but they do not provide consistent predictions. Fi-
nally IT281 Offset is selected as a candidate which re-
sults in consistency. When HyDE+SMD model is used,
IT281 and IT240 are found to be inconsistent. In this
case the only intersection when searching for suspects
is the IT281 component. Testing the IT281 Offset (be-
cause it has higher probability than IT281 Stuck) results

in consistency.

6. Related work

Hybrid systems diagnosis has been tackled in different
ways. Approaches based in a pure DES following the
proposition by (Sampath et al., 1995) model the system
as a set of automata, one for each working mode, that
tries to track the discrete state, while performing diag-
nosis as a state-estimation process (Hofbaur & Williams,
2004; Benazera & Travé-Massuyès, 2009). The obvious
difference and advantage with HyDE is that it does not
need to pre-enumerate modes because they are generated
on the fly. Moreover it is not required to generate, track
and confirm any potential new discrete state given the
ability to track continuous behavior.

Decompositional approaches for continuous systems
diagnosis, such as PCs (Pulido & Alonso-González,
2004), ARRs (Staroswiecki & Declerck, 1989), and
MSOs (Krysander et al., 2008), have been extended
for hybrid systems following somewhat the proposal
by (Cocquempot et al., 2004), and their concept of pa-
rameterized ARRs (Bayoudh et al., 2009; Moya et al.,
2012). The set of ARRs or PCs for any mode must be
generated off-line, and the active PCs or ARRs must be
derived on-line. The obvious disadvantage is the need
to model every potential transition in terms of known or
estimated system variables.

There is also the option to combine ARRs and hybrid
mode tracking as in (Rienmuller et al., 2013). This work
combines hybrid estate estimation which is based on ac-
tivated or non-activated residuals derived from ARRs for
the current system. As in previous approaches, the set
of potential states must be taken into account and two
different diagnosis processes must be done at the same
time to avoid tracking multiple discrete modes.

To avoid enumeration of potential modes, approaches
based on Hybrid Bond Graphs, HBGs, adapt the
model of the current continuous state by activat-
ing/deactivating switching junctions in a Bond-Graph
model, and quickly providing a valid causal assign-
ment (Narasimhan & Biswas, 2007). That approach
can be combined with system model decomposition such
as PCs, in the Hybrid PCs approach, providing a set
of subsystems that can track the continuous behavior,
while adapting to mode changes thanks to the underly-
ing hybrid bond-graph modeling (Bregon, Alonso, et al.,
2012). These HBG based approaches avoid enumeration
of modes, but are still linked to one kind of diagnosis
algorithm.

Summarizing a main difference between HyDE and the
mentioned approaches is that all of them are linked to
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Figure 3. HyDE SMD Sensor Model.

Figure 4. HyDE SMD Sensor Model.

one (or at most two) modeling paradigms, and integrates
one diagnosis algorithm.

An implicit assumption in the integration of HyDE and
structural model decomposition, due to the potential
presence of output sensors as input in the submodels is
that sensor noise should not be too high. This is an issue
with all model decomposition approaches, because the
additional introduction of noisy sensor values as input.
This fact provokes sometimes a delay in the detection
time, needing a longer period to be sure that the differ-
ence in the residual is not related to noise. But this is a
common problem in almost any approach to model-based
diagnosis, including those without model decomposition.

7. Conclusions

In this paper we presented a method of combining HyDE
and structural model decomposition that lets us im-
prove the performance of HyDE under assumptions that
sensor noise is not too high. The combined approach
results it better diagnosis accuracy as well as reduced
computational complexity. We demonstrated this on an
electrical testbed at NASA Ames Research Center that
has published nominal and faulty data sets as part of
the Diagnostic Competition series. In future work we
would like to apply this method to other systems, more
datasets, and further characterize the improvement in
performance. Of particular interest would be multiple
fault and increased sensor noise scenarios.
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