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ABSTRACT 

This paper introduces advances on the implementation of 

anomaly detection modules based on a combination of 

nonparametric models and multivariate analysis of residuals. 

The proposed anomaly detector utilizes similarity–based 

modeling (SBM) techniques to represent the process 

behavior and principal component analysis (PCA) for the 

study of model residuals; while partial least squares (PLS) is 

used to select an optimal subset of process variables to be 

included in the design of the detection module. In addition, 

the method considers a structured algorithm for the optimal 

inclusion of representative samples from the data set that is 

used to define the normal operation of the system. The 

method is validated using data that characterizes the 

operation of a compressor in a power generation plant. 

1. INTRODUCTION 

An anomaly detector (Orchard & Vachtsevanos, 2007) is 

basically a module that intends to recognize abnormal 

conditions within the operation of a monitored system. In 

this regard, the implementation of anomaly detectors is one 

of the first and most important steps needed to ensure 

operational continuity of the process, plant safety, as well as 

high quality standards. Conventional anomaly detection and 

fault diagnosis algorithms (Isermann, 1997) are typically 

designed to provide a solution for the supervision of a finite 

number of fault modes that are believed to be severe, 

frequent, and “testable”; fault modes that are selected on the 

basis of a Failure Modes, Effects, and Criticality Analysis 

(FMECA). This task needs to be performed while 

simultaneously minimizing the probability of false alarms 

and the detection time (time between the initiation of a fault 

and its detection), given a fixed threshold that represents the 

maximum risk (associated to the fault condition) that is 

allowed in the system. 

Classical fault detection and identification (FDI) methods 

rely on an accurate model of the system under consideration 

and the utility of an innovation or “discrepancy” between 

the actual plant output and the model output, for all possible 

operating conditions, to detect an unanticipated fault 

(Isermann, 1997; Isermann & Balle, 1997). The innovation 

(or residual) method captures the fault signature, and 

suggests which residuals are normal or which ones result 

from fault conditions. A variety of techniques have been 

proposed based on estimation theory, failure sensitive 

filters, multiple hypothesis filter detection, generalized 

likelihood ratio tests, model-based approach, statistical 

analysis, and information theory (Ayhan et al., 2008; Khan 

& Rahman, 2009; Lebaroud & Cleac, 2008). 

If process/system dynamics are not well understood, then 

verification, calibration, and validation of parametric 

models may represent a difficult challenge. In contrast, 

nonparametric models offer a direct representation of 

nonlinear systems that requires the availability of historical 

data and a minimal comprehension of the relationships that 

exist between process variables. The definition of “normal” 

operation is done only by selecting an appropriate number 

of data samples that could illustrate moments where the 

process behaved accordingly to a particular set of 

requirements or standards; the need of a particular structure 

or linear/Gaussian assumptions is thus avoided. 

In this regard, this article shows the implementation of a 

monitoring scheme that identifies abnormal operating 

conditions in a compressor of a power generator plant, 
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utilizing a nonparametric modeling approach known as 

Similarity-based Modeling (SBM). Provided that the plant 

represents a multivariate nonlinear system, the use of SBM 

allows generating estimates of the system output that can be 

used to compute residuals, when compared with actual 

measurements. Partial least squares (PLS) is used to select 

an optimal subset of process variables to be included in the 

design of the detection module, considering to this end the 

impact that those variables may have in terms of the 

mean-squared error of model residuals for data associated to 

“normal” operation.  

The method also considers a structured algorithm for the 

optimal inclusion of representative samples from the data 

set that is used to define the normal operation of the system. 

This feature is critical since it is possible that the process 

model may exhibit problems simply because the database 

that is being considered for training purposes does not 

represent all possible operation conditions. Furthermore, in 

case of implementing a fault detection scheme, the addition 

of new samples to the database must be done with special 

attention of not incorporating samples corresponding to 

these abnormal conditions, since if this is done, the SBM 

algorithm will consider faulty conditions as known, and 

hence, normal. 

The assessment of the system behavior cannot be performed 

purely considering each variable residual, since the process 

is inherently multiple-input multiple-output; consequently, 

multivariate analysis techniques such as Principal 

Component Analysis (PCA) (Jackson, 1991; Fuente et al., 

2009) are employed in order to reduce the space dimension, 

while ensuring an adequate representation of the residual 

vector. Additionally, hypothesis testing procedures such as 

the Hotelling’s test (Beale & Kim 2002) are also considered 

to ensure that the modeling errors remain in a statistically 

acceptable region. 

This paper presents some extensions and results obtained 

after the implementation of the scheme that was presented in 

(Tobar, 2010) at facilities of a Chilean power generation 

company: Endesa-Chile. For confidentiality issues, process 

labels and time stamps have been discarded in all figures.   

This article is organized as follows. Section II presents the 

necessary theoretical resources to understand the 

implementation of the proposed system monitoring scheme; 

i.e., the fundamentals of SBM, partial least squares, 

principal component analysis, and the Hotelling’s test. 

Section III explains the considerations regarding the data 

preprocessing procedures, a justification for the 

implementation of the proposed schemes, and the results 

obtained for the anomaly detector when using two different 

sets of process variables as inputs/outputs of the SBM 

model for the compressor of a power generation plant. 

Finally, Section IV states the concluding remarks and 

suggests guidelines for future research work in this field. 

2. THEORETICAL BACKGROUND 

2.1 Similarity-based Modeling for System Monitoring 

One advantage of the nonparametric modeling techniques is 

that they do not require an a priori knowledge of the system, 

since its implementation is based on the identification of 

similarities and relationships between a given data set and 

online observations, instead of the construction of algebraic 

structures based upon these observed data. A particular case 

of such structures is the Similarity-based Model (SBM), 

which estimates the system output by comparing online 

measurements and a historical database which represents the 

system under study. SBM has proven to be a successful 

estimator when used in high dimension systems using 

considerably low number of training samples (Gong et al., 

2009). 

In order to understand the SBM basic concept for systems 

modeling, consider the static system defined by (1): 

pm RyRxxfy  ,),( ,        (1) 

where x and y are the system input and output respectively, 

and f () is an unknown function. 

When input and output measurements are available for the 

system described in (1), it is possible to define the following 

matrices to be used for model identification purposes (Di 

and D0 stand for input and output matrices, respectively): 

,],...,,[ 21

nm

ni RxxxD        (2.a) 

,],...,,[ 210

np
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where yi = f(xi), i = 1, …, n, and the pairs 

niii yx ...1],[ 
 accurately represent the system behavior; i.e., 

they span the regions containing the system operations 

points. 

Hence, SBM assumes that for a given an input x*, it is 

possible to estimate y* = f (x*) by a linear combination of the 

columns of Do denoted by *ŷ . Consequently, the problem of 

estimating y* = f (x*) can be regarded as the determination of 

a vector w such that wDy 0
ˆ  . 

This vector can be computed as in (3): 

ˆ
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where   is a similarity operator (Gong et al., 2009; Pivoso 

et al., 1994). SBM is not restricted to any particular 

similarity operator; however, according to the literature, the 

selected similarity operator must hold certain properties. For 

two elements A, B u, AB + must be symmetric, 
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reaching its maximum in A=B and monotonically decreasing 

with ||A - B||. 

Literature does not provide a framework for choosing a 

suitable similarity operator based on the available 

measurements. In this work, all similarity operators were 

based on saturated linear kernels. 

SBM is a nonparametric modeling technique that is mainly 

used to identify static systems (or at least, systems where 

the dominant time constant is negligible with respect to the 

data sampling period). In this regard, and especially when 

the process exhibits noticeable dynamics, the model 

structure requires some adjustments before its 

implementation. For example, past observations (both inputs 

and outputs) may be incorporated as regressors to estimate 

the system response in time. For this particular case study, 

though, system dynamics were neglected (thus the process 

was regarded as a static one). As it was mentioned above, 

this concept can only be applied when the data is acquired at 

a very low frequency with respect to the system dominant 

constant. 

SBM residuals can be computed simply using the difference 

between the model outputs (SBM estimates) and online 

measurements as in (4). If the estimates differ considerably 

from the actual measurements in the training data (w.r.t. a 

given criteria such as mean-squared error), it could be 

inferred that the associated operating point has not been 

incorporated yet into the SBM structure, and consequently 

the optimal database that ultimately defines the SBM model 

must be extended with samples representing the unknown 

condition. After the process of incorporating samples to the 

database is complete, i.e. once for every input x* the 

estimation error given by 

* *

1 *
*

0 1 *

ˆ

( ) ( )
( )

1 ( ) ( )

T T
pi i i

T T T

i i i

e y y

D D D x
f x D

D D D x





 

 
  

  

       (4) 

is acceptable under a specified criteria, the relationships 

between the measured variables should be assessed to 

ensure consistency with the operation conditions 

represented in the database. Due to the large number of 

variables that are present in industrial systems, multivariate-

processing algorithms should be implemented to verify 

these relationships. 

2.2 Partial Least Squares 

Partial least squares, also referred to as “projection to latent 

structures”, is a parametric modeling technique. This 

technique allows system modeling through a reduction of 

the problem dimensionality and the maximization of the 

covariance between projections of the input data matrix X 

and the output data matrix Y (Chiang et al., 2001). It uses a 

matrix X  nm and a matrix Y  np, where m is the 

number of variables predictors, n is the total number of 

observations of data and p is the number of observed 

variables in Y.  

First, the matrices X and Y must be centered on the mean 

and normalized by their variances. Then, the matrix X can 

be decomposed into an array called scores T  na and a 

loading matrix P  ma, where a is the reduced order of the 

data, the residue matrix E  nm. 

ETPX T            (5) 

The matrix TPT can be expressed as the sum of products of 

vectors scores tj and load vectors pj. 

EptX
a

j

T

jj  1
         (6) 

Similarly, the matrix Y is decomposed into matrices: 

FUQY T  = FquY
a

j

T

jj  1
        (7) 

If “a” is equal to min (m,n), then E and F are zero and this 

technique is reduced to the ordinary least squares. Choosing 

“a” smaller than min (m,n) noise is reduced. The objective 

is to determine the loading and scores vectors which 

maximize the correlation between X and Y. 

PLS estimates the scores vectors uj with scores vector tj as: 

T

jjj btu  , or equivalently TBU          (8) 

Finally, 

FTBQY T            (9) 

where F is the prediction error matrix. The matrix B is 

selected to minimize the norm of F. T and U scores matrices 

are calculated as to maximize the covariance between X and 

Y for each component “a”. 

Although PLS is typically used to generate a linear 

parametric Multiple-Input Multiple-Output (MIMO) model 

for the process, as a result of an appropriate selection for the 

number of projection components, there are other important 

complementing aspects that can also be studied. 

Particularly, this article uses an analysis of the coefficients 

in matrices B, T and U to assess the impact of each of the 

inputs variables X on each of the output variables Y. 

2.3 Principal Component Analysis 

Principal Component Analysis (PCA) is a dimensionality 

reduction technique for correlated variables; i.e. for a given 

a set of correlated variables, it aims at finding a set of 

uncorrelated indicators that can help to characterize the 

variability of the process in a smaller dimension. PCA 

performs a linear transformation of the data, which is 

optimal in terms of capturing its variability, and determines 

a new data set ordered by the level of representation of the 

entire process variance. 
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Theoretically, for the data matrix 
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
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,       (10) 

which comprises n observations for each one of the 

m variables, PCA finds a loading matrix P  ma, 

a  n which relates X to the first  principal components 

being contained in the score matrix: 

XPT  .        (11) 

Denoting the 
thi  column of T by ti, the transformation 

performed by PCA holds (Chiang et al., 2001) the following 

properties: 

1. )(...)()( 21 atVartVartVar  . 

2. itMean i  ,0)( . 

3. kitt k

T

i  ,0 . 

4. There is no other transformation of “a” 

components that captures more variations in the 

data. 

Additionally, the projection back on an a-dimensional space 

is given by (Wise et al., 1990): 

TTPX ˆ ,        (12) 

and hence, the difference between the original data stored at 

X and its projection is the residual matrix E: 

XXE ˆ ,         (13) 

which captures the variations of space generated by the 

remaining (m – a) components, and has typically low signal-

to-noise ratio. It has been formally justified (Golub et al., 

1983) that, when “a” is properly chosen, these remaining 

components represent the random noise of the 

measurements, whereas the first “a” components describe 

dynamic variations.  

The application of PCA in our system monitoring 

framework is to reduce the dimension of the error vector 

“e”, simplifying in that manner the anomaly detection 

procedure (in terms of the associated computational cost). 

Indeed, once the PCA linear transformation has been 

applied to the error vector, one can easily recognize if the 

system is behaving in an anomalous manner through the 

application of a hypothesis test formulated in terms of the 

main principal components. 

2.4 Hotelling’s Test 

The one sample Hotelling’s T2 index is typically used to test 

H0:  =  0 vs. HA:    0 in a 2-class classification 

problem. However, when applied to multivariate Gaussian 

residual vectors, it also provides the means to compute a 

scalar threshold that characterizes the maximum acceptable 

deviation of the model residual, for a given level of 

significance (Gonzalez et al., 2003). To properly introduce 

the Hotelling’s T2 test, consider the sample covariance of 

the data matrix X given by 

XX
n

S T

1

1


 .        (14) 

The Hotelling’s T2 test states that a particular observation 

x  m belongs to the same class as the data in X if the 

statistic 

xSxT T 12  ,         (15)  

is below the threshold 

),(
)(

)1)(1(2 mnmF
mnn

nnm
T 




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,     (16) 

where Pr(Z  F (g, k)) = α if Z∼F (g, k), an F-distribution 

with degrees of freedom g and k. When the data matrix X 

characterizes the model residuals obtained when the process 

is healthy, then an anomaly may be detected by analyzing 

the time instants when the alternative hypothesis is 

accepted.  

3. ANOMALY DETECTION IN GAS TURBINE COMPRESSOR 

OF POWER GENERATION PLANT USING SIMILARITY-

BASED MODELING, PLS AND PCA 

A monitoring scheme for the detection of anomalies in the 

operation of the compressor of a Chilean natural-gas power 

generation plant was implemented using SBM to model the 

operation of the compressor at many different operating 

points (even including operation after the execution of 

maintenance procedures), and PCA for residual analysis. 

Selection of input/output variables within the structure of 

the SBM model considered the analysis of the coefficients 

in matrices associated to PLS models for the 

aforementioned plant. In this regard, all process variables 

that exhibited comparatively small weights in the PLS 

loading-plot (Chiang et al., 2001) were discarded.  

Training and validation data included 19,530 observations 

for each one of the main process variables. All 

measurements were acquired using OSIsoft PI software 

(OSIsoft 2013); including signals associated to pressures, 

temperatures, valves positions, voltages, speed of rotating 

parts, and other Boolean states that indicated if certain 

control loops were active. Data from all measured process 

variables were grouped in an “input” data matrix 

X  1953042 and an “output” data matrix Y  1953053; 

being 42 and 53 the number of input and output variables in 

the process, respectively. The ith rows of the matrices X and 

Y was respectively denoted by xi  42 and yi  53, and the 
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matrix containing all the acquired measurements was 

denoted as M=[X,Y] 1953095. For monitoring purposes, 

these data points were processed sequentially in order to 

emulate online observations, although an intermediate 

normalization step was used in order to avoid biased results 

due to the different variables magnitude. All the numerical 

implementations were performed in MATLAB® software. 

The implementation of a nonparametric monitoring scheme 

requires data bases with a comprehensive representation of 

different process operation conditions. Thus training data 

considered different operating points for healthy operation, 

as well as post-maintenance data and abnormal system 

operation. 

3.1 Data Pre-processing 

The use of nonparametric models and SBM can only be 

justified if the system exhibits nonlinearities and the 

existence of several operating points. PCA was used to 

quickly identify the existence of these operating points; 

using only four principal components of training data for 

this purpose. Figure 1 shows the results of the 

aforementioned analysis, which captures the 87% of the data 

variability, where it is evidenced that there are clustered 

regions for the operation of the compressor. Failure to 

characterize all these operating points using simply a 

collection of linear-in-the-parameters models (Gonzalez et 

al., 2003) inspired the use of a monitoring technique based 

on SBM. It must be noted that, for confidentiality reasons, 

data labels cannot be clearly indicated on this article. In 

addition it is important to mention that, for all practical 

purposes, the models only incorporated a static 

characterization of the system. The latter is based on the fact 

that all thermo-dynamical and mechanical subsystems were 

always controlled in closed loops that ensured dominant 

time constants smaller than the data sampling period. 

Although it is always possible to increase the sampling 

frequency to a point where the dynamics of the control 

loops are in evidence, the company explicitly decided to 

incorporate those features as part of future research 

activities. 

Being stated that the data admits the use of SBM 

techniques, and assuming that the system dynamics can be 

neglected, a suitable similarity operator should be defined 

with respect to the statistical properties of the 

measurements. After a preliminary study, the similarity 

operator that best captured the data variability was the 

saturated triangular operator defined in (17). 

|| ||, || ||

, || ||

d A B A B d
A B

A B d



 

    
  

  
   (17) 

where  > 0 is a small number that ensures AB > 0, and 

d > 0 is a threshold depending on the observations variance. 

The definition of these parameters heavily depends on the 

distribution of clusters and the distance between samples in 

the training data set. 

 
Figure 1. Principal component analysis (PCA) of data from 

power generation plant. Clusters are the first indication of 

the existence of several operating points within the data set. 

3.2 Database description and a first implementation of 

the proposed anomaly detection scheme 

A subset of data samples was selected from the acquired 

input/output data for purposes of SBM training and weight 

characterization. Training data was chosen to incorporate 

different modes of operation through a novel iterative 

method that focused on a two-objective optimization 

problem that minimized of the number of data samples to be 

included in the training set, while also minimizing the 

mean-squared error of the resulting SBM-based model 

residual. This is a critical procedure since, as Figure 2 

shows, many operating points are presents within the data 

that was acquired to characterize the operation of the turbine 

power and its compressor. In fact, some of the data depicted 

in Figures 2a, 2b, and 2c contain two different instances of 

faulty operation, as well as healthy turbine operation, one 

maintenance procedure, and operation after maintenance. 

After each fault, the plant always stopped its operation and, 

during maintenance, the plant was shut down for extended 

periods of time. 

 
Figure 2a. Illustration of a compressor fault from the 

standpoint of the power turbine operation. 
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Figure 2b. Normal operation in turbine. Last operating point 

corresponds to post- maintenance. 

 
Figure 2c. Data subset used to train the SBM-based anomaly 

detection algorithm. 

A first implementation of the proposed SBM-based anomaly 

detection scheme was performed for all process variables 

(i.e., the model had 42 input and 53 output variables), 

without the dimensionality reduction that some multivariate 

techniques such as PLS could suggest. Particularly in this 

case, the obtained mean-squared error (MSE) of the SBM-

based normalized power output estimate is presented in 

Figure 3. It can be seen that using the specified database, the 

MSE that is related to SBM estimates remains considerably 

low for the region that contain the training data, other 

normal operating regions, and even for the post-

maintenance data. As expected, the T2 index is greater than 

the threshold for data associated to faulty operation. In must 

be noted that the principal components of the error matrix 

YYE ˆ  (which statistically characterizes the training set, 

where Ŷ  represents the SBM-based estimate) were used to 

compute the T2 index threshold. Additionally, Hotelling’s 

test has been applied to find the 95% confidence ellipse; 

using for these purposes the software SCAN developed by 

the Chilean company CONTAC Engineers Ltda (SCAN 

2013). 

 
Figure 3. MSE associated to SBM-based estimates for 

output variables in power generation plant 

(MSE = 0.000594). 

As Figure 4 shows, the T2 index for the SBM-based residual 

of the process output variables is adequate to detect a fault 

in the compressor of the gas turbine. 

 
Figure 4. Anomaly detection using a detection threshold 

based on the Hotelling’s T2 index for training data. 

Hotelling’s T2 threshold is set in 150. 

3.3 Selection of variables and Second Implementation 

Utilizing PLS property to maximize the covariance between 

the input matrix X and the output matrix Y, a method of 

dimensionality reduction is proposed based on the analysis 

of correlations. A reduced set of variables is chosen in order 

to keep Hotelling’s test detecting system faults, while 

maximizing the correlation and variability between inputs 

and outputs. 

 
Figure 5. MSE associated to SBM-based estimates for 

output variables in power generation plant 

(MSE = 0.001586). 

In this case study, and using the proposed methodology, it is 

discovered that only 5 input and 3 output variables are 

sufficient for anomaly detection purposes, thus helping to 

define new matrices  X  195305 and Y  195303. Figure 5 

shows the square error for the normalized power output 

from a new SBM-based structure. It is appreciated that for 

this new set of variables the estimate exhibits a larger MSE 

in general, although the dimensionality reduction associated 

to it allows to perform all the necessary computations in 

real-time. It must be noted, though, that the model still 

maintains its capability of discriminating normal from 

abnormal behavior in the plant. 

 
Figure 6. Anomaly detection using a detection threshold 

based on the Hotelling’s T2 index for training data. 

Hotelling’s T2 threshold is set in 150. 
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Using the same methodology as above, a Hotelling’s T2 

index is constructed using projections on the space 

determined by the PCA of the model residuals, using the 

software SCAN. The results are depicted in Figure 6. As 

Figure 6 illustrates, and comparing with the results shown in 

Figure 4, the methodology allowed generating equivalent 

results for the anomaly detection module although the total 

number of variables included in the SBM model was 

reduced from 95 to 8; ensuring appropriate detection of 

faults in the compressor of the gas turbine. The 

computational cost was significantly lessened in the second 

implementation of the detector. 

4. CONCLUSION 

This article presents and validates a scheme to detect 

anomalies in the compressor of a gas turbine in a Chilean 

power generation plant, by comparing the process outputs 

with SBM-based estimates. The proposed scheme also 

provides the means to select the data samples that will be 

included in the training data set by an optimal procedure 

that minimizes the number of samples while also 

minimizing the MSE of the model residuals. The use of 

PCA and PLS techniques helped to dramatically reduce the 

dimension of the detection problem to a point where it was 

possible to build the SBM-based detector using only 8 

process variables as sources of  information. Once a 

representative training set is constructed, the proposed 

scheme estimate the system output, exhibiting a reduced 

MSE and also capturing the relationships between input and 

output variables even after maintenance procedures. Finally, 

it is important to know that the detector presented in this 

paper is monitoring the compressor (the same compressor 

with which the model was trained) online for more than a 

year ago. During this time, all anomalies have been 

confirmed by operators as true faulty conditions. 
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