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ABSTRACT 

The Fast Fourier Transform (FFT) is the workhorse of 
condition monitoring analysis. The FFTs’ assumption of 
stationarity is often violated in rotating machinery. Even in 
a six second acquisition on a wind turbine, the shaft speed 
can change by 5%. For Shaft and Gear analysis, this is 
mitigated through the use of the time synchronous average. 
For general spectrum analysis, or bearing envelope analysis, 
there is no such mitigation: one hopes that the effect of 
variation in shaft speed is small.  Presented is a time 
synchronous resampling algorithm which corrects for 
variation in shaft speed, preserving the assumption of 
stationarity. This allows for improved spectral analysis, 
such as used in bearing fault detection. This is demonstrated 
on a real world-bearing fault.  

1. INTRODUCTION 

It would be hard to imagine the condition monitoring (CM) 
of rotating equipment without the use of the Fast Fourier 
Transform (FFT). Everything from simple spectrums (such 
as Welch’s method for power spectral density), to more 
advanced analysis (amplitude modulation and frequency 
modulation analysis (McFadden, 1985)) are dependent on 
the FFT.  

In using the FFT, the CM practitioner must understand the 
base assumptions of continually differentiable (Gibbs 
Effect), and stationarity. In general, window functions 
(Hann, Hamming, etc.) are used to control or mitigate Gibbs 
effect, while the time synchronous average (TSA, 
McFadden 1987, Bechhoefer, 2009a), is used to mitigate the 
effect of non-stationarity in rotating machinery for shaft and 
gear analysis.  

The issue of non-stationarity is not well addressed for the 

power spectral density (such as Welch’s method), or for 
bearing analysis (envelope/heterodyne methods included). It 
is assumed that the smearing of energy due to changing 
shaft speed is small. For bearing analysis, the energy 
associated with a fault frequency is trended. A poor measure 
of that energy will result in variance in the trend, or just an 
inaccurate estimate of component damage. 

Variance in shaft speed in rotating equipment is always 
present to varying degrees. The variation is due to: 

• Limits in the control system bandwidth,  
• Varying loads associated with the work the 

machine is producing,  
• Or in the case of wind turbines, varying wind 

speed and torque ripple 

 
Figure 1. Variation in High Speed Shaft over 6 Second 

Acquisition 

Wind turbines pose a particularly difficult environment. The 
wind, as noted, is time varying. Additionally, because the 
flow of wind is stalled in front of the tower, the lift on a 
blade as it passes in front the tower is reduced. This causes a 
3/revolution torque ripple/change in shaft rate (Figure 1). 
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Finally, because of wind shear, the wind speed at the top of 
the rotor arc is greater than the bottom of the arc. Figure 1 
shows the variance of a high-speed shaft on a wind turbine, 
over a 6 second acquisition. The instantaneous speed of the 
shaft is seen to range from 30.9 Hz to a maximum of 32.01 
Hz, or a change in speed of 3.6%. 

Consider the effect of this variation in speed on the spectral 
content of a bearing fault frequency, where the cage, ball, 
inner and outer race rates are: [0.42, 2.87, 9.46, 6.72]. The 
range of fault frequencies (Hz) during this acquisition are: 

Table 1. Bearing Rates 
Bearing\shaft Low: 30.9 High 32.01 
Cage (Hz) 12.98 13.44 
Ball (Hz) 88.69 91.88 
Inner Race (Hz) 292.3 302.8 
Outer Race (Hz) 207.7 215.1 
 
For the higher frequency bearing components, (inner/outer 
race), the frequency difference is significant: approximately 
10 Hz. For spectral analysis, it poses a problem. Not only is 
there the issue of the spectral content smeared across a 
number of bins, but also which shaft rate does one use for 
analysis (the mean shaft rate over the acquisition)? 
 
This issue of spectral spreading in the FFT is not academic. 
Consider the trend of an inner race fault on a high-speed 
shaft (Figure 2). The variance in the condition indicator is 
proportional to the inner race energy. While vibration 
measurements are stochastic, not all of the variation in 
Figure 2 is due to measurement noise. We will show that 
some portion of the condition indicator (CI) is a function 
measurement error due to variance in shaft speed. 

 
Figure 2. Trend of an inner race fault 

 
This increased variance affects both the threshold setting 
process and alerting. Clearly if one does not have the luxury 
of sampling under steady state, a process is needed to 
mitigate the change in shaft RPM. We will show that 

resampling is one method that can be used to reduce the 
variance in the measured bearing energy. 

1.1. Units of Measurement 

In this paper, the units are in G’s, where 1g is the earth 
standard gravitational acceleration. While the sensors output 
voltage, the accelerometer manufacture defines the scale 
value to convert for volts to G’s. The ISO (ISO 10816) has 
developed standards for vibration limits for rotating 
industrial machinery, these standards are limited for 
equipment running between 10-200 Hz. Additionally, the 
limits are directed at imbalance, and not bearing faults.  ISO 
vibration limits are inches/second, were the conversion from 
inches to G’s is. G = 0.0162 * V * f. In general, 1 inch/sec is 
considered damaging vibration levels. 

Many software packages output spectrum in power (G2/Hz), 
but prior research (Bechhoefer 2008) revealed that the 
correlation between damage and energy (G’s) was linear. 
For this reason, the units are in G’s. 

2. SYNCHRONOUS RESAMPLING 

The model for vibration in a shaft in a gear box was given in 
(McFadden 1987) as: 

 x(t) = Σi=1:K Xi(1+ ai(t))cos(2πi fm(t)+ Φi)+b(t)  (1) 

where: 

• Xi is the amplitude of the kth mesh harmonic 

• fm(t) is the average mesh frequency 

• ai(t) is the amplitude modulation function of the ith 
feature harmonic. 

• φi(t) is the phase modulation function of the ith 
feature harmonic. 

• Φi is the initial phase of harmonic k, and 

• b(t) is additive background noise.  

The mesh frequency is a function of the shaft rotational 
speed: fm = Nf(t), where N is the number of teeth on the 
gear and f(t) is the shaft speed as a function of time. For 
bearings, N is the component rate, which is a non-integer 
value based on the bearing geometry. As noted, because of 
the finite bandwidth of the feedback control, or due to the 
environment, there is some wander in the shaft speed. This 
change in speed will result in smearing of amplitude energy 
in the frequency domain.  

If a tachometer signal is present (such as a key phasor) and 
the ratio from the key phasor to the shaft under analysis, the 
vibration data can be resampled such that number of data 
points between one revolution and the next is the same. In 
the case of time synchronous averaging (TSA), the 
ensemble average of EQ(1) is calculated summing each 
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revolution of resampled data, then dividing by the number 
of revolutions during the acquisition. .  

Since the radix-2 FFT is most commonly used, the number 
of data points in one shaft revolution (rn) are interpolated 
into m number of data points, such that: 

• For all shaft revolutions n, m is larger than r, and 

• m = 2ceiling (log2 (r)) (again assuming Radix 2 DFT) 

Since some other analysis process will be done on the 
resampled signal (envelop analysis, for example) – a radix-2 
length is not necessary. However, for this example a Radix 
2 length was used to calculate the resample length m. The 
algorithm resamples index ri in m data points, the 
concatenates them into a new vector. Once all of the data is 
resampled, the envelope/spectrum is taken. Figure 3 
compares the TSA algorithm to the Resampling algorithm. 

 
Figure 3 TSA and Resample Algorithm Flow 

2.1. Example: Synchronous Resampling Algorithm 

For example, say the sample rate was 1000 samples per 
second, and the lowest shaft rate was 10 Hz, for a .5 second 
acquisitions. The resample length, m, is 128. The number of 
data points between each key phasor is: 87, 92, 100, 95, 89, 
37. For each shaft revolution, the data is resampled to length 
l.:  Rev 1: 87->128, Rev 2: 92->128, Rev 3: 100->128, Rev 
4: 95->128, Rev 5: 89->128. Note that for half of a second 
of data, there is 640 data points – the remaining 37 data 
were in the next, incomplete revolution, so the last 37 data 
points are dropped. The resample length is taken at the next 
largest power of 2 over the maximum length of all 
revolutions, again, assuming a radix 2 DFT. 

Because of interpolation, the sample rate for each revolution 
is now changed. To accurately determine the frequency 
associated with a DFT bin, an apparent sample rate is 
needed. The apparent sample rate is the original sample rate 

* length of the resampled data / length of the original data: 
1000 * 640/(463), or 1382.  

2.2. TSA for Bearing Analysis 

For shaft and gear analysis, existing TSA algorithms control 
for changes in shaft speed. For bearing, because they do not 
have integer number of shaft for a rate, the TSA is felt to be 
inappropriate for three reasons:  

• Bearings are quasi-stationary – there is always 
some slippage such that even with correct 
geometry, the rates are not exact. This will make 
the bearing component non-synchronous with the 
TSA algorithm and in fact may separate the 
bearing signal out of the TSA.  
 

• A bearing has rates for each component: cage, ball, 
inner and outer race. This would require the TSA 
to be run four separate times for each bearing, in 
order to capture the energy for each bearing 
component. While this may not be a problem for 
off line analysis, it may exceed the resources of an 
on-line analysis system. Considering that any given 
shaft is supported by 2 to 3 bearings, which would 
require 8 to 12 TSA analyses. 
 

• In the evaluation of bearing health, it is important 
to be able to observe the relationship between the 
shaft, cage, ball, inner and outer race fault features. 
For example, an inner race fault that is modulated 
by shaft (e.g. side bands that are 1 shaft rate off of 
the inner race fault) is a more serious fault than an 
inner race fault, as it indicates wear and clearance 
issues on the shaft. The ability to view modulation 
between bearing components and shaft is a 
powerful diagnostics tool that is not available if 
using the TSA for each bearing components 

That said, the structure of the TSA is the model for which 
this resample algorithm is based. 

3. HIGH SPEED SHAFT BEARING FAULT 

A commercial wind turbine with a 2 MW power output was 
installed with a condition monitoring system. Data was 
collected at 10-minute intervals. The data was sampled at 
97656 sps for 6 seconds. Bearing envelop analysis was 
performed by band passing the signal between 9 to 11 KHz. 
Welches spectrum was used on the heterodyned signal with 
a DFT length of 4096, and with an overlap of 2048 points. 
Increased inner race energy on the high-speed shaft bearing 
indicated a fault (Figure 2). An inspection of the bearing 
latter showed that the inner race was cracked. Using this 
data, the raw spectrum was compared to the resampled 
spectrum and the TSA (Figure 4). The spectrum length was 

For i = 1:N  
Revolutions

Resample r data 
points into M data 

points 

Set TSA Length
m = 2ceil(log2(r))

tsa = zero(m,1)

tsa = tsa + M

tsa = tsa/N

TSA Algorithm

TSA = DFT(tsa)

For i = 1:N  
Revolutions

Resample r data 
points into M data 

points 

Set Segment Length
m = 2ceil(log2(r))

samp = zero(m*N,1)

samp(indx) = M

Resample Algorithm

Spectrum = Welches(samp)

indx = i*m+1:m

Get Apparent Sample Rate
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the same as the TSA length, so that the plots have similar 
bin widths.  

 
Figure 4. Raw, resampled, and TSA spectrum 

The average shaft rate is 30.9 Hz. This shaft is driven by a 
20-tooth pinion. The first 6 harmonics of the pinion are 
clearly visible at 620, 1240, 1860, 2480, 3100 and 3720 Hz. 
The TSA ran 188 revolutions, so that the noise floor of the 
TSA is approximately 1/sqrt(188), or 0.073x that of the raw 
or resampled spectrums (Bechhoefer, 2009). 

In Figure 5, a detailed view of the spectrum is given from 
2200 to 4000 Hz, showing that the resampled spectrum has 
more spectral content than the raw spectrum or the TSA 
spectrum. In the 9000 to 10,500 Hz view, spectral peaks are 
visible 9220, 9510 9800 and 10,090 Hz.  

 
Figure 5. Detail of raw, resampled and TSA spectrum 

 

The 290 Hz difference is close to the modulation rate of an 
inner race fault, which was 292 Hz. The high, broadband 
spectrum is indicative of bearing resonance. Because 
resonance is non-synchronous, the TSA does not capture 
this bearing resonance. 

As an aside, plotting the TSA against the raw spectrum is a 
good way to identify bearing faults: Frequency content not 
present in the TSA which are present in the raw spectrum 
can only be gear mesh frequencies from other shafts in the 
gearbox, or a bearing fault. 
The envelope of the raw and resampled data was taken with 
a window from 9KHz to 11KHz. This “window” covers the 
spectrum where bearing resonance is present. This is 
essential for successful bearing analysis using the envelope 
technique (Bechhoefer, 2010), see Figure 4.  The raw and 
resampled envelope spectrum is seen in Figure 6. 

 
Figure 6. Envelope spectrum of raw and resampled data 
 
Note that the cage (13 Hz), shaft (31 Hz) and inner race 
fault feature (292 Hz) are overlaid on the spectrum. Clearly, 
the resampled envelope spectrum fault features have greater 
energy. This is not a scale issue, as the noise floor for both 
spectrums are the same. The increased energy is because 
there is less spreading of energy into neighboring FFT bins. 
Figure 7 gives a detail view of the spectrum. 

 
Figure 7. Detail view of inner race fault: envelope spectrum 
  
This view highlights the improvement in resolution of the 
resampled data over the raw data. Note that from Table 1, 
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the fault frequency range for the inner race was 292 to 303 
Hz, which is validated in Figure 7 in the raw envelope 
spectrum. Note that maximum value of the raw envelope 
spectrum was 0.17 Gs. As seen in the resampled spectrum, 
the true energy value is closer to .32 G’s or a 47% error in 
the original measurement. This smearing of measurement 
data, results in additional noise in the CI measurement 
(Figure 2). This noise in the measured CI is caused by the 
large variance in shaft speed. 

Both inner race modulated by cage and inner race 
modulated by shaft are also clearly present in the resampled 
envelope spectrum. This type of information gives a 
maintainer additional diagnostics, which are missing in the 
raw spectrum. 

3.1. Testing The Hypothesis on Shaft Speed as a Source 
of Variance  

It is hypothesized that at least some of the variance in trend 
of the inner race energy was due to non-constant shaft 
speed. As previously noted, it was shown variation in shaft 
speed smears the measured energy associated with a fault in 
the spectrum. A test of this hypothesis could be done if one 
could reprocess the vibration data in Figure 2. 
Unfortunately, raw data is collected only once per day (1 
our of 144 acquisitions). This subset or raw data was 
reprocessed using and the measured inner race energy was 
calculated for the raw envelop spectrum, and the resampled 
envelop spectrum, over 50 days, and compared in Figure 8.  

 
Figure 8. Raw and resampled inner race envelope energy 

over 50 days 

It is easily observed that the resampled envelope energy is 
higher than the raw envelop. This would be expected in that, 
because there is less smearing of energy, there is more 
energy associated with the fault. To formally test this 
hypothesis: H0 That resampling does not change the CI 
variance, vs. HA That the resampling reduces the CI 
variance.   

The sample variance was calculated from the de-trended 
data from day 25 to day 48. The sample variance for the raw 
envelop spectrum was 0.0047 (σ = 0.068), while for the 
resampled envelope, the variance was 0.002, (σ = 0.045), 
with an F statistic of 2.3 (approximately 57% reduction in 
variance). This is significant an alpha of 0.05 and 22 
degrees of freedom, reject the null hypothesis that resample 
does not effect CI variance. 

4. CONCLUSION 

Condition monitoring of rotating machinery is complicated 
by the fact that machines under analysis do not always run 
at a constant rate. While the time synchronous average can 
be used to control variance in machine speed for shafts and 
gears – there is not such standard practice or algorithm to 
control variance in shaft speed for bearing or other non-
synchronous analysis.  

In general, it is assumed that the effect of spectral smearing 
due to variance in shaft speed is small. However, variation 
in shaft speed is commonly observed in the field. This 
problem is especially great for wind turbines, in which there 
is variation due to: changing wind speed, a 3/revolution 
torque ripple due to tower shadow, and a 1/revolution effect 
from wind shear. It is not surprising to see a 4% change in 
shaft speed in a 6 second acquisition. 

In this paper, a resampling algorithm was developed in 
which raw data is synchronized by a key phasor to a shaft 
under analysis. The resampling process changes the 
effective sample rate and normalizes the data by removing 
the effect of changes in shaft speed. It allows both 
synchronous (shaft/gear) analysis and non-synchronous 
(bearing, bearing resonance) analysis.  

This is demonstrated on a wind turbine high speed shaft 
bearing with an inner race fault. It is shown that by 
resampling, the frequency content of the envelop spectrum, 
which is spread over a frequency of 292 to 303 Hz (14 FFT 
bin), with raw envelope spectrum of 0.17 Gs. For the 
resampled spectrum, the true energy value is closer to .32 
Gs. For this example, the raw energy spectrum had an error 
of 47% when compared to the resampled spectrum. 

The hypothesis was tested that the resampled envelope 
energy for a fault would have lower variance. This was 
tested by reprocessing vibration data for a known fault with 
50 samples. The reduction in variance was statistically 
significant at alpha of .05, or approximately a 55% 
reduction in variance. 

This is a significant improvement in performance. This 
indicates that variation in speed accounts for a large 
variance in condition indicator values. Fielding this 
improved analysis algorithm will result in: 

• Bearing faults will be easier to identify,  
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• That threshold setting will be simplified,  

• That trend analysis will be improved and finally,  

• That this will facilitate an improved prognostics 
capability. 

The resampling algorithm used linear interpolation, but 
spline or cubic interpolation could be used. 
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