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ABSTRACT 

In this paper, a methodology for probabilistic prognosis of a 
system using a dynamic Bayesian network (DBN) is 
proposed. Dynamic Bayesian networks are suitable for 
probabilistic prognosis because of their ability to integrate 
information in a variety of formats from various sources and 
give a probabilistic representation of a system. Further, 
DBNs provide a platform naturally suited for seamless 
integration of diagnosis, uncertainty quantification, and 
prediction. In the proposed methodology, a DBN is used for 
online diagnosis via particle filtering, providing a current 
estimate of the joint distribution over the system variables. 
From this state estimate, future states of the system are 
predicted using the DBN and sequential Monte Carlo 
sampling. Prediction in this manner provides the necessary 
information to estimate the distribution of remaining use life 
(RUL). The DBN-based recursive prediction procedure may 
be used to estimate the system state between available 
measurements, when filtering is not possible. The prognosis 
procedure, which is system specific, is validated using a 
suite of offline hierarchical metrics. The prognosis 
methodology is demonstrated on a hydraulic actuator 
subject to a progressive seal wear that results in internal 
leakage between the chambers of the actuator.  

1. INTRODUCTION 

1.1. Background 

The rise of complex and costly systems for use in extreme 
environments has resulted in new challenges in 
maintenance, planning, decision-making and monitoring for 
these systems. To reliably execute the missions they were 
designed for, these systems must be meticulously 
maintained. Traditional schedule-based maintenance results 
in unnecessary system downtime and the potential for 
serious problems to develop between routine maintenance. 
The alternative, condition-based maintenance (CBM) 
(Jardine, Lin, & Banjevic, 2006), monitors systems as they 

operate, alerting personnel when faults occur. Maintenance 
is performed on-demand, resulting in less downtime and 
lower costs. Further, online system measurements may 
occur on different time scales from one another or only be 
available in particular system configurations. This 
necessitates seamless integration of current state estimation 
and predictive techniques, which are part of a prognosis 
methodology. 
 
Prognosis is the process of predicting the future state of a 
system coupled with information about the implications of 
that estimate of the system health state. The quantitative 
prognosis of a system is commonly expressed through the 
remaining useful life (RUL). RUL quantifies the amount of 
time until a system reaches some failure criterion, e.g. fault 
magnitude or performance metric crosses a threshold or 
system is no longer operable.  Ideally, the uncertainty in 
RUL is quantified by estimating the distribution of RUL, 
resulting in a probabilistic prognosis. Importantly, 
probabilistic prognosis assesses the outlook for a specific 
instantiation of a system, or a particular unit under test 
(UUT). Measurement data updates the belief about the 
present state and RUL of the particular UUT.  In this way, 
probabilistic prognosis differs from probabilistic reliability 
analysis, which aggregates data to obtain probabilistic 
reliability data for a population as opposed to an individual. 
Such population statistics may be suitable for tasks such as 
system design, but less helpful for operational and 
maintenance decisions that focus on individual units, as is 
the case in CBM. 
 
A prognosis methodology should thus have several 
important characteristics. It should provide a distribution of 
RUL as opposed to a point estimate, thus accounting for the 
uncertainty coming from many sources (variability, 
information uncertainty, and model uncertainty). It should 
track the health of an individual unit. It should allow easy 
transition between situations when measurements are 
available and when they are unavailable. Finally, the 
methodology should survive rigorous validation. 
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Prognosis methodologies may be divided into statistical, 
data-based, model-based, and hybrid approaches (see e.g. 
(Jardine et al., 2006; Tran & Yang, 2009)). Statistical 
approaches include statistical process control (Goode, 
Moore, & Roylance, 2000), logistic regression (Yan, Koç, 
& Lee, 2004), survival models (Banjevic & Jardine, 2006; 
Vlok, Wnek, & Zygmunt, 2004), and stochastic process 
models (Lin & Makis, 2004; W. Wang, Scarf, & Smith, 
2000; Wenbin Wang, 2002).  
 
Data-based approaches consist of machine learning methods 
(support vector machines (Farrar & Worden, 2012), relevant 
vector machines (Tipping, 2001), neural networks (Dong & 
Yang, 2008; Farrar & Worden, 2012; Vachtsevanos & 
Wang, 2001; W. Q. Wang, Golnaraghi, & Ismail, 2004; 
Yam, Tse, Li, & Tu, 2001; Zhang & Ganesan, 1997)) and 
graphical models such as dynamic Bayesian networks 
(DBNs) hidden Markov models (HMMs) (Chinnam & 
Baruah, 2003; Kwan, Zhang, Xu, & Haynes, 2003). Liu et 
al. (2010) use adaptive recurrent neural networks for the 
estimation of battery RUL. Goebel et al. (2008) compare 
relevance vector machines (RVMs), Gaussian process 
regression (GPR) and neural network (NN) methods for 
prognosis. Gebraeel & Lawley (2008) use NNs for 
degradation modeling and test the methodology on ball 
bearings. Saha et al. (2009) compare relevance vector 
machines (RVMs, a Bayesian implementation of support 
vector machines) and particle filtering to estimate RUL 
distributions for batteries. 
 
In model-based approaches, system models are used to 
estimate RUL or other relevant metrics. Such methods rely 
on accurate physics-based models for prediction. These 
include physical failure models (Kacprzynski, Sarlashkar, 
Roemer, Hess, & Hardman, 2004), filtering models 
(Orchard & Vachtsevanos, 2009, Lorton, Fouladirad, & 
Grall, 2013, B. Saha, Celaya, Wysocki, & Goebel, 2009, 
Khan, Udpa, & Udpa, 2011), and statistical models. Orchard 
and Vachtsevanos (Orchard & Vachtsevanos, 2009) use 
state estimation models combined with particle filtering for 
diagnosis and estimation of the RUL distribution of a 
planetary gear. Lorton et al. (Lorton et al., 2013) combine 
the differential equations of a system with system 
measurements via particle filtering for probabilistic model-
based prognosis.  
 
Hybrid methodologies combine multiple approaches, i.e., a 
combination of data-driven and model-based approaches. 
E.g. Kozlowski (2003) uses ARMA (autoregressive moving 
average) models (Box, Jenkins, & Reinsel, 2008), neural 
networks, and fuzzy logic for estimation of the state of 
health, state of charge, and state of life of batteries.  
 
DBNs are probabilistic graphical models with diagnostic 
and prognostic capabilities. They have shown promise in 
several recent applications. Dong and Yang (2008) use 

DBNs combined with particle filtering to estimate the RUL 
distribution of drill bits in a vertical drilling machine. While 
very useful, particle filtering is not the only inference 
method available for prognosis.  Jinlin and Zhengdao (2012) 
use DBNs modeling discrete variables and the Boyen-Koller 
algorithm for prognosis. Tobon-Mejia et al. (2012) use 
mixtures of Gaussian HMMs (a form of DBN) to estimate 
the RUL distributions for bearings. The junction tree 
algorithm is used for exact inference. The prognosis 
methodology is validated using the hierarchical metrics 
proposed by Saxena et al. (2010).  

1.2. Motivation 

While the preceding literature review represents a number 
of prognosis approaches, prognosis is still an emerging 
research area with room for much additional work. One 
promising approach that has received relatively little 
attention is based on DBNs. DBNs have many qualities that 
are attractive for prognosis.  
 

1) The graphical representation of a problem provided 
by DBNs aids understanding of interactions in a 
system.  

 
2) DBNs provide a probabilistic model of the system 
that accounts for uncertainty due to natural variability, 
measurement error, and modeling error.   

 
3) DBNs can integrate many types of information that 
may be encountered during prognosis (including expert 
opinion, reliability data, mathematical models, 
operational data, and laboratory data) into a unified 
system model.   

 
4) DBNs can update the distributions of all variables in 
the network when observations are obtained for any one 
or more variables. This allows the most recent system 
measurements to be accounted for in prognosis. 

 
 Additionally, many prognosis methodologies are 
application-specific. There is still a need for prognosis 
methodologies that can be applied to a wide range of 
problems. 

1.3. Contributions 

In this paper, a framework for probabilistic prognosis is 
proposed. The methodology advances the use of DBNs in 
prognosis by building upon previous work in system 
modeling under heterogeneous information (Bartram & 
Mahadevan, 2013). Further, the DBN-based methodology   
addresses the need for a general prognosis framework for 
developing validated prognosis methodologies for any 
system.  
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The DBN is constructed from prior information, including 
physics of failure models — a key function of a prognosis 
methodology. The DBN is a store of prior information, but 
also provides the means for integrating current 
measurements into a probabilistic estimate of the current 
state of a system. Particle-filter based inference is used for 
diagnosis, and forward sampling in the DBN is used for 
recursive prediction. The particle-based probabilistic state 
estimate of the system that results from particle filtering is 
ideal for diagnosis uncertainty quantification, and provides a 
seamless transition from diagnosis to future state prediction 
using sequential Monte Carlo sampling. The ability of the 
methodology to estimate RUL is validated using metrics 
from Saxena et al. (2010). In the second, online state 
estimation is desired, but measurements are not available or 
available periodically. The methodology is illustrated for a 
hydraulic actuator with a seal leak.  
 
The remainder of this paper is organized as follows. Section 
2 details the proposed prognosis methodology, including 
system modeling, diagnosis, prediction, and validation. In 
Section 3, the proposed methodology is demonstrated on a 
hydraulic actuator system with a progressive internal leak. 
Section 4 discusses conclusions and future work. 
 

2. PROPOSED PROGNOSIS FRAMEWORK 

The challenge of prognosis is to minimize the uncertainty in 
the estimated distribution of RUL given constraints on 
available information about the system, operating 
environment and loading conditions, computational 
resources, and time horizon. In this paper, a DBN-based 
prognosis framework is proposed. The prognosis framework 
first constructs a DBN-based system model using 
heterogeneous information sources. Expert opinion, 
reliability data, mathematical models, and operational and 
laboratory data are used in the construction of the DBN 
model. In particular, inclusion of physics of failure models 
is important in prognosis. The evolution of phenomena such 
as cracking, wear, and corrosion play a large role in 
determining the health of a system. The system model is 
used for diagnosis to obtain information about the current 
state of the system. A sequential Monte Carlo then predicts 
future system states and estimates the RUL distribution. 
Finally, the prognosis capability of the resulting system 
model, diagnostic, and predictive algorithms are validated 
using a four step hierarchical procedure. The prognosis 
procedure is shown in Fig. 1. 

2.1. Dynamic Bayesian Networks 

A dynamic Bayesian network is the temporal extension of a 
static BN. A static BN, also referred to as a belief network 
and directed acyclic graph (DAG), is a probabilistic  

 
Figure 1. Proposed Prognosis Methodology 

 
 graphical representation of a set of random variables and 
their conditional dependencies. Variables are represented by 
nodes (vertices) and conditional dependence is represented 
by directed edges. Unconnected nodes are conditionally 
independent of each other. The acyclic requirement means 
that no paths exist in the graph where, starting at node xi, it 
is possible to return to node xi. 
 
A DBN describes the joint distribution of a set of variables 
x on the interval [0, ∞). This is a complex distribution, but 
may be simplified by using the Markov assumption. The 
Markov assumption requires only the present state of the 
variables xt to estimate xt+1 , i.e. p(xt+1 | x0, …, xt) = p(xt+1 | 
xt) where p indicates a probability density function and bold 
letters indicate a vector quantity. Additionally, the process is 
assumed to be stationary, meaning that p(xt+1 | xt) is 
independent of t. This approach to modeling DBNs is 
developed by Friedman et al. (Friedman, Murphy, & 
Russell, 1998). 
 
A DBN may be composed of all discrete variables, all 
continuous variables, or hybrid set of discrete and 
continuous variables. A conditional probability distribution 
(CPD) is chosen for each variable, e.g. Gaussian, tabular 
(multinomial), softmax, deterministic, logic, etc. See Koller 
and Friedman (2009) for a detailed explanation of CPDs.  
For modeling systems with faults, it is advantageous to 
consider a hybrid system, typically with the continuous 
variables being modeled as continuous and the faults being 
discrete. Theory for networks with Gaussian continuous 
variables is developed in Heckerman and Geiger (1995) and 
Lauritzen (1992). 
 
DBNs provide a flexible modeling framework, allowing 
integration of expert opinion, reliability data, mathematical 
models  (including system state space, surrogate, and 
physics of failure models), existing databases of operational 
and laboratory data, and online measurement information. 
Bartram and Mahadevan (2013) have proposed a 
methodology for integration of such heterogeneous 
information into DBN system models. In the next section, 
that discussion is extended to consider physics of failure 
models, which are of particular importance in prognosis. 

DBN 
System 
Modeling 
• Physics of 

Failure 

Diagnosis  
• Particle 

Filtering 

Prediction 
• Sequential 

Monte Carlo Validation 
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2.2. Physics of Failure Models 

A key distinction between a system model capable of 
diagnosis and one capable of prognosis is that a prognostic 
model can estimate the evolution of damage in the future 
while a diagnosis model only needs the ability to infer the 
current state of damage. Diagnostic procedures based on 
fault signatures or pattern recognition are examples of this. 
While they may be able to detect and isolate damage, 
quantification can be done using least-squares based 
estimation, they do not necessarily have any ability to model 
progressive damage mechanisms such as crack growth, 
wear, and corrosion. One of the challenges of prognosis is 
developing accurate and comprehensive physics of failure 
models. These damage mechanisms are complex, varying 
with system design and dynamics, and can interact in many 
ways.  
 
For illustration, the example problem in this paper considers 
a dynamic seal in a hydraulic actuator. Seal failure is 
discussed in great detail in (Naval Surface Warfare Center, 
2011). A dynamic seal prevents leakage when there is 
relative motion between two surfaces. The seal under 
consideration prevents leakage between the two chambers of 
the actuator. Modeling the failure of a seal can become 
complicated very quickly, as a number of factors influence 
seal failure, including, material characteristics, amount of 
seal compression, surface irregularities, seal size, fluid 
pressure, pressure pulses, temperature, fluid viscosity, fluid 
contamination, fluid/material compatibility, allowable 
leakage levels, and assembly and quality control procedures. 
The failure symptoms include excessive leakage and slow 
mechanical response. Many mechanisms and causes of these 
symptoms are described in (Naval Surface Warfare Center, 
2011).  
 
In this paper, the wear mechanism is considered for a seal in 
a hydraulic actuator. Generally, seal leakage is due to wear 
caused by friction between the seal and piston, which 
removes seal material and allows fluid to pass between the 
chambers of the actuator. There are multiple wear 
mechanisms including adhesive wear, abrasive wear, 
surface fatigue, fretting wear, and erosive wear (Jones, 
1983). Lancaster (1969) explains many of the complexities 
of  abrasive wear while Briscoe and Sinha (2002) and 
Briscoe (1981) review wear of polymers. Due to the 
complexity of the mechanisms of wear, wear is typically 
modeled through the use of an experimentally determined 
wear rate.   
 
Nikas (2010) has written an extensive literature review on 
seal wear in actuators. The leakage area is the result of the 
removal of seal material — typically a 
polytetrafluoroethylene (PTFE) polymer — which is a 
function of load, distance traveled, material properties of the 
actuator and seal, geometry of the actuator, temperature, 

hydraulic fluid viscosity, and contaminants. Experimentally 
determined wear rates (mm3/m/N) are available for PTFE 
composites used in hydraulic actuators e.g. Sawyer et al. 
(2003) and Khedkar et al. (2002).  
 
The volume of material removed from the seal per cycle 
depends on the friction force and sliding distance per cycle 
and may be calculated by 
 

𝑉(𝑡) = 𝑤𝑠𝑒𝑎𝑙(𝑡)𝐹(𝑡)𝑑(𝑡)  (1) 

where 𝑤𝑠𝑒𝑎𝑙 is the wear rate of the seal in mm3/N/m, F 
is the frictional force on the seal, and d is the total 
sliding distance, and t refers to the load cycle. 
 
For the seal shown in Fig. 2, where L is the contact length of 
the seal and P is pressure, the leakage area (considered in 
Eqs. 16-29 as in (Thompson, Pruyn, & Shukla, 1999)) based 
on the volume of material removed is assumed to be 
𝑎𝑙𝑒𝑎𝑘 = 𝑉(𝑡) 𝐿⁄ . 
 
While wear is a continuous process, in this paper the 
occurrence of wear is modeled as a binary event, where 
modeling begins when the leakage area has reached a value 
that has detectable effects. The occurrence is modeled using 
an empirically derived seal failure rate, which modifies an 
experimentally determined base failure rate for the seal. 
Details of deriving the failure rate are available in (Naval 
Surface Warfare Center, 2011). 
 
The wear rate itself varies with factors such as the age of the 
seal, temperature, contaminants in the fluid. The load 
experienced by the seal also varies as does the velocity of 
the actuator. As a result the volume of material removed and 
leakage area are nonlinear functions. However, for the sake 

 
Figure 2. Hydraulic actuator diagram showing dynamic 
seals  
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of demonstration, it is assumed that the leakage area and 
volume of material removed vary linearly. This implies that 
the wear rate is steady, which is possible outside of the 
initial wear-in phase and under constant environmental 
conditions. Additionally, the load and velocity of the 
actuator are assumed to remain steady. 

2.3. Diagnosis 

Diagnosis is the process of detecting and isolating damage 
in a system and quantifying the magnitude of damage. 
When the probability of a fault occurring crosses the 
detection threshold, a fault isolation procedure finds fault set 
candidates to further analyze. To isolate candidate fault sets, 
statistical inference computes the probability of each fault 
set. The magnitude of the fault may then be estimated.  
 
In the context of prognosis, diagnosis (or more generally, 
filtering) provides the initial conditions for prognosis of a 
UUT. The initial condition for prognosis has a large impact 
on the accuracy and precision of the RUL distribution. As 
such, it is important to understand and account for diagnosis 
uncertainty. 
 
Uncertainty in diagnosis is due to natural variability, 
measurement error, model error, hypothesis testing error, 
error in inference, and any approximations in optimization 
or least squares procedures used for estimating fault 
magnitudes. Sankararaman and Mahadevan propose a 
methodology for quantifying the uncertainty in diagnosis. 
This is an integral part of the diagnosis procedure, and it is 
expanded in this paper to accommodate a particle filter (PF) 
based diagnosis procedure. 
 
Detection and isolation can be performed using a DBN 
model of the system to estimate the state of the system as 
measurements, zt, become available. The simplest procedure 
is to “unroll” the two time slice network and compute the 
states of all the unobserved variables in the system, xt

, 
including faults, using standard inference techniques such as 
the clique tree algorithm or Markov chain Monte Carlo 
(MCMC) (Koller & Friedman, 2009).  However, exact 
inference is generally a computationally intractable problem 
(Boyen & Koller, 1998). As a result, approximate inference 
based on Bayesian recursive filtering is pursued. 

2.3.1. Bayesian Recursive Filtering 

The procedure for updating the belief about the system state 
as new information becomes available is called Bayesian 
recursive filtering. Bayes’ theorem is the engine for 
performing the update. Diagnosis of a dynamic system may 
be achieved by maintaining the joint distribution over the 
system variables, parameters, and faults and as new noisy 
measurements become available via Bayesian recursive 
filtering. The joint distribution provides the best estimate of 
whether faults have occurred and what values system 

parameters and responses may have. This joint distribution 
is commonly called the belief state 𝜎𝑡 . 𝜎𝑡 = 𝑝(𝐱𝑡|𝐳1:𝑡) , 
where 𝑝(𝐱𝑡|𝐳1:𝑡)  is the distribution over the variables 𝐱𝑡 
estimate given all previous measurements 𝐳1:𝑡 .  The belief 
state estimate includes estimates of the states of faults and 
system parameters, whose states are otherwise unknown. 
Equation (2), derived from Bayes’ theorem (see Appendix 
1), is the engine for belief state updating. 
 

𝜎𝑡+1(𝐱𝑡+1) =
𝑝(𝐳𝑡+1|𝐱𝑡+1)𝑝(𝐱𝑡+1|𝐳1:𝑡)

𝑝(𝐳𝑡+1|𝐳1:𝑡)   (2) 

𝑝(𝐳𝑡+1|𝐱𝑡+1)  is the likelihood of the measurements, 
𝑝(𝐱𝑡+1|𝐳1:𝑡)  is the prior state estimate at time t, 
𝑝(𝐳𝑡+1|𝐳1:𝑡)  is a normalizing constant, and 𝜎𝑡+1(𝐱𝑡+1)  is 
the posterior state estimate at time t.  
 
Complete tutorials on Bayesian recursive filtering are 
available in Koller and Friedman (2009)  and Ristic and 
Arulampalam (2004).   

2.3.2. Particle Filtering 

Under certain assumptions, such as when the system is 
linear Gaussian, the belief state 𝜎𝑡+1(𝐱𝑡+1)  will be of a 
known parametric form and computationally efficient 
solutions to the filtering problem (e.g. Kalman filter, 
extended Kalman filter, unscented Kalman filter) are 
available. Outside such assumptions, a computationally 
feasible method for inference in the DBN is found in 
particle filtering, a form of sequential Monte Carlo based on 
Bayesian recursive filtering (see e.g. Chen (2003)).  
 
Particle filtering is a method for approximating the 
distribution of the belief state with a set of samples and 
weights. Common particle filtering method are based on 
sequential importance sampling (SIS), which improves upon 
the basic sequential MC by weighting point masses 
(particles) according to their importance sampling density, 
thus focusing on the samples that affect the posterior belief 
state the most. A comprehensive tutorial on particle filters is 
given by Ristic et al. (2004) and in Koller and Friedman 
(2009). 
 
A summary of the SIS algorithm for one time step is as 
follows. A previous (or initial if t = 1) set of Ns weights 𝑤𝑡𝑖  
and Ns corresponding particles 𝐱𝑡𝑖  are given initially or 
known from the previous time step, where i denotes the ith 
particle. These particles represent an approximation of the 
belief state by 
 𝜎𝑡+1(𝐱𝑡+1) = 𝑝(𝐱𝑡+1|𝐳1:𝑡+1) 

≈� 𝛿(𝐱 − 𝐱𝑖𝑡+1)𝑤𝑖𝑡+1
𝑁𝑠

𝑖=1
  (3) 

 Ns samples are drawn from the importance distribution, 
𝑞(𝐱𝑖𝑡+1|𝐱𝑖𝑡 , 𝐳𝑡+1), where 𝐳𝑡+1  are the measurements at the 
t+1th time step. In a DBN, sampling is performed in the 
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two-slice template after computing  𝐱𝑡  and zt+1. The values 
for the remaining 𝐱𝑡+1  are then sequentially sampled in 
topological order (parent then child).  
 
 A weight 𝑤𝑖𝑡+1 is then computed for each particle 𝐱𝑖𝑡+1 up 
to a normalizing constant based on the ratio of the belief 
state to the importance density, 
 

𝑤𝑖𝑡+1 ∝
𝜎(𝐱𝑖1:𝑡+1|𝐳1:𝑡+1)
𝑞(𝐱𝑖1:𝑡+1�𝐳1:𝑡+1)

  (4) 

using the weight update equation in Eq. (5), which is 
derived from the ratio of the pdf of the belief state to the pdf 
of the importance sampling density.  
 

𝑤𝑖𝑡+1 ∝
𝑝(𝐳𝑡+1|𝐱𝑖𝑡+1)𝑝(𝐱𝑖𝑡+1|𝐱𝑖𝑡)

𝑞(𝐱𝑖𝑡+1�𝐱𝑖𝑡 , 𝐳𝑡+1)
  (5) 

The weights 𝐰𝑡+1 are normalized so their sum is equal to 1. 
The normalized weights and points {𝐱𝑖𝑡+1}𝑖=1

𝑁2  form an 
approximation to the belief state estimate in  Eq. (3).  
 
The basic SIS algorithm suffers from the degeneracy 
phenomenon, wherein all but a few of the particles have 
negligible weight after only a few updates. This tends to 
waste computational effort on particles with practically zero 
probability. Two techniques to reduce this phenomenon are 
choosing an optimal importance density 𝑞(𝐱𝑖𝑡+1|𝐱𝑖𝑡 , 𝐳𝑡+1) 
and resampling. The optimal importance density may only 
be determined analytically when the system variables are 
discrete with a finite number of possible values or when the 
system variables are Gaussian. In other cases, suboptimal 
approximations based on local linearization (Doucet, 
Godsill, & Andrieu, 2000) or Gaussian approximations 
using the unscented transform (West & Harrison, 1997) may 
be used. Often, for convenience the importance density 
𝑞�𝐱𝑡+1�𝐱𝑖𝑡 , 𝐳𝑡+1�  is taken as the prior 𝑝(𝐱𝑖𝑡+1|𝐱𝑖𝑡)  or the 
likelihood 𝑝(𝐳𝑡+1|𝐱𝑖𝑡+1) . If the prior is used, 
𝑞�𝐱𝑡+1�𝐱𝑖𝑡 , 𝐳𝑡+1� = 𝑝�𝐱𝑡+1�𝐱𝑖𝑡� , and the weight update in 
Eq. (5) simplifies to 
 

𝑤𝑖𝑡+1 ∝ 𝑤𝑖𝑡𝑝(𝐳𝑡+1|𝐱𝑖𝑡+1)  (6) 

Resampling focuses the particle filter on the particles with 
the largest weights. An empirical CDF is constructed based 
on the weights wt.  Particles are sampled (with replacement), 
replicating the particles with the largest weights. The result 
is 𝑁𝑠  particles all with weight 1 𝑁𝑠⁄ . Resampling may be 
performed after every update or when a measure of 
degeneracy, the effective sample size, Neff , falls below a 
threshold. Neff  may be taken as (Ristic & Arulampalam, 
2004) 

 
𝑁𝑒𝑓𝑓 =

𝑁𝑠
∑ (𝑤𝑖𝑡+1)2𝑁𝑠
𝑖=1

  (7) 

Many variations of the SIS particle filter exist with different 
importance densities 𝑞�𝐱𝑡+1�𝐱𝑖𝑡 , 𝐳𝑡+1�  and resampling 
procedures (Ristic & Arulampalam, 2004). In this paper, an 
algorithm for systems with multiple operating modes 
(Andrieu, Davy, & Doucet, 2003) that extends the auxiliary 
particle filter (Pitt & Shephard, 1999) is used. 

2.4. Fault Diagnosis and Diagnosis Uncertainty 
Quantification 

When using a particle filter, the belief state itself provides 
the information necessary for fault detection, isolation, and 
damage quantification. The marginal distribution over 
combinations of the discrete fault indicator variables is a 
multinomial distribution, whose parameters are easily 
calculated from the particles representing the current belief 
state. Given m fault indicator variables that can take on 
values of true or false, there are 𝑛 = 2𝑚  combinations of 
faults, including the healthy condition.The 𝑖𝑡ℎ combination 
at the 𝑡𝑡ℎ  cycle has an expected probability 𝑝𝑖𝑡 =
∑𝑁𝑖𝑡𝑤𝑖𝑡 𝑁𝑠⁄ , where 𝑁𝑠  is the number of samples used in 
particle filtering, 𝑁𝑖𝑡 is the number of occurrences of the 𝑖𝑡ℎ 
fault combination, and 𝑤𝑡𝑖  are the normalized weights for 
those particles. 
 
The probability of any fault (detection probability) is then 
𝑝𝐹𝑡 = 1 − 𝑝0𝑡 , where 𝑝0𝑡  is the probability of the fault 
combination where no faults occur. When 𝑝0𝑡  is greater than 
some threshold, an alert may be issued to a decision maker 
and a prognosis procedure may be triggered. The remaining 
𝑝𝑖𝑡  (𝑖 ≠ 0)  are the isolation probabilities of each fault 
combination. From the belief state, 𝜎𝑡+1(𝐱𝑡+1) , the 
marginal distributions over damage parameters may be 
constructed from the particles and their weights.  
 
The probabilities pt that parameterize a multinomial 
distribution are themselves uncertain and follow a Dirichlet 
distribution. Based on the Dirichlet distribution, the 
variance of 𝑝𝑘𝑖  is  
 

𝑉𝑎𝑟�𝑝𝑡𝑖� =
𝑁𝑘𝑖�𝑁𝑠 − 𝑁𝑘𝑖�
𝑁𝑠2(𝑁𝑠 + 1)

  (8) 

The uncertainty in pt is directly dependent on the number of 
samples, 𝑁𝑠. With the detection and isolation probabilities 
and their corresponding uncertainties as well as estimates of 
the distributions of damage parameters known, a decision 
maker is better able to access the criticality of damage and 
the appropriate actions to make to balance safety and cost 
concerns. 
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2.4.1. Prediction 

In probabilistic prognosis, possible future states of the 
system are generated and the remaining useful life (RUL) 
distribution, 𝑟(𝑡), of the particular unit under test (UUT) is 
estimated. RUL is the amount of time a UUT is usable until 
corrective action is required and may be measured in hours, 
minutes, cycles, etc. Measurements are unavailable and the 
system model is assumed to be valid under future operating 
conditions. Prediction can be initiated at any time in the life 
of a system based on the last available state estimate. 
However, in this paper, the time of prognosis, tP, the first 
time point for which a prognosis estimate is obtained, is 
after the time of  fault detection, tD. Figure 3 illustrates these 
important prognosis time indices.  
 
One approach to prediction when performing particle 
filtering on a DBN is a basic sequential Monte Carlo. 
Starting with the last belief state estimate (with 
measurements available), particles are recursively sampled 
through the two time slice DBN until some termination 
criteria is met, such as 𝑃𝑟(𝑟(𝑡) = 0) is above some target 
threshold. Thus, there are 𝑁𝑠 trajectories of the variables of 
interest beginning at time t,  {𝚽(𝑡)}𝑖=1

𝑁𝑠 . Each trajectory 
consists of a series of predictions for the variables of 
interest,  𝚽(𝑡) = {𝝋(𝑡|𝑡),𝝋(𝑡 + 1|𝑡), …𝝋(𝐸𝑜𝑃|𝑡)} , where 
the end of prediction (EoP) is the time index of the last 
prediction before the end of life (EoL) is reached.  Particle 
weights are fixed from the last available measurement, as 
there is no basis for updating the weights (Eq. 5). This 
results in a particle-based approximation of RUL (similar to 
the belief state approximation), using the last available set 
of weights.  When a new measurement is obtained, a new 
RUL distribution is estimated.  
 
 
 

Figure 3. Prognosis time indices: r*(t) is the ground truth 
RUL, tEoUP is the end of useful prognosis, dashed line 
depicts mean r(t). 

 
 
To further tailor the prognosis to a particular UUT, the 
conditional probability distributions in the DBN may be 
updated as measurements become available. This may be 
performed via Bayesian updating of the distributions. If a 
conjugate prior is available, the update can be performed 
analytically. Otherwise, techniques such as Markov chain 
Monte Carlo (MCMC) may be required. 
 
The RUL distribution is sensitive to many aspects of the 
problem. The initial state estimate provided by the diagnosis 
algorithm must be accurate. As such, the filtering algorithm 
and number of particles are important algorithmic design 
decisions. These decisions also involve a tradeoff between 
accuracy and computational effort, which must be 
considered. Optimal sensor placement and improved sensor 
reliability also impact the accuracy of the diagnosis.  
 
The accuracy of predictive models, including those for 
inputs (loads) and physics of failure models, is another large 
source of uncertainty in the RUL estimate. Because the 
prediction is recursive with no measurements available to 
correct the prediction, errors in prediction compound 
quickly and must be minimized.  

2.4.2. Measurement Gaps 

Systems may experience periods of times where 
measurements are unavailable. This may be a result of the 
system configuration, availability of measurements, failure 
of sensing systems, or the desire to have system state 
estimates at a higher frequency than the available 
measurements. For example, offline inspection data may be 
available for an aircraft on the ground, while onboard 
sensing provides a steady stream of information about 
temperature, altitude, windspeed, pressure, etc. These 
onboard measurements may only be available for portions 
of a flight (perhaps during cruising but not takeoff or 
landing). 
 
Using the same recursive sampling used for RUL estimate, 
predictions may be produced and used to fill in the 
information gaps. When a measurement becomes available, 
the particle filtering algorithm is used to update the last 
predicted system state. The particle filter update may be 
performed as long as at least one measurement is available. 
The process is shown in Fig. 4. 

 
 

Figure 4. Handling measurement gaps 
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2.5. Prognosis Validation 

Prognosis validation is essential to establish confidence in 
the RUL estimate. Many sources of uncertainty, including 
modeling errors, sensor faults, data noise, and unpredictable 
loading conditions and operating environments, strongly 
affect prognosis. Therefore, validation of a prognosis 
procedure must be done using strong performance metrics. 
These metrics must be carefully chosen, as many issues 
arise when evaluating prognosis algorithms, such as time 
scales or the ability to improve accuracy as more 
measurements are obtained (Saxena et al., 2010). Saxena et 
al. (2010) propose a standard offline four metric hierarchical 
test to evaluate a prognosis algorithm. This hierarchical test 
assumes that prognosis improves as more measurements 
become available. Combined, these four metrics provide a 
means for testing and comparing prognostic algorithms.  
 
The first two metrics examine the accuracy of the RUL 
estimates by determining the probability p that the RUL 
estimate is between ±𝛼  of the ground truth RUL. This 
probability p is compared to a threshold value, β. It is 
desirable for p to be greater than β. The primary difference 
between the first two metrics is in how 𝛼  is determined, 
which results in a stricter test for the second metric than the 
first. 
 
In the first metric, prognostic horizon (PH) is considered. 
Prognostic horizon indicates the time at which RUL 
estimates using a particular prognostic algorithm for a 
particular system are within acceptable limits. The upper 
and lower limits are the ground truth RUL plus or minus a 
constant α, which is some percentage of the EoL value. PH 
is the difference between the true EoL time and the time 
when the prognostic algorithm attains this acceptable level 
of accuracy (𝑝 > 𝛽). As this is a validation metric, the true 
EoL is known. A longer PH is indicative of a better 
prognostic algorithm. Figure 5a provides a visual 
representation of prognostic horizon.  
 
Prognostic horizon maintains upper and lower bounds that 
are always the same distance from the true RUL. The 
second validation metric, 𝛼 − 𝜆 accuracy, utilizes a stricter 
criterion that gradually tightens the limits about the RUL 
estimate (Fig. 5b). Additionally, the accuracy of the RUL is 
considered at time 𝑡𝜆 , where 0 ≤ 𝜆 ≤ 1 , 𝑡𝜆 = 𝑡𝑃 +
𝜆(𝑡𝐸𝑜𝐿 − 𝑡𝑃) , and 𝑡𝑃 is the time at which a prognosis 
estimate is first obtained. This metric reflects the idea that, 
as more information is collected about the system, the RUL 
estimate is expected to improve, and thus the accuracy 
requirement for the RUL estimate should become more 
stringent. The 𝛼 − 𝜆 accuracy is equal to 1 when the  

a) 

 

b) 

 
Figure 5. a) Prognostic horizon with +/- α bounds about the 
ground truth RUL  
 b) +/- α bounds for evaluating α-λ accuracy 
 
increasingly stringent accuracy requirements are met, and 
zero otherwise.    
 
In step three, the relative accuracy (RA) of the prognostic 
algorithm is calculated. Instead of merely indicating that 
accuracy requirements have been met, the accuracy of the 
RUL estimates are quantified. At 𝑡𝜆 
 
 

𝑅𝐴𝜆 = 1 −
|𝑟∗(𝑡𝜆) − 𝑟(𝑡𝜆)|

𝑟∗(𝑡𝜆)
  (9) 

where 𝑟(𝑡𝜆) is a central tendency point such as the mean or 
median of the RUL estimate at 𝑡𝜆 and 𝑟∗(𝑡𝜆) is the ground 
truth RUL. The RA is computed separately for each time 
step at which RUL is estimated. RA is a value between 0 
and 1, and values closer to 1 indicate better accuracy. 
 
Finally, if the prognostic algorithm satisfies all the previous 
metrics, a final metric to compute is convergence. 
Convergence is a measure of how quickly a metric, such as 
RA, improves with time.   A high rate of convergence is 
desirable and leads to a larger PH. To estimate convergence 
of a prognosis algorithm based on some metric M, 
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𝐶𝑀 = [(𝑥𝑐 − 𝑡𝑃)2 + 𝑦𝑐2]1 2�   (10) 

where 
 

𝑥𝑐 =
1
2∑ (𝑡𝑖+12 − 𝑡𝑖2)𝑀(𝑡𝑖)𝐸𝑜𝑈𝑃

𝑖=𝑃

∑ (𝑡𝑖+1 − 𝑡𝑖)𝑀(𝑡𝑖)𝐸𝑜𝑈𝑃
𝑖=𝑃

  (11) 

and  
 

𝑦𝑐 =
1
2∑ (𝑡𝑖+12 − 𝑡𝑖2)𝑀(𝑡𝑖)2𝐸𝑜𝑈𝑃

𝑖=𝑃

∑ (𝑡𝑖+1 − 𝑡𝑖)𝑀(𝑡𝑖)𝐸𝑜𝑈𝑃
𝑖=𝑃

  (12) 

𝑀(ti) is the non-negative prediction accuracy, EoUP is the 
end of useful prediction, and P is the time at which the 
prognosis algorithm makes its first prediction. End of useful 
prediction is the time after which corrective action cannot be 
performed before EoL. A high rate of convergence is better 
and leads to a larger PH. 

2.6. Summary of Prognosis Framework 

This section presented a framework for probabilistic 
prognosis. DBNs are used as a system modeling paradigm 
due to their ability to handle uncertainty and to integrate 
many types of information, both in the offline model 
construction phase and the online belief state updating 
phase. For prognosis, it is of particular importance to model 
complex physics of failure phenomena and integrate such 
models into the DBN. After the DBN model is established, 
the model is used for tracking the state of a particular UUT. 
Particle filtering is used to update the belief state as new 
measurements are obtained. Uncertainty in the state estimate 
(diagnosis) is quantified, and when a fault is detected, 
estimation of RUL via recursive prediction begins. The 
result is an estimate of the distribution of RUL. Section 2.4 
considers the situation when there are gaps in the 
availability of measurements. 
 
When a prognosis procedure (DBN model of system 
combined with available measurements and filtering 
algorithm), is designed for a particular system, it is then 
validated using the 4 step hierarchical procedure outlined in 
Section 2.5. 

3. ILLUSTRATIVE EXAMPLE 

A hydraulic actuator system was considered to demonstrate 
the proposed methodology. Such a system is often used to 
manipulate the control surfaces of aircraft.  The system 
consists primarily of three subsystems: a hydraulic actuator, 
critical center spool valve, and an axial piston pump (Fig. 
6). The pump moves hydraulic fluid through the servovalve 
and into the actuator. The servovalve controls the flow of 
hydraulic fluid into the actuator, thus modulating the 
position of the actuator. Expert opinion, reliability data, 
mathematical models, operational data, and laboratory data 

were used to construct a DBN model of the spool valve and 
hydraulic subsystems. 
 
First, expert opinion is invoked to determine the scope of 
the problem, variables and faults to model, and establish the 
DBN structure. Next, reliability data is drawn upon to 
determine the conditional probabilities for the faults. The 
mathematical model of the system is used to generate 
predictions of the system variables. The predictions are 
treated similar to operational and laboratory data and used to 
train a regression model for estimating the reduction in seal 
orifice area, which is equivalent to the seal leakage area. 
Considering the actuator cross section in Fig. 7, the surface 
area of the seal is (𝑟22 − 𝑟12) , where r1 and r2 are the inner 
and outer radii of the seal, respectively. 

3.1. DBN Model Construction 

3.1.1. Expert Opinion 

Expert opinion was considered first to define the basic 
parameters of the problem. A DBN representation of the 
system was chosen because heterogeneous information 
  
 

 
Figure 6. Hydraulic actuator system 

 
 

 
Figure 7. Actuator cross section 
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sources were available, the intended use of the model is 
diagnosis and prognosis, and the system is dynamic. Seven 
state variables and six discrete faults were selected to model 
the behavior of the system. 
 
A generic initial structure for the DBN is first selected (Fig. 
8) based on expert opinion. This generic two time slice 
structure consists of the set of faults, F, model parameters, 
θ, system state, y, and measurements, z. In this structure, 
faults cause changes in system parameters, which then cause 
changes in system responses, which are observed. F 
contains the persistent variables in the DBN – their future 
values depend upon their present values. The observations, 
z, while not connected across time slices, are nonetheless 
not  independent across time slices, but correlated via  θ.  
 
 

 
 

Figure 8. Generic DBN structure. 
 

Table 1. List of faults and affected parameters. 
 

Fault Parameter Affected 

Seal Leak Leakage Area 

Water Leak into System Hydraulic Fluid Bulk 
Modulus 

Air Leak Into System Hydraulic Fluid Bulk 
Modulus 

Pressure Valve 
Malfunction Supply Pressure 

Pump Pressure Sensor 
Fault Supply Pressure 

Electrical Fault Control Signal 

 
Table 1 lists the faults considered in the actuator system and 
the parameter affected by that fault (the faults are described 
further in Section 3.1). For each fault, a binary variable is 

added to the network at time t and t + 1. Similarly, a 
Gaussian variable is added at time t and t + 1 for each 
affected parameter. Links are drawn pointing from faults to 
affected parameters. The parameters are assumed to have 
Gaussian distributions, whose mean and variance depend on 
the health state of the system. The leakage area parameter is 
a special case, as it is zero when no leakage exists. Upon 
instantiation of a leak, its value is assumed to follow a 
Gaussian distribution. Thereafter, the leak is assumed to 
grow according to a polynomial regression model (Section 
3.1, Mathematical Models), which is constructed using 
laboratory data.  

 
Parameters from the current time step and initial conditions 
from the previous time step are input into a physics-based 
model of the actuator, which estimates the system 
responses, assumed to be Gaussian variables. Measurements 
are then connected to the corresponding system response. 
Links are also drawn between like faults at time t and t + 1 
and like parameters at time t and t + 1. Finally, a Gaussian 
variable is added at time t and t + 1 for each measurement 
available. The resultant DBN is shown in Fig. 9 with 
parameters described in Table 2.  

3.1.2. Published Reliability Data  

The DBN model of the system should be able to simulate 
multiple faults and extrapolate system behavior multiple 
steps into the future for the model to be a useful diagnosis 
and prognosis tool. The overall failure rate for an actuator 
may be determined by estimating the base failure rate and 
making empirical corrections for temperature and fluid 
contamination (Naval Surface Warfare Center, 2011). The  
 

 
Figure 9. DBN structure as a result of expert opinion 
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Table 2. DBN variables. 
 

State 
Variable Symbol Unit Type Note 

Actuator 
position xact m continuous measured 

Actuator 
velocity vact m/s continuous measured 

Pressure in 
chamber 1 P1 Pa continuous measured 

Pressure in 
chamber 2 P2 Pa continuous measured 

Valve 
position xvalve m continuous measured 

Valve 
velocity vvalve m/s continuous measured 

Control 
signal u V continuous input 

Water leak W - binary inferred 

Air leak A - binary  
inferred 

Pump 
sensor 
fault 

P - binary inferred 

Valve fault V - binary inferred 
Seal leak S - binary inferred 
Fluid bulk 
modulus β MPa continuous inferred 

Supply 
pressure ps MPa continuous inferred 

Leakage 
area aleak mm2 continuous inferred 

 
RIAC Databook (2006) and the Handbook of Reliability 
Prediction Procedures for Mechanical Equipment (Naval 
Surface Warfare Center, 2011) give failure rates for many 
mechanical systems. For illustration of the methodology, a 
handful of the possible faults for the actuator system are 
considered in this paper. Table 3 lists the faults that have 
been considered, the subsystem where they are located, and 
the information source for that fault. 
 
The failure rates were then used to calculate the probability 
of each fault occurring. These probabilities correspond to 
parameters of the discrete fault indicator variables in the 
DBN. See Bartram and Mahadevan (Bartram & Mahadevan, 
2013) for details. 

3.1.3. Mathematical Behavior Models 

Several mathematical models are used in this example. A 
physics-based model of a hydraulic actuator, described by 
Kulakowski et al. (2007) and Thompson et al. (1999) (see 
Appendix), is integrated into the DBN as a deterministic 
conditional probability distribution  

 

Table 3. Faults Considered 
 

Fault Subsystem Information 
Source 

Seal Leak Actuator 

RIAC Databook 
(RIAC Automated 
Databook, 2006), 
Literature 
(Sepeheri, 
Karpenko, An, & 
Karam, 2005) 

Water Leak into 
System Piping/Fittings 

RIAC Databook 
(RIAC Automated 
Databook, 2006), 
Literature 
(Sepeheri et al., 
2005) 

Air Leak Into 
System Piping/Fittings 

RIAC Databook 
(RIAC Automated 
Databook, 2006), 
Literature 
(Sepeheri et al., 
2005) 

Pressure Valve 
Malfunction Pressure Valve 

RIAC Databook 
(RIAC Automated 
Databook, 2006), 
Literature 
(Sepeheri et al., 
2005) 

Pressure Sensor Piston Pump 

Mathematical 
Model (Zeiger & 
Akers, 1986), 
Literature 
(Zeliang, 2005) 

Electrical Fault Electrical 
RIAC Databook 
(RIAC Automated 
Databook, 2006) 

 
(Koller & Friedman, 2009). This model has been 
implemented in the Matlab Simulink environment. 
 
For demonstration of the prognosis methodology, the load is 
synthesized using an ARIMA (autoregressive integrated 
moving average) model, which is treated as a deterministic 
conditional probability distribution in the DBN. In reality 
the load on a flight control actuator is depends on many 
variables related to the dynamics of the aircraft and the 
desired flight path (for e.g. see Mahulkar et al. (2010), 
Karpenko and Sepeheri (2003), and McCormick (1995)).  
 
Finally, the physics of failure model for the seal leak is 
considered. The seal leakage area is modeled as in Section 
2.2. The leakage area is modeled from laboratory data using 
a polynomial regression of the form 𝑎𝑙𝑒𝑎𝑘𝑡 = 𝑐1 +
𝑐2(𝑎𝑙𝑒𝑎𝑘𝑡+1 )2. 
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3.1.4. Operational and Laboratory Data 

Operational and laboratory data appear as historical 
databases and online measurement data. Laboratory data are 
used to train the polynomial regression model to estimate 
wear rate. Online measurement data (of the load P) are used 
to estimate the parameters of the ARIMA model used in 
load estimation.   

3.2. Diagnosis 

The actuator was operated for 20 seconds with a leak 
occurring after 6 seconds. At this point, the system has 
already reached the steady state. Measurements were 
obtained and updating performed at 0.5 second intervals. 
The system responses and load were assumed to be 
measurable while the system parameters including wear rate 
and leakage area were assumed to be unobservable.  
Inference via particle filtering (Ns = 250) was performed on 
the DBN to obtain filtered estimates of the system state.  
 
After obtaining the state estimate at cycle t, the probability 
of detection was calculated as in Section 2.2. If the 
probability of detection exceeded 95%, an alarm was 
triggered. The fault was then isolated and quantified. Figure 
(10) shows maximum a posteriori (MAP) estimates of the 
system responses against their measured values. It is seen 
that the MAP system responses track the measured values 
closely. Figure 11 shows the MAP estimates of the system 
parameters, including the leakage area, and load against the 
ground truth values. This figure shows how the leakage area 
changes with time and how well the filtering procedure can 
infer the value of the leakage area. The system responses in 
Figure 11 are sensitive to changes in the supply pressure and 
leakage area, but insensitive to changes in the fluid bulk 
modulus. Changes in bulk modulus, however, may result in 
effects such as changes in wear rate that have not been  
 

 
 
Figure 10. MAP estimates and measured values of actuator 
position and velocity, servovalve position and velocity, and 
pressure in each actuator chamber. 
 

 
Figure 11. MAP estimate system parameters and load with 
ground truth and measured values. 
 
included in the ground truth model.  In both Fig. 10 and Fig. 
11, the good estimates may be attributed to the use of an 
accurate physics-based model, but also to the use of 
synthetic measurement data, which may favorably bias the 
performance of filtering. 
 

3.3. Diagnosis Uncertainty 

Diagnosis uncertainty was quantified after performing the 
diagnostic tasks of detection, isolation, and quantification. 
Figure 12 shows a kernel density estimate of the seal leak 
area from the particles at t = 6.5 seconds. Figure 13 shows 
the detection probability as it evolves with time. The 
detection probability passes the detection threshold soon 
after the fault occurs.  

 

 
Figure 12. Kernel density estimate of leakage area estimate 
from particle filtering 
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Figure 13. Fault detection probability with actual fault time 
 
 
 

 
Figure 14. RUL density estimate at t = 15 sec 
 

3.4. Prediction 

After diagnosing the leak, estimation of the RUL 
distribution was performed at the time of prognosis, tP, as 
per Section 2.3. The RUL distribution assumes a failure 
threshold for leakage area of 2E-6 m2. The resulting RUL 
distribution is shown in Fig. 14.  
 

3.5. Prognosis Validation 

By continuing to estimate the new RUL distribution as new 
measurements become available, the performance of the 
prognostic algorithm may be evaluated. In Fig. 15, median 
RUL estimates are plotted against the ground truth RUL 
with +/- α bounds. The +/- α bounds are selected to be +/-
10% of the ground truth EoL about the current ground truth 
RUL. Figure 16 indicates whether the probability of the 
RUL estimate being between the +/- α bounds at a particular  

 

 
Figure 15. Ground truth RUL, median RUL, and α bounds 
with α = 0.10 
 

 
Figure 16. Probability that RUL is within α bounds with α = 
0.10 
 
time is greater than a threshold value, taken as 0.8. From 
this information, it is also determined that the prognostic 
horizon is 10 seconds (or 20 time steps with a sampling 
frequency of 2 samples/sec) because the first time that 
0.8 ≤ 𝜋�𝑟�𝑡𝑗��−𝛼

+𝛼
 is at t = 7,  the EoL is t = 17. This is 10 

seconds before the EoL. 
 
+/- α bounds that narrow as the EoL approaches are 
considered in Fig. 17 for λ = 0.5 and α = 0.20. λ = 0.5 
considers the accuracy of the RUL estimate halfway 
between the time of prognosis and end of life, termed tλ. 
Figure 18 shows the λ-α accuracy, which is a binary value 
that indicates whether the probability of the RUL estimate 
being between the +/- α bounds at a particular time is 
greater than a threshold value, taken as 0.8 here. Although 
the median RUL estimate appears close to the ground truth  
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Figure 17. Bounds used for calculating λ-α accuracy with α 
= 0.20 

 
Figure 18. Probability RUL is within α bounds with α = 
0.10 
 
RUL, the λ-α accuracy is generally zero, indicating that the 
RUL estimate is too diffuse to pass this test. This indicates 
that model error in the physics of failure model is the 
dominant source of error as opposed to other errors that may 
decrease as the EoL is approached, such as errors in load 
estimation. 
 
Based on the relative accuracy, the convergence is estimated 
to be 8.40. When comparing prognostic algorithms, larger 
convergence values are desirable. 
 
Figure 19 shows the relative accuracy of the RUL density 
estimate based on the median RUL value, and shows that 
the median values are accurate.  

3.6. Discussion 

The DBN-based methodology successfully integrates 
heterogeneous sources of information to diagnose the 
system and estimate RUL. Particle-filter based inference  

 

 
Figure 19. Relative accuracy based on median RUL estimate 
 
provides a seamless method for switching between 
probabilistic diagnosis and prediction while facilitating 
uncertainty quantification. 
 
The prognosis validation results indicate that the 
methodology provides reasonable median estimates of RUL, 
even as the RUL density estimates are diffuse. Additional 
measurements primarily affect the median RUL estimate, 
not the variance of RUL, primarily due to the simplifying 
assumptions that remove feedback from the actuator 
dynamic model into the leakage area model. Inclusion of 
inspection data may reduce the uncertainty in the leak area 
estimate and thus the RUL estimate. The accuracy of 
prognosis, of course, will vary depending on the system, 
available information, loading conditions, and 
environmental conditions. 
 
Computational effort is a persistent issue in particle-based 
methodologies, affected by the complexity of the system, 
models involved, simplifying assumptions, filtering 
algorithms, etc. The prognosis methodology described in 
this paper is flexible with respect to these decisions, so 
computational effort will vary. 
 
Thus far, the methodology has only been demonstrated 
using synthetic data, and needs to be tested further using 
real-world data. Further, more complex physics of failure 
models should be considered. 

4. CONCLUSION 

A methodology for DBN-based probabilistic prognosis is 
presented in this paper, considering heterogeneous 
information sources and diagnosis uncertainty. First, expert 
opinion is used to establish the system definition and basic 
assumptions. Reliability data is used to calculate conditional 
probabilities for fault indicator variables for damage at the 
support and a crack. Operational and laboratory data are 
organized in a database and used for estimating a 
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polynomial regression model.  This system model is used in 
online diagnosis via particle filter-based inference. The 
particles resulting from filtering integrate seamlessly into a 
sequential Monte Carlo predictive procedure, used for 
estimating RUL distribution. The prognosis results are 
validated using a four step hierarchical procedure. In the 
future, the methodology needs to be extended to systems of 
larger dimension, thus requiring feature selection, 
dimensional reduction, and more efficient inference.  
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APPENDIX 1: BAYESIAN RECURSIVE FILTERING 

Given the belief state 𝜎𝑡(𝐱𝑡) , before obtaining 𝐳𝑡+1 , the 
belief state at t + 1 is  

 𝜎𝑡+1(𝐱𝑡+1) = 𝑝(𝐱𝑡+1|𝐳1:𝑡)  (13) 

which may be expanded by summing over the states of 𝐱𝑡 as 
 

𝜎𝑡+1(𝐱𝑡+1) = �𝑝(𝐱𝑡+1|𝐱𝑡 , 𝐳1:𝑡)𝑝(𝐱𝑡|𝐳1:𝑡)
𝐱𝑡

  (14) 

Using the Markov assumption, which says that the future 
𝐱𝑡+1 is independent of all else given the previous state 𝐱𝑡, 
the term  𝐳1:𝑡  may be eliminated from 𝑝(𝐱𝑡+1|𝐱𝑡 , 𝐳1:𝑡) , 
resulting in 
 

𝜎𝑡+1(𝐱𝑡+1) = �𝑝(𝐱𝑡+1|𝐱𝑡)𝑝(𝐱𝑡|𝐳1:𝑡)
𝐱𝑡

  (15) 

where 𝑝(𝐱𝑡|𝐳1:𝑡) = 𝜎𝑡(𝐱𝑡) . Upon receiving the 
measurement at time t+1, Bayes’ rule may be used to update 
the belief state, and Eq. 3 becomes 
 

𝜎𝑡+1(𝐱𝑡+1) = 𝑝(𝐱𝑡+1|𝐳1:𝑡 , 𝐳𝑡+1)  (16) 

 By Bayes’ rule expansion of the right hand side of Eq. 4, 
 

𝜎𝑡+1(𝐱𝑡+1) =
𝑝(𝐳𝑡+1|𝐱𝑡+1, 𝐳1:𝑡)𝑝(𝐱𝑡+1|𝐳1:𝑡)

𝑝(𝐳𝑡+1|𝐳1:𝑡)   (17) 

Because the measurements 𝐳𝑡+1  and 𝐳1:𝑡  are conditionally 
independent given 𝐱𝑡+1  (Section 2.2 Fig. 2a), 
𝑝(𝐳𝑡+1|𝐱𝑡+1, 𝐳1:𝑡) = 𝑝(𝐳𝑡+1|𝐱𝑡+1), resulting in 

 
𝜎𝑡+1(𝐱𝑡+1) =

𝑝(𝐳𝑡+1|𝐱𝑡+1)𝑝(𝐱𝑡+1|𝐳1:𝑡)
𝑝(𝐳𝑡+1|𝐳1:𝑡)   (18) 

where 𝑝(𝐱𝑡+1|𝐳1:𝑡) is equivalent to Eq. 15. 

APPENDIX 2: HYDRAULIC ACTUATOR MODEL 

Parameters and variables for the system are given in Table 
1A.  
�̇�𝑎𝑐𝑡 = 𝑣𝑎𝑐𝑡  (19) 
�̇�𝑎𝑐𝑡
=

1
𝑚 �(𝑃1 − 𝑃2)𝐴𝑝𝑖𝑠𝑡 − 𝑏𝑎𝑐𝑡𝑣𝑎𝑐𝑡 − 𝑘𝑎𝑐𝑡𝑥𝑎𝑐𝑡 − 𝐹𝑒𝑥𝑡� 

(20) 

�̇�1 =
1
𝐶𝑓1

�𝑄1 − 𝐴𝑝𝑖𝑠𝑡𝑄2 + 𝑄𝑙𝑒𝑎𝑘� (21) 

�̇�2 =
1
𝐶𝑓2

(𝑉2𝑥𝑎𝑐𝑡 − 𝑄2 − 𝑄𝑙𝑒𝑎𝑘)  (22) 

�̇�𝑣𝑎𝑙𝑣𝑒 = 𝑣𝑣𝑎𝑙𝑣𝑒 (23) 
�̇�𝑣𝑎𝑙𝑣𝑒 = 𝑎1𝑣𝑣𝑎𝑙𝑣𝑒 + 𝑎0𝑥𝑣𝑎𝑙𝑣𝑒 + 𝑏0𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑  (24) 

𝐶𝑓1 =
𝑉1(𝑥𝑎𝑐𝑡)

𝛽  (25) 

𝐶𝑓2 =
𝑉2(𝑥𝑎𝑐𝑡)

𝛽   (26) 

If  𝑥𝑣𝑎𝑙𝑣𝑒 > 0,

⎩
⎨

⎧𝑄1 = 𝐶𝑑𝑤𝑣𝑎𝑙𝑣𝑒𝑥𝑣𝑎𝑙𝑣𝑒𝑠𝑖𝑔𝑛(𝑃𝑠 − 𝑃1)�2
𝜌

|𝑃𝑠 − 𝑃1|

𝑄2 = 𝐶𝑑𝑤𝑣𝑎𝑙𝑣𝑒𝑥𝑣𝑎𝑙𝑣𝑒�
2
𝜌

(𝑃2)
 

(27) 
 

(28) 

If 𝑥𝑣𝑎𝑙𝑣𝑒 < 0,

⎩
⎨

⎧ 𝑄1 = 𝐶𝑑𝑤𝑣𝑎𝑙𝑣𝑒𝑥𝑣𝑎𝑙𝑣𝑒�
2
𝜌

(𝑃1)

𝑄2 = 𝐶𝑑𝑤𝑣𝑎𝑙𝑣𝑒𝑥𝑣𝑎𝑙𝑣𝑒𝑠𝑖𝑔𝑛(𝑃𝑠 − 𝑃2)�2
𝜌

|𝑃𝑠 − 𝑃2|
 

(29) 
 

(30) 

𝑄𝑙𝑒𝑎𝑘 = 𝐶𝑑𝑎𝑙𝑒𝑎𝑘�
2
𝜌

|𝑃2 − 𝑃1|𝑠𝑖𝑔𝑛(𝑃2 − 𝑃1) (31) 
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Table 1A. Model parameters and variables for a spool valve 
and a hydraulic actuator. 

Parameter/variable Symbol Nominal 
Value/ Unit 

Actuator position 𝑥𝑎𝑐𝑡  m 
Actuator velocity 𝑣𝑎𝑐𝑡  m/s 
Servovalve position 𝑥𝑣𝑎𝑙𝑣𝑒 m 
Servovalve velocity 𝑣𝑣𝑎𝑙𝑣𝑒  m/s 
Pressure in chamber 1 𝑃1 Pa 
Pressure in chamber 2 𝑃2 Pa 
Combined mass of 
actuator and load mact 40 kg 

Combined damping of 
actuator and load bact 800 Ns/m 

Combined stiffness of 
actuator and load kact 106 N/m 

Piston annulus area Apist 0.0075 m2 
Valve port width wvalve 0.0025 m 
Spool valve model 
coefficients 
 
 

b0 90 m/Vs2 
a0 360,000 1/s2 

a1 1/s 

Hydraulic fluid bulk 
modulus 𝛽 1000 MPa 

Hydraulic fluid density 𝜌 847 kg/m3 
Discharge coefficient 𝐶𝑑 0.7 
Supply pressure 𝑃𝑠𝑢𝑝𝑝𝑙𝑦  20 MPa 
Chamber 1 volume  V1 m3 
Chamber 2 volume  V2 m3 
Chamber 1 fluid 
capacitance Cf1 m3/(kg/s) 

Chamber 2 fluid 
capacitance Cf2 m3s/(kg/s) 

Volumetric flow rate into 
chamber 1 Q1 m3/s 

Volumetric flow rate out 
of chamber 2 Q2 m3/s 

Externally applied force Fext 0 N 
Input voltage ecommand Sin(2*pi*t) V 
Leakage volumetric flow 
rate Qleak 0 m3/s 

Leakage area aleak 0 m2 
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