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ABSTRACT 

Aircraft are highly valuable assets and large budgets are 

spent in predictive maintenance programs in order to 

maximize fleet availability. The application of PHM 

(Prognostics and Health Monitoring) technologies can be a 

powerful decision support tool to help maintenance 

planners. The estimated RUL (Remaining Useful Life) for 

each monitored component, obtained from a PHM system, 

can be used to plan in advance for the repair of components 

before a failure occurs. However, when system architecture 

is not taken into account, the use of PHM information may 

lead the operator to replace a component that would not 

immediately affect the availability of the system under 

consideration. In this paper, a methodology that combines 

fault tree information and individual components RUL 

estimations into a system level RUL (S-RUL) estimation is 

applied in a real life case study. The results showed that the 

methodology could have been successfully used in order to 

anticipate the failure of an aircraft ECS (Environmental 

Control System) and prevent an AOG (Aircraft on Ground) 

event from happening. 

1. INTRODUCTION 

PHM has been recognized by the members of the 

aeronautical sector such as aircraft operators, MRO 

(Maintenance, Repair and Overhaul) service providers and 

aircraft manufacturers as a technology that may lead to 

important competitive advantages such as reduction in 

operational cost and increase in fleet reliability (Rodrigues 

& Yoneyama, 2012). 

The main goal of a PHM system is to estimate the 

remaining useful life (RUL) and the health state of 

components and systems. It comprises a set of techniques 

which use analysis of measurements to assess health state 

and predict impending failures of monitored equipments. 

Many works proposed PHM solutions for a high diversity of 

aeronautical components such as valves (Moreira & 

Nascimento Jr, 2012), pumps (Gomes, Leão, Vianna, 

Galvão & Yoneyama, 2012), engines (Babbar, Ortiz, 

Syrmos & Arita, 2009) and electronic components 

(Sandborn, 2005). 

Methods for decision support using RUL estimations can be 

found in literature. Sandborn & Wilkinson (2007) and 

Rodrigues, Gomes, Bizarria, Galvão & Yoneyama (2010) 

presented examples of decision support methods using PHM 

information to improve maintenance planning. However, 

these works focused on the maintenance of one component, 

without considering that it is part of a system. 

Modern aircraft are a good example of a complex system. 

They comprise multiple subsystems, each of them 

composed by multiple components. For safety analysis 

purposes, aircraft system architecture is often represented by 

a fault tree. When multiple components in a system are 

monitored by a PHM method, multiple RUL distributions 

are available for the decision maker. Although this seems to 

be positive, dealing with this amount of information could 

turn maintenance planning into a challenging task. 

A possible solution for this problem is to calculate a system 

level RUL distribution based on the RUL distribution of 

each component. In this new framework, the decision maker 

does not have to deal with a set of component level RUL 

estimations. Instead, the S-RUL provides information 

related to the time when the whole system will stop working 

(i.e. when the combined failures of individual components 

will lead to a system failure). 

In this work, a methodology to calculate the S-RUL 

distribution using component level RULs and system 

architecture information embedded in fault tree 

representation is applied. This methodology was proposed 

by Ferri et al. (2013). A case study is presented to illustrate 
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the application of the methodology. In this case study, a 

subsystem of an aircraft ECS (Environmental Control 

System) is considered. 

2. FAULT TREE REPRESENTATION 

Fault Tree Analysis (FTA) is a failure analysis technique 

that, due to its ease of use and effectiveness in discovering 

and representing the interaction of component failures in a 

system, was widely adopted since the seventies in industries 

such as nuclear power generation, aviation and automotive 

(SAE, 1996). 

During the FTA process, graphical diagrams called “fault 

trees” are produced in order to investigate what are the 

possible causes for a specific system failure, called the “top 

event”. Fault trees represent sequences of events that may 

lead to the undesired top event under consideration. These 

sequences usually start from faults originated in system 

components, which combine with other component faults in 

order to cause failures that will propagate through the 

system. 

The basic elements of a fault tree are the top event, the 

intermediate events and the basic events. Intermediate 

events represent failures propagated through the system and 

can be represented as a logical combination of basic events 

and other intermediate events. Basic events in a fault tree 

usually represent component faults. It is possible to attribute 

a probability of occurrence to each of the basic events in a 

given operating scenario. If the probabilities of all the basic 

events are known, it is possible to calculate the probability 

of the top event to occur using fault tree topology. Figure 1 

shows an example of a simple fault tree. 

 

 

Figure 1. Fault tree example 

 

Assuming that all basic events are independent, a 

convenient form of calculating the top event probability is 

by transforming the fault tree into its cut sets form. A cut set 

is a combination of basic events which, if they all occur 

simultaneously, will cause the occurrence of the top event. 

In the cut sets form, each cut set is represented by an AND 

logical gate containing in its inputs all basic events forming 

the cut set under consideration. An OR logical gate is then 

used, and the output of each AND logical gate is connected 

to one of its inputs. Figure 2 shows the same fault tree as in 

Figure 1 transformed to its cut sets form representation. In 

this example, one cut set is composed by only one basic 

event (Fault 1). In such a situation, the AND logical gate 

can be omitted for this cut set and the basic event can be 

directly connected to the OR logical gate. 

 

 

Figure 2. Fault tree in the cut sets form  

 

Each input of the top OR gate is by itself a sufficient cause 

for the top event. The probability of the top event can then 

be obtained by calculating the union probability of all cut 

sets. On the other hand, if the basic events are mutually 

independent, the probability of each cut set can be obtained 

by calculating the joint probability of the basic events that 

compose the cut set. If all the basic events are mutually 

independent, the joint probability of a cut set is just the 

product of all its basic events. 

3. SYSTEM LEVEL RUL 

The System Level RUL (S-RUL) is calculated using the 

system architecture represented by the system fault tree and 

the RUL distributions for each component obtained from a 

PHM system. The procedure to calculate the S-RUL is 

summarized in Figure 3 (Ferri et al., 2013). 

In step 1, the fault tree that represents the system under 

study is obtained. This information is commonly available 

for aircraft systems since fault trees are widely used in 

safety analysis. In step 2, system minimum cut sets 

representation is obtained based on the system fault tree. In 

step 3, the RUL estimation of each component is obtained 

from the PHM system. These estimations are commonly 

given as probability density functions. In step 4, the 

probability of each component to fail before instant k is 

calculated using the RUL predictions for each component. 
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Figure 3. SRUL calculation procedure 

 

Using the minimal cut sets representation, the probability of 

each cut set to occur before instant k can be calculated by 

Eq. (1): 
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where P(ci) is the probability of the i-th cut set, P(ej) is the 

probability of the ej basic event and n is the number of basic 

events in the i-th cut set.  After calculating the probability of 

each cut set, the probability of the top event to occur before 

instant k can be calculated using Eq. (2): 
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where PT is the probability of the top event and m is the 

number of cut sets. It represents the probability of at least 

one cut set to occur, which is numerically equal to one 

minus the probability of no cut set to occur. 

Steps 5 and 6 are repeated for subsequent instants. This 

procedure will result in a CDF (Cumulative Distribution 

Function) representing the probability of a system failure to 

occur over time. 

4. CASE STUDY 

The system under study is a subsystem of an environmental 

control system (ECS) in an aircraft. This subsystem 

comprises two monitored components, a pressure control 

valve and a temperature control valve. A schematic view is 

presented in Figure 4. 

 

 
Figure 4. Aircraft environmental control system 

 

The pressure control valve (PCV) is a pneumatic valve that 

regulates the engine bleed air flow so that a desired set point 

of pressure is reached. This air is sent to a heat exchanger 

and cooled until a temperature set point is achieved. The 

flow of ram air that passes through the cooler is controlled 

by the temperature control valve (TCV). This flow 

influences directly the heat exchanged between ram air and 

engine bleed air. 

The aircraft used in this example has two of the subsystems 

presented (comprising PCV1, TCV1 and PCV2, TCV2), 

each of them located near one of the engines. For the correct 

operation of the ECS it is necessary that at least one of these 

subsystems is working properly and for that, both PCV and 

TCV need to be working. 

The fault tree presented in Figure 5 is used to represent the 

ECS architecture. 

The top event represented in the fault tree is related to the 

loss of the ECS. It is possible to see that this event only 

happens when both subsystems are defective. Each 

subsystem is considered defective if one of its components 

(PCV or TCV) is not working. The system in Figure 5 is 

presented in the minimal cut sets representation in Figure 6. 
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Figure 5. Environment system fault tree 

 

 

Figure 6. Minimum cut sets representation 

 

 

4.1 PHM System 

In the ECS system under consideration, the PCV and the 

TCV are the components with the highest failure rates 

observed on field, and this high number of failures leads to a 

high number of unscheduled component removals. For the 

purpose or reducing the number of unscheduled removals, 

PHM systems were developed for both the PCV and the 

TCV. 

4.1.1. Pressure Control Valve 

The pressure control valve is a pneumatic actuated valve. Its 

purpose is to keep the downstream pressure at a controlled 

set point value. The most common failure modes of this 

valve are related to wear of the spring or an increase in 

friction caused by the wear of the bearings. These failure 

modes affect the dynamic behavior of the valve. The 

performance of the pressure controller is also affected.  

Field observations indicate that pressure signals exhibit 

variation in amplitude before a failure event. Such 

variations motivated the PHM methodology proposed in this 

work.  Figure 7 shows an example of data collected from 

both a healthy valve and a degraded one. In Figure 7(A) a 

typical pressure signal for a healthy valve is shown. Figure 

7(B) shows the pressure signal collected from a degraded 

valve just before a failure event. 

The standard deviation of the pressure signal was then 

chosen as a degradation index (DI) for the PCV, as it can be 

related to a loss in regulation performance that may evolve 

to a failure, as described above. Figure 8 shows an example 

of how this degradation index changes over time. In this 

figure, the DI is normalized. Each cycle corresponds to one 

flight. 

 

 

 

Figure 7. Pressure signals collected from a healthy and a degraded valve 
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Figure 8. DI evolution for a pressure control valve 

 

For failure prognostics implementation, a Kalman filter was 

employed. Concerning the dynamic model necessary for 

filtering and extrapolation, no first principles model was 

used. The state space representation of a linear degradation 

evolution with unknown slope was used for this purpose. 

This model was empirically chosen based on the aspect of 

the DI evolution. An example of this aspect can be observed 

in Figure 8. The slope and the degradation were estimated, 

resulting in the following model: 
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where d is the estimated degradation, a is the slope, v
1
, v

2
 

and w are gaussian noises, DI is the degradation index and k 

is the discrete time instant. In this case, k represents aircraft 

cycles. State noise v
1
 and observation noise w represent, 

respectively, the actual state and the observation noises 

present in the data, while v
2
 is an artificial noise added for 

the estimation of the fixed parameter a. 

In the Kalman filter, the information concerning the 

variance of the parameter estimates at instant k is contained 

in the covariance matrix Pk. Using this information, the 

variance 2
2
kv

σ  can be obtained. An adaptive noise estimation 

procedure was used. This procedure is described in details 

in Leão (2011). In this procedure, 2
2
kv

σ  is calculated 

according to Eq. (4): 
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where λ is a fixed positive value in the range [0.5 1). 

Using the d and a distributions estimated at a given instant 

and the model presented in Eq. (3), Monte Carlo simulations 

were performed until d reaches a failure threshold. Failure 

thresholds were chosen according to the concept of Hazard 

Zone (HZ) (Orchard & Vachtsevanos, 2009). 

The HZ defines a region, modeled by a bounded 

distribution, with high probability of failure occurrence. In 

this work, failure thresholds were sampled according to the 

chosen HZ distribution. The HZ was defined as a normal 

distribution with mean of 0.975 and standard deviation of 

0.008. The HZ was defined using a set of run-to-failure DI 

series. 

4.1.2. Temperature Control Valve 

The temperature control valve is a pneumatic valve designed 

to control the air flow that passes through the cooler in order 

to control the temperature of the air sent to the ECS pack. 

TCV failure reports showed that cabin temperature often 

presented variations few days before an event of failure. In 

an attempt to capture this behavior, the temperature standard 

deviation was chose as a DI. Figure 9 shows an example of 

the DI proposed. Each cycle corresponds to one flight. 

 

0 5 10 15 20 25 30 35 40

0.5

0.6

0.7

0.8

0.9

1

cycles

D
e

g
ra

d
a

ti
o
n

 I
n

d
e

x

 

 

 
Figure 9. DI evolution for a temperature control valve 

 

For degradation estimation and failure prognostics, a 

framework comprising a Kalman filter and a linear 

degradation progression model was used. This framework is 

similar to the presented for the PCV. 
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In this application, the HZ was defined as a normal 

distribution with mean of 0.99 and standard deviation of 

0.0034. 

4.2. Scenario Description and S-RUL Application 

The scenario described in this section consists of the 

operation of a real aircraft. Although PCVs and TCVs were 

monitored for systems 1 and 2, no maintenance action was 

taken using this information. Figure 10 and Figure 11 show 

the degradation index progressions for PCVs and TCVs. 

The degradation index increases until a failure occurs at the 

last data point presented. 

 

 
Figure 10. DI evolutions for two pressure control valves 

 

 
Figure 11. DI evolutions for two temperature control valves 
 

 

 

 

The sequence of events and the consequences of each event 

of this real life example can be summarized as follows: 

• On cycle 35, PCV 1 failed. Maintenance team removed 

the valve. The aircraft lost subsystem 1 but continued its 

normal operation. 

• On cycle 39, TCV 2 failed. Maintenance team removed 

the valve. The aircraft lost subsystem 2. With both 

systems inoperative, the aircraft was grounded. Flights 

were delayed and the company had to rearrange other 

aircraft and passengers.  

•  After this event, both PCV 1 and TCV 2 were replaced 

and the aircraft continued its normal operation.  

• On cycle 53 TCV 1 failed. Maintenance team removed 

the valve. The aircraft lost subsystem 1 but continued its 

normal operation. 

• On cycle 54, PCV 2 failed. Maintenance team removed 

the valve. The aircraft lost subsystem 2. With both 

systems inoperative, the aircraft was grounded. Flights 

were delayed and the company had to rearrange other 

aircraft and passengers.  

 

Analyzing the sequence of events presented and observing 

the degradation indexes in Figure 10 and Figure 11, it is 

possible to conclude that both AOG (aircraft on ground) 

events could be avoided by using the monitoring system. A 

prognostic system could be used to predict, with some 

degree of confidence, failure instants for all components 

thus allowing the maintenance plan to be modified to avoid 

the occurrences. 

Although this seems to be a reasonable task, the workload 

for the decision maker could be reduced by using the 

concept of S-RUL. In the situation presented herein, the 

decision maker would have to analyze four RUL predictions 

(PCV 1, PCV 2, TCV 1 and TCV 2) to take the necessary 

actions. Using the concept of S-RUL, these four RUL 

estimations could be transformed in one S-RUL related to 

the remaining useful life of the whole environmental control 

system. 

To illustrate this concept, consider a situation where the 

decision maker needs to analyze the data available up to 

cycle 25. Figure 12 and Figure 13 show, respectively, the 

RUL predictions for PCVs and TCVs at cycle 25. 

The S-RUL was calculated following steps 1-6, presented in 

section 3. Figure 14 shows the S-RUL thus obtained. 
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Figure 12. RUL estimations for the pressure control valves 
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Figure 13. RUL estimations for the temperature control 

valves 
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Figure 14. S-RUL estimation before any maintenance action 
 

 

Observing Figure 14, it can be noticed that the first AOG 

could be predicted and a maintenance action could be 

planned. After replacing PCV 1 and TCV 2, the new S-RUL 

is presented in Figure 15. 
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Figure 15. S-RUL estimation after replacing PCV 1 and 

TCV 2 
 

Figure 15 shows that the second AOG could also be 

avoided. It is important no notice that the variance of the S-

RUL presented in Figure 15 is greater than the variance of 

the S-RUL presented in Figure 14. This fact is explained by 

the fact that the second S-RUL prediction has a larger 

prognostic horizon, which leads to a greater uncertainty. 

5. CONCLUSIONS 

We found that the methodology discussed in this work could 

have been successfully used in a real life case study in order 

to estimate when a failure event would happen. This 

estimation could have been used to plan a maintenance 

intervention and prevent an AOG event from happening. 

The methodology combines individual components RUL 

estimations into a single system level RUL (S-RUL) 

estimation. This characteristic becomes more relevant when 

the number of components within the system increases. 

In complex systems, it may not be obvious to determine 

which component is the most critical for the system 

operability in a given scenario, even when RUL estimations 

for all components are available. The methodology 

discussed in this work is an alternative to evaluate the 

impact of each component in system operation by analyzing 

the changes in the S-RUL distribution. 

 

 

 



Annual Conference of the Prognostics and Health Management Society 2013 

8 

The results presented in this paper were derived under the 

assumption that the failure events are independent. This 

assumption may not be realistic for some engineering 

systems. In many practical systems, the failure of one 

component may affect the condition or even cause a failure 

of other components. One relevant topic for future research 

is to consider the dependencies among all system 

components in the estimation of the system level RUL. 

Moreover, it would be of interest to investigate the 

computational complexity of the proposed method with 

respect to the number of components and the level of 

connectivity within the system. 

Future research could also investigate how to adapt the 

methodology for the situation in which RUL estimations are 

not available for all components. Combining multiple top 

events in one single analysis can also be an interesting topic 

for further research. 
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