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ABSTRACT 

Condition monitoring techniques were applied to a 

reciprocating compressor in order to determine if faults were 

present in a system. Through the use of vibration based 

sensors, fault monitoring of the crank-side discharge valve 

springs was accomplished. Data was collected through a 

range of injected fault conditions and analyzed through the 

use of discrete wavelet transformations. The wavelet 

coefficients produced were transformed into a six-

dimensional feature space though the use of first and second 

order statistics. By using a support vector machine classifier, 

the nominal and faulted condition data was used to train a 

fault monitoring classifier. This classifier was verified 

through the use of additional test data, and resulted in 

classification rates of 90% and above. This result is based on 

the trial of a multitude of different wavelets and support 

vector kernels in order to achieve the optimal performance 

for the dataset. 

1. INTRODUCTION 

Cost reducing, efficiency focused industrial processes have 

become more prevalent on the modern shop floor. With this 

push for initiatives like lean manufacturing and Six Sigma, 

machine downtime becomes a very important factor in the 

flow of a production line. Some machines can have an impact 

across the entire production floor, such as hydraulic pumps 

or air compressors. The reciprocating compressor is one such 

machine, sometimes supplying air pressure to a number of 

machines across the facility (Lin, Wu, & Wu, 2006). This 

compressor is widely used for its reliable pressure levels 

during operation and versatility with different gasses. Prior to 

the advent of condition monitoring techniques, two repair 

philosophies were used for reciprocating compressors, 

breakdown maintenance, which waited until the equipment 

failed, or preventative maintenance, which sets up a regular 

maintenance schedule (Bloch & Hoefner, 1996). Preventative 

maintenance, while more efficient than breakdown 

maintenance, can still result in more frequent and 

unnecessary downtime for the compressor. In order to further 

increase the efficiency of preventative maintenance 

techniques, condition monitoring can be implemented. 

1.1. Condition Monitoring Techniques 

The use of condition monitoring techniques as part of a 

maintenance program is known as Condition-Based 

Maintenance (CBM). Since its inception, CBM techniques 

have become prevalent in numerous different fields and 

industries. Through the use of CBM, the maximum reliable 

life of a component can be utilized, without the unexpected 

loss of the system due to a major failure (Prajapati, Bechtel, 

& Ganesan, 2012).  

Previous condition monitoring techniques utilized Pressure-

Volume, or P-V diagrams, in order to monitor the system. By 

comparing a real-time P-V diagram to a theoretically nominal 

diagram, deviations from normal operation can be found. 

(Trout & Kolodziej, 2016) When performing condition 

monitoring on reciprocating compressors, vibration analysis 

is another commonly used method. This method tracks the 

vibration signature of the compressor when running, and 

looks for deviations from the nominal signature caused by 

fault conditions. Vibration analysis is a great choice for 

reciprocating compressors as external sensors can be used 

and retrofitted to existing hardware with very little invasive 

modification. Due to the cyclical nature of the reciprocating 

compressor, the signals used for vibration analysis are also 

cyclical in nature. These signals are known as 

cyclostationary, as the majority of the signal information is 
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periodic, but with random elements that vary from one period 

to the next (Randall, 2010).  

2. SIGNAL PROCESSING 

In order to accurately extract the differences in these periodic 

signals, the various structural components of the 

cyclostationary signal must be broken out and quantified. 

This process can be completed using a variety of different 

methods. The most common methods for doing this involve 

transforming the signal in question from the time domain into 

the frequency domain, often done through the use of the 

Fourier Transformation. While this method is very 

commonly used to extract information regarding the power 

spectrum of a signal, it is a relatively general approach. A 

more modern approach to extract the vibration data from the 

signal is known as the wavelet transformation.  

2.1. Wavelet Transformation 

The wavelet transformation was developed by Morlet et al. in 

1982 (Mallat, 1999). This original wavelet, now known as the 

Morlet Wavelet is given by, 

        Ψ̂(𝜔) =  √2𝜋𝜔2 exp (−
1

2
𝜔2) , 𝜔 > 0       (1) 

where Ψ̂(𝜔) is the frequency domain representation of the 

signal, which turns out to be a modulated Gaussian function. 

This basic function can be turned into a family of functions 

through the addition of a scaling parameter. In general 

wavelets are defined by,  

              𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 (

𝑡−𝑏

𝑎
) , 𝑎, 𝑏 ∈  ℝ, 𝑎 ≠ 0        (2)  

where 𝜓, or the mother wavelet, is the original wavelet basis 

being used, b is the translation parameter which determines 

the time domain location of the wavelet basis and a is known 

as the scaling parameter which determines the amount of 

compression in the resolution of the signal. The scale of the 

wavelet is its duration in the time domain. By changing the 

scale factor, the length of the wavelet in time is either 

increased by a larger scaling factor, or shortened by a smaller 

factor. This is evidenced by the effect that a, the scaling 

factor, has on Eq. (2). Because of the longer length of the 

wavelet when the scaling factor is low, it is able to gain 

information about the lower frequency content of the signal 

under analysis. As this scaling is decreased, and the wavelet 

is made shorter, higher frequency content can be captured. 

After Morlet’s implementation of his Morlet wavelet, a 

number of other mother wavelets were investigated for a 

variety of uses. A number of typical mother wavelets can be 

found in Figure 1. 

The wavelet transformation is a multiresolution analysis 

technique which analyses the data through a number of 

resolutions in order to ensure that data is captured at each 

“scale” (Pan, 2009). This means that the information at a 

wide range of frequencies can be captured, while still 

maintaining the information contained within the time 

domain for the signal. Because of this, wavelets are 

considered to be an improvement over the commonly used 

Short-Term Fourier Transform (STFT) for non-stationary 

processes. This phenomenon is captured effectively by 

investigating the wavelet transformation of a ‘chirp’ 

waveform as found in Figure 2. 

 

Figure 1. Examples of Various Wavelet Functions (The 

MathWorks Inc., 2016) 

 

Figure 2. Wavelet Transform Plotted for a Chirp Function. 
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When analyzing this discrete transform, it becomes apparent 

that as the scale of the waveform is decreased, the frequency 

content that is captured increases. This creates a plot that 

shows the concentration of frequency content at a given scale 

over the time domain of the signal. 

For the purpose of condition monitoring in this study, a 

selection of three mother wavelets were chosen for 

investigation in order to find the mother wavelet which 

supports the most accurate classification of nominal and 

damaged systems. The three mother wavelets chosen for 

investigation were Harr, Daubechies, and Symlet. 

3. FEATURE EXTRACTION 

When selecting the information that will be used as features 

in a machine learning algorithm for classification, the number 

of features must be limited appropriately. Increasing the 

number of features used to create a classifier means that the 

number of samples must also increase. Due to the limited 

number of samples in the data set, it would be very unrealistic 

to use each data point in the signal as a feature on its own. 

This means that a more concise feature vector must be used 

for classification purposes. In order to condense the 

information extracted from the wavelet transform of a signal, 

basic first and second order statistics of the resulting signal 

can be taken. This means that a more concise feature vector 

must be used for classification purposes.  

When extracting the features for classification of the 

vibration data, first and second order statistics of the wavelet 

were used, referred to as Wavelet Statistical Features (WSF) 

(Jawahar, Babu, & Vani, 2014). For feature extraction from 

the wavelets used for condition monitoring, mean, standard 

deviation, minimum, maximum, skewness, and kurtosis were 

chosen, and formed into a feature vector for classification. 

4. CLASSIFICATION 

Classification algorithms learn from a set of feature vectors 

with known classes as the training data. The classifier can 

then predict the label of new unlabeled feature vectors, in 

some cases with very good certainty. Assumptions are made 

that the training data is normally distributed within each of 

the classes in order to maintain a simplified classifier model. 

4.1. Supervised Learning 

Due to the seeded fault nature of the testing performed, there 

is readily available data on the current state of the system for 

each piece of training data. This means that a supervised 

learning classifier can be taken advantage of. Supervised 

classification can be performed more efficiently, allowing 

them to perform more complex and nonlinear categorization 

than their unsupervised counterparts (Izenman, 2008). One 

such supervised learning method, support vector machines 

(SVMs), has been widely used successfully for classification 

problems.  

4.2. Support Vector Machines 

Support vector machines, a type of kernel machines, are a 

machine learning tool used primarily for binary 

classification. The algorithm was first proposed by Vapnik in 

1963 (Vapnik & A., 1963). SVMs attempt to take a high 

dimensional input with some nonlinear dependency which 

results in an output. Because there is no prior knowledge of 

the interactions within the data, this classification must be 

done with only the information that is available in the training 

data. This is known as distribution-free learning. This makes 

SVMs opportune for datasets for which there is very little 

prior knowledge on the patterns within the data. In the case 

of the reciprocating compressor data, this is very helpful. Due 

to the frequency domain nature of the wavelet transformation, 

human intuition is not very useful in classification. This 

means that the distribution-free nature of SVM can be of 

large benefit when performing classification. The support 

vector machine methodology maps the input data vector into 

a Hilbert space, denoted as H in Eq. (3). 

         𝐻𝑖𝑗 = 𝑦𝑖𝑦𝑗𝒙𝑖 ∙ 𝒙𝑗                 (3) 

This multidimensional space known as the feature space 

contains one orthogonal basis for each of the features being 

used for classification. The SVM algorithm then finds a 

multidimensional hyperplane which separates the training 

data, using this hyperplane to perform binary classification 

(Love, 2002). Due to the multidimensional nature of the SVM 

classifier being developed for these purposes, visualization of 

this hyperplane is not possible. For the purpose of 

explanation of the SVM algorithm, a model of just two 

dimensions will be used. 

 ∑ 𝛼𝑖
𝐿
𝑖=1 −

1

2
𝛼𝑇𝑯𝛼; 𝛼𝑖 ≥ 0, ∑ 𝛼𝑖

𝐿
𝑖=1 𝑦𝑖 = 0       (4) 

          𝑏 =
1

𝑁𝑠
∑ 𝑦𝑛 − ∑ 𝛼𝑚𝑦𝑚𝒙𝑚 ∙ 𝒙𝑠         (5) 

The hyperplane is first optimized through the tuning of α in 

Eq. (4) to reduce the classification error of the training data 

without overfitting the model by maximizing the value of the 

above equation. Because the data can be, and often is 

overlapping on the border between the two classes, a 

reasonable margin of error must be expected when 

optimizing the hyperplane.  

Once the minimum classification error for the training data is 

found, a second optimization must occur. There are infinite 

hyperplanes which will reach the minimum classification 

error, and so the best of these hyperplanes must be chosen. In 

the case of SVM, the best possible hyperplane is defined as 

that which maximizes the margin between the hyperplane, 

and the data points within the dataset (Campbell & Ying, 

2011). The data points which are closest to this hyperplane 

and define the maximum margin optimization are defined as 

the support vectors of the model, and are the data points 

which are most important for the definition of the model. 
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Figure 3. Support Vectors for a 2D SVM Classifier 

 

The support vectors for a subset of the classifier used for the 

condition monitoring problem is shown in Figure 3. 

 

This figure shows that the support vectors are those data 

points closest to the border between the two classes. Because 

this is just a subset of the feature space used to perform the 

condition monitoring, there is a great deal of overlap between 

the two classes. When SVM is extended to a 

multidimensional problem, this overlap becomes less 

prevalent, allowing for very accurate classification. Once an 

accurate model has been created for SVM classification, new 

data points can be classified through the prediction formula 

shown in Eq. (6). 

       𝑦′ = 𝑠𝑔𝑛(𝒘 ∙ 𝒙′ + 𝑏)                    (6) 

This prediction takes the feature vector as an input, and 

produces a predicted value of the data points class. The 

interested reader is pointed toward numerous sources that 

exist on SVM theory, such as (Fletcher, 2008). 

For the purpose of the condition monitoring of the 

reciprocating compressor, SVM has a few qualities which 

make it very well suited to the problem. SVM is resistant to 

local minima during optimization. This resistance comes 

from the nature of the optimization problem that SVM is 

attempting to solve. SVM presents a convex optimization 

problem, and so any local minimum is also a globally optimal 

solution (Kecman, 2005). This local minimum resistance 

makes SVM a very reliable and repeatable classification 

method to use. The secondary margin maximization also 

makes SVM a more robust algorithm to use. Also, because of 

SVMs use of kernels, the algorithm is able to model nonlinear 

relationships, which is very powerful, especially when 

dealing with overlapping datasets with rough boundaries. 

5. DATA ACQUISITION 

The data was taken from a series of seeded fault tests on a 

Dresser-Rand ESH-1 reciprocating compressor shown in 

Figure 4. This compressor was donated to Rochester Institute 

of Technology (RIT) and resides in RIT’s Compressor Test 

Cell. A series of accelerometers, rotational encoders, and 

pressure transducers were affixed to the compressor and 

connected to a National Instruments CompactDAQ. The data 

which was processed for classification purposes was taken 

from an accelerometer mounted to the crank-side discharge 

manifold of the compressor. 

Seeded faults were added to the system to simulate deviations 

from nominal operating conditions. The fault condition 

which was monitored involved wear in the springs within the 

Figure 4. Reciprocating Compressor Cross-sectional Diagram 

Location of accelerometer 
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poppet valves of the compressor. These valves are used 

within the discharge valve assembly, and are pivotal for the 

proper operation of the reciprocating compressor. The poppet 

valve prevents compressed air from flowing backwards, out 

of the pressure tank, allowing the unit to continuously 

maintain pressure with every stroke of the piston. A cross 

sectional view of a typical reciprocating compressor can be 

found in Figure 4. 

Spring fatigue was simulated by replacing the stock springs, 

considered nominal, with a softer spring to simulate a worn 

condition, and no spring at all, to simulate a completely 

broken spring. These springs were placed in a variety of 

configurations, as shown in Table 1 and Figure 5. These 

configurations placed springs in different conditions in each 

quadrant of the valve. Cases 1, 3, and 5 have every spring in 

the valve at the same level of wear, while cases 2 and 4 are 

blended conditions, with each half of the springs in a different 

condition. 

Table 1. Seeded Spring Fault Cases 
Case Group 1 Group 2 Group 3 Group 4 

1 Nominal Nominal Nominal Nominal 

2 Nominal Degraded Degraded Nominal 

3 Degraded Degraded Degraded Degraded 

4 Degraded None None Degraded 

5 None None None None 

 

 

Figure 5. Valve Groupings 

 

By seeding multiple cases for a binary classifier, a range of 

data is created. This ensures that there will be data points 

closer to the boundary line that SVM must determine. For the 

case of the classification problem, the cases shown in Table 

1 are sorted into a binary problem, Nominal vs. Damaged. 

Nominal is only those points of data which were taken with 

all nominal spring sets, where the damaged datasets 

encompasses the rest of the points. A binary problem was 

chosen over multiclass SVM because the most critical 

decision making point when performing condition 

monitoring is whether or not the system is performing within 

a nominal range. 

6. RESULTS AND DISCUSSION 

6.1. Collected Data 

Due to the cyclic nature of the reciprocating compressor, data 

was broken into individual cycles of the compressor piston. 

The data was then taken from the time domain into the 

angular domain, where the data was plotted over the angle of 

the piston crankshaft. Figure 6 displays all of the data 

considered, plotted onto one figure. Both the pressure in the 

cylinders, and the accelerometer data used for classification 

are shown in the figure. 

 

Figure 6. All Cycles after Angular Transformation 

6.2. Wavelet Selection 

In order to maximize the correct classification percentage, a 

variety of different mother wavelets must be considered and 

the best must be determined. Different wavelets are able to 

extract the information from a signal differently. In order to 

select the best wavelet for the reciprocating compressor 

vibration analysis, data was processed using a variety of 

different mother wavelets. This data was then classified using 

the same binary SVM classifier and kernel. The classification 

error of these various methods was compared in order to 

select the best performing wavelet. For the reciprocating 

compressor vibration analysis, the Haar wavelet, Symlets of 

order 2 and 4, and Debauches wavelets of order 2 and 4 were 

considered. Though all of the wavelets chosen for 

investigation performed well with above 90% classification 

accuracy, the Debauches wavelet of order 4 (db4) performed 

best, achieving a 91.8% classification accuracy. Therefore 

this wavelet was chosen for further investigation. An example 

of a multi-level wavelet transform performed on the periodic 

reciprocating compressor data is shown in Figure 7. 
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Figure 7. Wavelet Transformation of Compressor Vibration 

Signal 

 

For the purpose of visualization, the data was zoomed to the 

range of interest. For this data, the plot is zoomed to the area 

ranging from 120 to 240 degrees. This range makes intuitive 

sense because it is the range during which the valve with the 

sensor affixed and seeded faults injected opens and closes.  

The lower axis of Figure 6 shows the pressure with respect to 

the shaft angle. As the center waveform peaks, the valves 

open. This creates the first accelerometer spike on the upper 

axis. This happens predictably just after 120 degrees on the 

shaft angle. The valves then close, with most of the vibrations 

dying out by 240 degrees on the shaft angle. 

6.3. Feature Extraction 

From the wavelet transformation of the data, the wavelet 

features were extracted. These features were placed into a 

vector which would function as the input to the classifier for 

each cycle of the shaft. Due to the dimensionality of the 

feature vector, visualization of the full feature set is not 

possible. A selection of features shown in Figure 8 shows that 

there is indeed separation between the different classes in the 

data. 

6.4. Support Vector Machine Kernel Selection 

In order to perform the binary classification problem, the 

training data was classified such that the nominal case 

(NNNN) was placed in the ‘Nominal’ class, while all other 

cases (SSSS, WSSW, WWWW, WNNW) were placed in the 

‘Damaged’ class. This created two binary classes. Using the 

db4 wavelet, a number of different SVM kernels were tested, 

including linear, quadratic, cubic, and fine, medium and 

coarse Gaussian kernels. The accuracy of these different 

kernels was used to determine the strongest for this dataset. 

The investigation of the different SVM kernels led to the 

selection of the cubic kernel for further investigation. 

 

Figure 8. Feature Vector Comparison of Different Classes 

 

Though all the kernels performed well with the dataset, 

achieving scores above 93%, the cubic kernel achieved an 

accuracy of 95.3% on the training data, making it the most 

accurate. The training set used was a randomly selected set 

containing 50% of the total data taken. 

6.5. Support Vector Machine Kernel Selection 

This classifier was then used to perform predictions on a new 

and randomly selected set of test data. The classifier 

performed very well achieving a prediction accuracy of 

97.55% on the test set. The test set used was the remaining 

50% of the data which had not been used for training the 

classifier, thus ensuring that the model was being tested only 

with fresh data. The confusion matrix for the test set of data 

is shown in Figure 9.  

7. CONCLUSION 

In order to create a condition monitoring system for a 

reciprocating compressor, a vibration analysis approach was 

developed and investigated. The use of wavelet 

transformations to process data, along with basic statistical 

analysis created a feature vector that could be used in 

conjunction with Support Vector Machines (SVM) with over 

97% accuracy. Condition monitoring technique like those 

explored in this work, in conjunction with regular 

maintenance, can easily increase the efficiency of a 

production line by limiting maintenance to scheduled 

intervals.  

Overall the approach developed was quite promising, with 

high accuracy even on relatively non-complex features. 

Further identification of important features within the 

wavelet data may serve to increase the accuracy of this 

method even further, resulting in nearly perfect classification. 
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Figure 9. Confusion Matrix 
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