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ABSTRACT 

Condition-based maintenance is a cost effective 

maintenance strategy, in which maintenance schedules are 

predicted based on the results provided from diagnostics and 

prognostics. Although there are several reviews on 

diagnostics methods and CBM, a relatively small number of 

reviews on prognostics are available. Moreover, most of 

them either provide a simple comparison of different 

prognostics methods or focus on algorithms rather than 

interpreting the algorithms in the context of prognostics. 

The goal of this paper is to provide a practical review of 

prognostics methods so that beginners in prognostics can 

select appropriate methods for their field of applications in 

terms of implementation and prognostics performance. To 

achieve this goal, this paper introduces not only various 

prognostics algorithms, but also their attributes and pros and 

cons using simple examples. 

1. INTRODUCTION 

Prognostics is to predict future behavior of 

damage/degradation and the remaining useful life (RUL) of 

in-service system, which facilitates condition-based 

maintenance whose schedule is planned according to 

predicted results based on diagnosis. There are a large 

number of publications on condition-based maintenance 

(Jardine, Lin, & Banjevic, 2006; Grall, Bérenguer, & 

Dieulle, 2002; Yam, Tse, Li, & Tu, 2001) and diagnostics 

methods (Martin, 1994; Samuel & Pines, 2005; Singh & Al 

Kazzaz, 2003; Juricic, Znidarsic, & Fussel, 1997; 

Sugumaran, Sabareesh, & Ramachandran, 2008; Yan & Gao, 

2007; Samanta & Al-Balushi, 2003). On the other hand, a 

relatively small number of reviews on prognostics are 

available (Si, Wang, Hu, & Zhou, 2011; Srivastava & Das, 

2009; Goebel, Saha, & Saxena, 2008; Saha, Goebel, & 

Christophersen, 2009; Xing, Williard, Tsui, & Pecht, 2011; 

Zhang & Lee, 2011). Most of them provide a simple 

comparison of different prognostics methods using a 

specific application, a summary of pros and cons of 

algorithms, or a collection of papers. In addition, most 

review papers focused on algorithms rather than interpreting 

the algorithms in the context of prognostics. Therefore, the 

goal of this paper is to provide a practical review of 

prognostic methods so that beginners in prognostics can 

select appropriate methods for their field of applications. To 

achieve this goal, this paper introduces not only various 

prognostics algorithms, but also their attributes and pros and 

cons, so that engineers can choose the best algorithm for 

their field of applications in terms of implementation and 

prognostics performance. 

In general, prognostics methods can be categorized into 

data-driven, physics-based, and hybrid approaches. Data-

driven approaches use information from previously 

collected data (training data) to identify the characteristic of 

the currently measured damage state and to predict the 

future trend. Physics-based approaches assume that a 

physical model describing the behavior of damage is 

available, and combine the physical model with measured 

data to identify model parameters and to predict the future 

behavior. Hybrid approaches combine the above-mentioned 

two methods to improve the prediction performance 

(Mohanty, Teale, Chattopadhyay, Peralta, & Willhauck, 

2007; Sankavaram, Pattipati, Kodali, Pattipati, Azam, 

Kumar, & Pecht, 2009; Cheng & Pecht, 2009; Xu & Xu, 

2011; Xing, Miao, Tsui, & Pecht, 2011). The last approach, 

however, is not mature yet, and will not be considered in 

this paper. Dawn An et al. This is an open-access article distributed under the terms 

of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 
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Data-driven and physics-based approaches have different 

properties that will contribute to the preference of each 

algorithm. Providing a standard to select the best algorithm 

is important for a practical review of prognostic methods, 

and considering practically available conditions is also 

important. In this paper, therefore, the following conditions 

will be considered: the number of data sets, the level of 

noise and bias in obtained data, availability of loading 

conditions and physical models, and complexity of damage 

growth behavior. Typical prognostics algorithms are tested 

under such conditions, and the algorithms’ attributes and 

pros and cons are provided based on the results. 

The paper is organized as follows: in Sections 2 and 3, 

reviews on the data-driven and physics-based approaches 

are presented, respectively. In Section 4, several case studies 

are presented to analyz different prognostics methods, 

followed by conclusions in Section 5. 

2. REVIEWS ON DATA-DRIVEN APPROACHES 

Data-driven approaches use information from collected data 

to identify the characteristics of damage state and predict the 

future state without using any particular physical model. 

Instead, mathematical models with weight parameters are 

employed. The weight parameters are determined based on 

the training data that are obtained under the various usage 

conditions. Since the data-driven approaches depend on the 

trend of data, which often has a distinct characteristic near 

the end of life, it is powerful in predicting near-future 

behaviors, especially toward the end of life.  

The data-driven approaches are divided into two categories: 

(1) the artificial intelligence approaches that include neural 

network (NN) (Chakraborty, Mehrotra, Mohan, & Ranka, 

1992; Krogh, 2008; Yao, 1999)  and fuzzy logic (Zio & 

Maio, 2010; Gouriveau, Dragomir, & Zerhouni, 2008), and 

(2) the statistical approaches that include gamma process 

(Pandey & Noortwijk, 2004; Dickson & Waters, 1993), 

hidden Markov model (Rabiner, 1989), and regression-

based model such as Gaussian process (GP) regression 

(Mackay, 1997; Seeger, 2004), relevance vector machine 

(Tipping, 2001), and least square regression (Tran & Yang, 

2009; Bretscher, 1995), etc. Among these algorithms, NN 

and GP are commonly used for prognostics and will be 

discussed in the following sections. 

2.1. Neural Network (NN) 

NN is a representative data-driven method, in which a 

network model learns a way to produce a desired output, 

such as the level of degradation or lifespan, reacting to 

given inputs, such as time and usage conditions. This 

method mimics the human nervous system, which responds 

and adapts to a stimulus. Once the network model learns 

enough the relationship between inputs and output, it can be 

used for the purpose of diagnosis and prognosis. A typical 

architecture, feed-forward neural network (FFNN) (Svozil, 

Kvasnička, & Pospíchal, 1997), is illustrated in Figure 1. In 

the figure, circles represent nodes (also called a neuron or 

unit), and each set of nodes in the same column is called a 

layer. The nodes in the input and output layer, respectively, 

represent input variables and response variable. The number 

of nodes in the hidden layer can be adjusted to properly 

express the mechanism between input and output. Once the 

network model learned enough, the model is functionalized 

using transfer functions and weight parameters. Transfer 

functions characterize the relationship between each layer, 

and several types of transfer function are available such as 

sigmoid, inverse, and linear function (Duch & Jankowski, 

1999). Weight parameters include weights for the 

interconnected nodes and biases that are added to inputs of 

transfer functions (Liu, Saxena, Goebel, Saha, & Wang, 

2010; Firth, Lahav, & Somerville, 2003). The process of 

finding the weight parameters is called training or learning, 

and to accomplish that, many sets of training data are 

required. 

In general, FFNN is often called a back-propagation neural 

network (BPNN) because weight parameters are obtained 

through the learning/optimization algorithm (Rumelhart, 

Hinton, & Williams, 1986) that adjusts weight parameters 

through backward propagation of errors between actual 

output (training data) and the one from the network model 

based on gradient descent optimization methods. In addition 

to FFNN, there exists recurrent (Bodén, 2002), fuzzy (Liu & 

Li, 2004), wavelet (He, Tan, & Sun, 2004), associative-

memory (Bicciato, Pandin, Didonè, & Bello, 2001), 

modular (Happel & Murre, 1994),
 
and hybrid (Psichogios & 

Ungar, 1992; Rovithakis, Maniadakis, & Zervakis, 2004) 

neural network. 

In the following, three important issues are discussed for 

NN-based prognostics.  

2.1.1. Issue 1: Network Model Definition (the Number of 

Node and Layer) 

The first issue is the definition of the network model that 

includes selecting the number of hidden nodes, hidden 

layers and input nodes. Trial-and-error methods are often 

used to determine a suitable network model. Lawrence, 

Giles, and Tsoi (1998) and Doukim, Dargham, and Chekima 

 
Figure 1. Illustration of typical network model: FFNN 
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(2010) investigated the usage of mean square error in order 

to find the optimal number of hidden nodes. Gómez, Franco, 

and Jérez (2009) used generalization complexity to 

determine the number of nodes and showed that the results 

were quite close to the optimum. Although one or two 

hidden layers are generally used, there is no fixed rule. 

Ostafe (2005) presented a method using pattern recognition 

to determine the number of hidden layers. The problem of 

determining the number of input nodes occurs when input 

variables affecting the output are not clear; various inputs 

possibly affecting the response can be considered or only 

data trace is applicable. Chakraborty et al. (1992) compared 

the prediction results of flour prices using variable network 

models. In such a case, actual past values are used for inputs, 

but how many past values should be used is unclear. In fact, 

the accuracy of prediction results is not proportional to the 

number of input nodes. Chang and Hsieh (2011) also 

researched to select the optimal input layer neurons using 

particle swarm optimization. Therefore, defining a proper 

neural network model can be difficult for new users without 

having much experience. 

2.1.2. Issue 2: Optimal Parameters (Finding Weights 

and Biases) 

Once a network model is defined, the next issue is to find 

weight parameters related with the model. In NN, no matter 

how complex the relationship between input and output 

layer is, it is possible to express the relationship by 

augmenting the number of hidden layers and hidden nodes. 

However, when the BP algorithm is used, the following 

problems exist: (1) the global optimum of many weight 

parameters is extremely difficult to find, and (2) the 

convergence rate is very low and depends on the initial 

estimates. For these reasons, there have been many efforts to 

improve the drawbacks of the BP algorithm. Salomon and 

Hemmen (1996) presented a dynamic self-adaptation 

algorithm to accelerate the steepest descent method, and 

Chen, Lin, Tseng, and Lin (2006) applied the simulated 

annealing algorithm to search for the best BP parameters 

such as learning rate, momentum and the number of hidden 

nodes. Also, Subudhi, Jena, and Gupta (2008) proposed a 

technique combining the genetic algorithm and differential 

evolution with BP, and Nawi, Ransing, and Ransing (2007)
 

presented a technique combining the conjugate gradient 

optimization algorithm with the BP algorithm. There are 

many ensemble techniques to improve the performance of a 

single algorithm (Navone, Granitto, Verdes, & Ceccatto, 

2001; Jacobs, 1995; Drucker, Cortes, Jackel, LeCun, & 

Vapnik, 1994; Krogh & Vedelsby, 1995; Perrone & Cooper, 

1993; Naftaly, Intrator, & Horn, 1997), and the other efforts 

are found in the Refs.(Jardine et al., 2006; Salomon and 

Hemmen, 1996; Nawi et al., 2007) However, finding good 

weight parameters is still challenging, and the performance 

of NN algorithm deteriorates with non-optimal weight 

parameters. 

2.1.3. Issue 3: Uncertainty From Data and Optimization 

Process 

Last but not least, uncertainty in noise and bias in training 

data is an important issue in NN, as most measured data 

include them. The bias here is different from the bias as 

weight parameters; here the bias is the error caused by 

sensors, such as calibration error. In terms of noise, it is 

common to provide confidence bounds based on nonlinear 

regression and/or the error between NN outputs and training 

data (Chryssoloiuris, Lee, & Ramsey, 1996; Veaux, Schumi, 

Schweinsberg, & Ungar, 1998; Yang, Kavli, Carlin, Clausen, 

& Groot, 2000; Leonard, Kramer, & Ungar, 1992). 

Bootstrapping (Efron & Tibshirani, 1994) can also be 

applied, which can be easily implemented by running 

Matlab NN toolbox several times because Matlab uses 

different subsets of given training data for obtaining weight 

parameters. Furthermore, running NN several times can 

relieve the concerns about initial weight parameters for 

optimization by setting different initial parameters 

automatically. For example, Liu et al. (2010) used the 

repeating method with 50 attempts to predict battery’s RUL 

with uncertainty. Actually, a basic method to handle 

uncertainty in NN is the probabilistic neural network (PNN) 

(Specht, 1990) using Parzen estimator (Parzen, 1962). 

However, most papers employ PNN for classification or risk 

diagnosis (Petalas, Spyridonos, Glotsos, Cavouras, 

Ravazoula, & Nikiforidis, 2003; Giurgiutiu, 2002; Mao, Tan, 

& Ser, 2000), and prognostics ones are rarely found except 

for the study by Khawaja, Vachtsevanos, and Wu (2005). 

They introduced a way to obtain not only confidence bounds 

but also confidence distribution based on PNN to predict a 

crack on a planetary gear plate. Unfortunately, bias in 

measured data cannot be handled with data-driven 

approaches because the approaches are based on measured 

data, and there are no parameters related with bias. 

2.2. Gaussian Process (GP) Regression 

GP is a commonly used method among regression-based 

data-driven approaches for prognostics, whose conceptual 

property is illustrated in Figure 2. An outstanding property 

of GP is that simulated outputs are smoothly constructed 

making exactly the same value as every measured point 

(data) as blue-dashed curve in Figure 2. The reason for this 

can be explained with following GP model that is composed 

of a global model ( fβ ) and departures (  1 rR Y Fβ ): 

 1*=y  fβ rR Y Fβ                           (1) 

where *y  is a simulated GP output at an arbitrary input 

vector, *x  whose size is 1 p  ( p  is the number of input 

variables), f  is the known function of *x  and determines 

polynomial order of global model, β  is the regression 

coefficient and obtained by  
1

1 1T T


 
F R F F R Y , and r  is a 

http://en.wikipedia.org/wiki/Bradley_Efron
http://en.wikipedia.org/wiki/Robert_Tibshirani
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1 n  ( n  is the number of measured data) vector, which 

represents a correlation between *x  and a n p  input 

matrix of all measured points, X . The rest capital letters 

, , and R Y F  that are the same property as their small letters’ 

have the same size in terms of row vector as their small 

letters, but the size of column vector is the same as number 

of measured data, n .  

If correlation terms ( r  and R ) and departures term are 

ignored in Eq. (1), it becomes that *=y fβ  with 

 
1

T T


β F F F Y , which is the ordinary least square 

regression (Tran & Yang, 2009). Consequently, GP is 

distinguishable from least squarie in terms of that simulated 

outputs penetrate every measured point with two 

assumptions that (1) GP model is a combination of global 

model and local departures, and (2) the error between every 

points is correlated. Assumption (1) is already reflected in 

the GP model, and assumption (2) is determined by a type 

of covariance function and scale parameters (or 

hyperparameters) related with them. Once scale parameters 

are obtained based on the measured points (training data) 

using optimization algorithm, GP model can be used to 

predict future behavior of damage. Lastly, the name, 

Gaussian process comes from the assumption that each 

point is normally distributed. Based on this assumption with 

multivariate normal distribution, more 

mathematical/probabilistic derivation can be done in terms 

of probabilistic parameters of Gaussian distribution; the 

mean expressed in Eq. (1) and the variance found in the 

Refs. (Gelman, Carlin, Stern, & Rubin, 2004; Santner, 

Williams, & Notz, 2003). 

2.2.1. Issue 1: Model Problem (Covariance Function) 

In common with NN, the performance of GP largely 

depends on models. In this case, covariance function and 

polynomial order of global model are related with GP model, 

but order of global model is less important as it is often 

handled with constant value. There are various types of 

covariance functions such as radial basis (or squared 

exponential), rational quadratic, neural network, Matern, 

periodic, constant and linear (Rasmussen & Williams, 2006; 

Williams, 1997). Mohanty, Das, Chattopadhyay, and Peralta 

(2009) compared the prediction results of crack length under 

variable loading from radial basis function (RBF) 

covariance function and neural network based (NN-based) 

covariance function, and showed that RBF-based GP model 

outperformed NN-based one in their application. As part of 

an effort to resolve the selection of covariance function, 

research on nonstationary covariance functions that is a 

model to adapt to variable smoothness and can be 

constructed by adding or multiplying simple covariance 

functions has been conducted. Paciorek and Schervish (2004) 

introduced a class of nonstationary covariance functions so 

that the model adapts to variable smoothness, and compared 

the results from stationary GP. From their research, it was 

concluded that the results from nonstationary GP are better 

than stationary GP, but pointed out that simplicity loss of 

the algorithm occurs as the nonstationary GP requires more 

parameters than a stationary GP. Brahim-Belhouari and 

Bermak (2004) used nonstationary GP to predict respiration 

signal, and compared with a GP model with an exponential 

covariance function, and Liu, Pang, Zhou, and Peng (2012) 

used the combination of three covariance functions to 

predict lithium-ion battery degradation (state of health, 

SOH). 

2.2.2. Issue 2: Optimization Problem (Finding Scale 

Parameters) 

Determining the scale parameters related with covariance 

function is also important, since they determine the 

smoothness of regression model. In general, the parameters 

are obtained based on equivalent likelihood function (Sacks, 

Welch, Mitchell, & Wynn, 1989) via optimization algorithm. 

It, however, is a difficult task to search their optimum 

values, and even if they are found they are not always the 

best selection (An & Choi, 2012). Since the scale 

parameters are seriously affected by input and output values, 

input and output values are applied as normalized values in 

most cases. Mohanty et al. (2009), however, studied the 

performance to prediction crack growth according to three 

different types of scaling. Neal (1998) considered the scale 

parameters as distributions rather than deterministic values, 

and An and Choi (2012) showed that the GP models with 

scale parameters identified as distributions outperform the 

one using optimal deterministic parameter. 

2.2.3. Issue 3: Data Problems (Num. of Data and 

Uncertainty) 

Even though large number of training data is usually 

profitable for increasing accuracy of prediction results, it’s 

not always acceptable for GP because it also increases 

computational costs to calculate the inversion of the 

covariance matrix (Eq. (1)) as well as generates singularity. 

It is suggested that inversion by direct method may become 

 
Figure 2. Illustration of GP regression 
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prohibitive when the number of the data points is greater 

than 1000 (MacKay, 1997). As a solution to relieve such 

problem, the methods to select a subset of data points are 

usually employed (Lawrence, Seeger, & Herbrich, 2003; 

Smola & Bartlett, 2001; Foster, Waagen, Aijaz, Hurley, 

Luis, Rinsky, Satyavolu, Way, Gazis, & Srivastava, 2009). 

While Melkumyan and Ramos (2009) suggested new 

covariance function based on cosine function that inherently 

provides a sparse covariance matrix. In terms of uncertainty, 

it’s determined with Gaussian noise as mentioned before. 

Mohanty et al. (2007) and Liu et al. (2012), respectively, 

showed the predictive confidence interval of crack length 

and SOH of lithium-ion battery using GP. 

3. REVIEWS ON PHYSICS-BASED APPROACHES 

Physics-based approaches combine the physical damage 

model with measured data to predict future behavior of 

damage and the RUL, which is illustrated in Figure 3. The 

behavior of the physical model depends on the model 

parameters that are estimated and updated in company with 

damage state based on the measured data. Finally, the RUL 

is predicted by progressing the damage state until it reaches 

a threshold as the dashed curves in the Figure 3. Similar 

issues are addressed in this approach as the previous ones.  

3.1. Issue 1: Model Problem (Physical Model Accuracy) 

Since the physics-based approaches employ a physics model 

describing the behavior of damage, it has advantages in 

predicting long term behaviors of damage. However, model 

validation should be carried out since such models contain 

many assumptions and approximations. There have been 

much literature on model validation using statistical 

methods such as hypothesis test and Bayesian method to 

calibrate and improve the model by comparing with 

observation (Rebba, Huang, Liu, & Mahadevan, 2006; 

Rebba, Mahadevan, & Huang, 2006; Kleijnen, 1995; 

Sargent, 2009). In general, the number of model parameters 

increases as model complexity increases, which makes it 

difficult to identify the model. Recently, Coppe, Pais, 

Haftka, and Kim (2012) showed that the issue of model 

accuracy can be relieved by identifying equivalent model 

parameters of the simpler model. They showed that a simple 

Paris model with an assumed stress-intensity factor can be 

used for predicting crack growth of complex geometries by 

adjusting the model parameters to compensate for the error 

in the simple model. Although this is limited to the case of a 

similar model form, cumbersome efforts to validate the 

model accuracy can be eased off. 

3.2. Issue 2: Model Parameter (Physical Model 

Parameters, Noise and Bias) 

3.2.1. Introduction to Physics-Based Algorithms 

Once a physical model is available, model parameter 

identification becomes the most important issue, which is 

performed with an estimation algorithm based on measured 

data with a usage condition. In fact, estimation algorithms 

become criteria to classify physics-based approaches. There 

are several algorithms such as Kalman filter (Kalman, 1960), 

extended Kalman filter (Julier & Uhlmann, 2004), particle 

filter (PF) (Doucet, De Freitas, & Gordon, 2001), and 

Bayesian method (BM) (Kramer & Sorenson, 1998). These 

algorithms are based on the Bayesian inference (Bayes, 

1763), in which observations are used to estimate and 

update unknown parameters in the form of a probability 

density function (PDF). The updated PDF is called the 

posterior distribution, which is obtained by multiplying the 

prior distribution that is prior knowledge or information of 

the unknown parameters and the likelihood function that is 

the PDF value of measured data conditional on the given 

parameters.  

There are several researches dealing with parameter 

estimation in terms of prognostics. DeCastro, Tang, Loparo, 

Goebel, and Vachtsevanos (2009) used extended Kalman 

filter to estimate model parameters and predict RUL for 

crack growth on a planetary carrier plate. Orchard and 

Vachtsevanos (2007) estimated the crack closure effect 

using PF for RUL prediction of a planetary carrier plate 

based on vibration-based feature. Daigle and Goebel (2011) 

used PF to estimate wear coefficients by considering 

multiple damage mechanisms in centrifugal pumps. An, 

Choi, Schmitz, and Kim (2011) estimated wear coefficients 

to predict the joint wear volume of slider-crank mechanism 

based on BM. Among the aforementioned algorithms, PF is 

the most commonly used for prognostics. In the following, 

PF and BM are discussed. 

 Particle filter (PF) 

PF is the most commonly used algorithm in the prognostics 

field, in which the posterior distribution of model 

parameters is expressed as a number of particles (or samples) 

and their weights as shown in Figure 4. There are three steps 

in PF process: (1) prediction step - posterior distributions of 

the model parameters ( θ ) at the previous ( 1k  th) step are  
Figure 3. Illustration of physics-based prognostics 
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used for the prior at the current ( k th) step, and the damage 

state at the current time is transmitted from the previous one 

based on a damage model (physical model), (2) update step 

- model parameters and damage state are updated based on 

the likelihood function combined with measurement data 

( x ), and (3) resampling step - particles of the prior 

distribution are resampled based on their weights expressed 

as vertical-rectangular in Figure 4 by duplicating or 

eliminating the samples with high or low weight, 

respectively. The resampled result corresponds to the 

posterior distribution at the current step and is also used as 

the prior distribution at the next ( 1k  th) step. That means 

the Bayesian update is processed in a sequential way with 

particles in PF. 

Since prediction results from PF depends on initial 

distributions of parameters (posterior distribution at 0k  ), 

correct information or proper assumption for initial 

distributions is one of the most important issues to find 

model parameters. Another important point is accumulated 

sampling error that occurs during the update process. In 

other words, the particle depletion problem can occur since 

those particles with a very small weight are eliminated, 

while those particles with a high weight are duplicated. 

There have been researches to recover the particle diversity 

during update process. A common practice is to add random 

sample 
1k 

 from arbitrary distribution during the 

prediction step; that is, 
1 1k k k      so that identical 

particles are not generated (Higuchi, 1997; Kitagawa, 1987; 

Wang, Liao, & Xing, 2009). This method, however, can 

change probabilistic characteristic of parameters as well as 

increase the variance of parameters. Gilks and Berzuini 

(2001) proposed a resample-move algorithm based on PF 

and Markov Chain Monte Carlo (MCMC) method (Andrieu, 

Freitas, Doucet, & Jordan, 2003), Kim and Park (2011) 

introduced the maximum entropy particle filter and 

demonstrated the effectiveness of the proposed technique by 

applying it to highly nonlinear dynamical systems. 

 Bayesian method (BM) 

The Bayesian update is processed with an overall way in 

BM; the posterior distribution is obtained as an equation by 

multiplying all the likelihood function given by k  number 

of data. Once the posterior distribution is available, a 

sampling method can be used to draw samples from the 

posterior distribution. Therefore, the estimation performance 

in BM depends on sampling methods, MCMC method 

which has been recognized as a computationally effective 

means is usually employed. MCMC is based on a Markov 

chain model of random walk as shown in Figure 5. It starts 

from generating an arbitrary initial sample (old sample) and 

a new sample from an arbitrary proposal distribution with 

the centered at the old sample. The two samples are 

compared with each other based on an acceptance criterion, 

from which either one is selected. In Figure 5, two circles 

with dashed line means new samples not selected, and in 

this case, the old one is selected. This process is repeated as 

many as the number of particles in PF. 

Even though there is no accumulated sampling error in BM, 

there still exists some error caused by sampling method, 

random walk. Initial sample, proposal distribution for new 

sample, and acceptance ratio to the old sample have an 

effect on the sampling results; with improper setting, it 

could be not converged or show stationary chain that old 

sample is selected continually. There are some researches to 

reduce those effects by utilizing marginal density function 

for proposal distribution (Rubin, 1998; An & Choi, 2013). 

Gelfand and Sahu (1994) presented two distinct adaptive 

strategies to accelerate the convergence of a MCMC 

algorithm. More literatures are found in the Ref. (Andrieu et 

al. 2003). 

3.2.2. Correlation Issue between Model Parameters 

One of the most challenging parts in model parameter 

identification is correlation between model parameters. 

Without properly identifying correlation, the predicted RUL 

can be significantly different from reality. An, Choi, and 

Kim (2012) studied the correlation in a crack growth 

problem, in which correlation between the parameters was 

well identified, but eache parameter was not accurately 

identified under a large level of noise because of the 

correlations: correlation between the two Paris parameters 

and correlation between bias and the initial crack size. The 

 
Figure 4. Illustration of PF process 

 
Figure 5. Illustration of BM process with MCMC. 
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prediction results of damage growth and RUL, however, 

were reliable since many combinations of the correlated 

parameters can yield the same prediction results.  

3.3. Issue 3: Uncertainty From Data (Noise and Bias) 

Since damage cannot be directly measured in many cases, a 

damage quantification process is required from sensor 

measurement data, which is called structural health 

monitoring (SHM). SHM data could include a large level of 

noise and bias due to sensor equipment, and there are 

several researches dealt with the analysis of noise and bias 

in SHM data. Gu, Azarian, and Pecht (2008) presented a 

prognostics approach which detects the performance 

degradation of multilayer ceramic capacitors under 

temperature-humidity-bias conditions. Coppe, Haftka, Kim, 

and Yuan (2009) showed that the uncertainty in structure-

specific damage growth parameters can be progressively 

reduced in spite of noise and bias in sensor measurements. 

Guan, Liu, Saxena, Celaya, and Goebel (2009) considered 

various uncertainties from measurements, modeling, and 

parameter estimations to describe the stochastic process of 

fatigue damage accumulation based on a maximum entropy-

based general framework. It is concluded that convergence 

with large noise becomes slow, and positive and negative 

bias, respectively, effect on early and late prediction. 

4. CASE STUDY TO SELECT PERTINENT METHOD 

Prognostics algorithms including NN, GP, PF and BM are 

analyzed and compared, so that engineers can choose the 

best algorithm for their field of applications. Since there are 

many variations each algorithm, the most common and basic 

ones are employed. 

4.1. Problem Definition 

4.1.1. Given Information for Case Study 

Paris model (Paris & Erdogan, 1963) and Huang’s model 

(Huang, Torgeir, & Cui, 2008) are, respectively, employed 

for a simple behavior of damage growth and complex 

behavior of damage growth, which are shown in Figure 6. In 

each model, there are ten sets of data under different loading 

conditions. Different level of noise and bias are artificially 

added to the data in Figure 6. Bias is considered as -2 mm, 

and noise is uniformly distributed between u mm and u

mm. Three different levels of u  are considered: 0, 1, and 5 

mm. Ten data sets are numbering, one data set (usually #8) 

will be used for the set to be predicted and the other sets will 

be used for training data. 

4.1.2. Definition of Algorithm Conditions 

For the case of NN, the network model is constructed based 

on FFNN with three input nodes, one hidden layer with two 

nodes. Then, the number of total weight parameters become 

11 including eight weights ( 3 2 2 1   ) and three biases 

(2+1). Since there is one hidden layer, two transfer 

functions are required, and as a common way, the tangent 

sigmoid and pure linear functions are employed. For GP 

model, linear or second order polynomial function is 

employed for the global model, and one parameter radial 

basis covariance function is employed as follow: 

   
2

, exp / , , , 1, ,i j i jR d h d i j n     
 

x x x x       (2) 

where h  is a scale parameter to be identified, ,i j
x x  are 

vector of input variables, n  is total number of training data; 

in this case, 3n k  , and k  is the current time index. 

For the input variable in NN and GP, the previous three 

damage data (
3 2 1, ,k k kx x x  

) are used, and the current 

damage data (
kx ) becomes the output. Also, loading 

conditions can be utilized by adding to the input nodes. In 

this case, loading condition at the current cycle is added to 

the forth input node. If 16k  , 13 sets of input and output 

data are available, which are used to obtain weight 

parameters, and then future damages ( 1 2 3, , ,...p p p

k k kx x x   ) are 

predicted based on the obtained parameters and the previous 

damage data. According to the previous damage data used 

as inputs, prediction methods can be divided into short term 

prediction and long term prediction. Short term prediction is 

one-step ahead prediction since it uses only measured data 

for input, e.g., 
1 2, ,k k kx x x 

 are inputs to predict 3

p

kx  . On 

 
a) simple model 

 
b) complex model 

Figure 6. Problem definition for case study 
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the other hand, long term prediction is multi-step ahead 

prediction since it utilizes predicted results as inputs, e.g., 

1 2, ,p p

k k kx x x   are inputs to predict 3

p

kx  . In terms of 

prediction uncertainty, while noise in training data can be 

handled during GP, bootstrapping is employed by repeating 

NN 30 times to handle uncertainty from data noise and 

optimization process in NN.  

Models for physics-based approaches are the same as Paris 

model and Huang’s model employed to generate data sets. 

There are, respectively, two and six model parameters in 

Paris model and Huang’s model, and the data sets in Figure 

6 were generated with following true model parameters: 

Paris model ture parameters: =3.8, 1.5e-10m C   

Huang’s model true parameters: 3.1, 5.5e-11,m C   

3.1, 5.5e-11, 5.2, 0.2, 2.8, 580th ym C K n       

 

4.2. Case Study Results 

4.2.1. Data-Driven Results 

At first, the performance of training data is compared. 

Figure 7 shows the comparison between NN and GP with 

different levels of noise. In the figure, the red and blue star 

markers are, respectively, future damage data and training 

data up to the current cycle (1500 cycles), and circle 

markers are simulation results from each algorithm. Thick 

dotted curve and thick dashed curve are, respectively, 

medians of short term prediction and long term prediction, 

and their thin curves represent 90% confidence intervals. 

GP show exact result under perfect data (no noise) and 

outperform NN under small noise in terms of both short 

term and long term prediction. Long term prediction using 

GP is not available under large noise and many sets of 

training data. In this case, NN outperform GP in both short 

term and long term prediction, and long term prediction 

results get better as the number of cycles increases. The 

reason why GP is better than NN for small noise and small 

number of data is because of correlation property. Large 

data affect adversely the covariance matrix manipulation. 

Also, GP model penetrates every training data points 

assuming each data are correlated, which means that the GP 

behaves poorly when the data include large noise because 

the noisy relation is reflected to the predictions. While the 

reason for better results from NN under large noise and 

many data is that increasing data have no effect on network 

model but gives more information. Also, combination of 

transfer function is much less restricted to the level of noise. 

4.2.2. Physics-Based Results 

As mentioned before, bias in obtained data cannot be 

handled with data-driven approaches. In contrast, physics-

based one can do it by adding bias to unknown parameter, 

whose results are shown in Figure 8. In the figure, 

measurement data up to the current cycle (blue star makers) 

are biased; measured crack size is consistently less than the 

true one. The medians of prediction results (dashed curves) 

at the current cycle are close to the true one, which means 

bias is well identified and compensated. Since physical 

model describes behavior of damage data accurately, the 

difference between model and data can be obtained as a 

constant at any cycle, which satisfies bias in measurement 

data is a constant. Further study for noise and bias in physic-

based approaches is found in the Ref. (An et al., 2012). 

The difference between PF and BM is negligible in view of 

the prediction results because the two methods have the 

same foundation with the same physical model. The only 

differences are the way of updating distributions and 

generating samples. BM is faster than PF because the 

 
a) NN under perfect data with 

prediction set#=8 

 
b) GP under perfect data with 

prediction set#=8 

 
c) NN under small noise with 

prediction set#=5 

 
d) GP under small noise with 

prediction set#=5 

 
e) NN under large noise with 

prediction set#=8 and 

training set#=6,7,9,10 

 
f) GP under large noise with 

prediction set#=8 and 

training set#=6,7,9,10 

Figure 7. Results from data-driven approaches with the case of 

simple damage growth 
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posterior distribution is given as a single equation and there 

is no accumulated sampling error. Even if PF has an 

accumulated sampling error during the updating process, it 

predicts well because the updating process occurs along 

with damage propagation. However, BM is not practical for 

them because of tremendous computational costs (Gilks & 

Berzuini, 2001; An, Choi, & Kim, 2012; Storvik, 2002). 

This is a key difference between the two methods, and more 

detailed comparison between PF and OBM can be found in 

the reference by An et al. (2012). 

4.2.3. Case Study for Comparison between NN and PF 

For data-driven approaches, NN is considered to predict 

damage growth in a complex model, because it is difficult to 

use a proper correlation function for GP to predict future 

due to retardation portion in obtained data. To find out how 

many data sets are required to obtain proper prediction 

results, different numbers of training sets are randomly 

selected. The results from this case study are presented in 

Figure 9 (a) and (b). Based on the training data sets, NN 

well predicts future damage as shown in Figure 9 (a). It, 

however, is limited to short term prediction, and proper 

results for long term prediction could not be found with 

different attempts. If there are available loading conditions, 

medians of short term and long term prediction become 

similar to each other with at least three sets of training data 

as shown in Figure 9 (b). 

If there are available physical model as well as loading 

conditions, it might be clear that using physics-based 

approaches for the case of complex model outperforms data-

driven ones. Since BM has a difficulty for the complex 

model due to extremely expensive computational costs, PF 

is only considered, and the results are shown in Figure 9 (c). 

The median of prediction is still not accurate, but 

uncertainty covers that. Also, since this physical model 

largely depends on the initial damage, if the initial 

distribution of damage is also updated, median will close to 

the true one. For example, Figure 9 (d) shows the results 

with true value of initial damage. 

4.3. Results summary 

In terms of algorithms, results from case studies can be 

summarized as follow: GP works well when the correlation 

function can be well defined such as the case of small noise 

data and simple models. It is easy to implement and fast to 

calculate. NN is proper to apply for the case of large noise 

and complex models with many training data sets. Even so, 

NN can be applied for small noise and simple models, 

which has a wide range of applications. It is, however, 

challenging to obtain many sets of data in realistic 

applications. PF and BM are less affected by the level of 

noise and model complexity, but they can be employed only 

if a physical model and loading conditions are given. The 

 
a) PF 

 
b) BM 

Figure 8. Results from physics-based approaches with the 

case of simple damage growth under small noise and 

negative bias 

 
a) NN with training set#=2, 7, 

9 

 
b) NN with training set#=6, 7, 

10 and loading conditions 

 
c) PF with distributed initial 

damage size 

 
d) PF with true value of initial 

damage size 

Figure 9. Comparison of NN and PF with the case of complex 

damage growth under small noise 
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results from the two methods are not much different, but PF 

and BM, respectively, have advantage in terms of wide 

range of applications and a fast calculation. Further, the case 

of no loading conditions and no physical models, short term 

prediction can be done by using data-driven approaches 

with at least three data sets. For long term predictions, 

loading conditions are additionally required. 

5. CONCLUSIONS 

This paper provides a practical review of both data-driven 

and physics-based approaches for the purpose of prognostics. 

As common prognostics algorithms, NN, GP, PF and BM 

are introduced and employed for case studies under practical 

conditions to discuss about attributes, pros and cons, and 

applicable conditions. Even if advanced algorithms are 

available, the basic algorithms are employed in this study, 

and the results are analyzed focusing on their intrinsic 

properties. This will be helpful for the beginners in 

prognostics to choose the best algorithm for their field of 

applications. 
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