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ABSTRACT 

Data-driven techniques based on Bayesian framework like 

Gaussian Process Regression (GPR) can not only predict the 

lithium-ion battery Remaining Useful Life (RUL), but also 

provide the uncertainty representation. However, it is 

always difficult to choose the covariance function of GPR 

and the confidence bound is usually large if the training data 

are not enough. In order to solve this problem, a combining 

method is proposed, it is a prognostic framework based on 

GPR model combined with Empirical Model (EMGPR) to 

realize the lithium-ion battery RUL prediction. EMGPR has 

the advantages of predicting the tendency and uncertainty 

management for RUL estimation. The modeling process of 

EMGPR consists of two steps. The self-deterministic part, 

which reflects the real physical process of battery 

degradation, is approximated by the empirical model. And 

the disturbance part, which is caused by random noise such 

as measurement and environment noise, is expressed by the 

GPR model. In application, two key factors of EMGPR are 

focused. Firstly, the prediction result is not accurate enough 

if the training data are not very reliable. In this case, more 

reliable training data should be selected optimized. 

Secondly, the characteristic of the disturbance is involved to 

determine the kernel function of GPR model. With this 

EMGPR framework, the RUL result is estimated with 

uncertainty representation, as well, the covariance function 

of GPR is easy to choose. Experiments with NASA PCoE 

and CALCE battery data show the satisfactory result can be 

obtained with the EMGPR approach. 

1. INTRODUCTION 

Lithium-ion batteries have been widely used in the domains 

of portable designs, notebook computers, electric vehicles 

and airplanes and spacecrafts because of their high energy 

density, low self-discharge rates, wide operating 

temperature ranges, and high charge-discharge rates. 

Lithium-ion batteries which act as energy storage 

components are critical to the safety of electric devices or 

systems (Yang, Ye, Guo & Ma, 2012). However, the 

lithium-ion battery will degrade over time on account of 

aging, environmental impacts and dynamic loading, etc. 

Failure of battery may lead to loss of operation, decreased 

output, and it might even bring danger to the operators. 

Hence, it is meaningful to detect the underlying degradation 

and take measures to prevent the potential failures and 

ultimately prevent the disastrous failures. Prognostics and 

health management (PHM), is to predict how soon a system 

or component will loss efficacy or reach the failure 

threshold (Zhang & Lee, 2011) (Widodo, Shim, 

Caesarendra & Yang, 2011). Effective precaution measures 

could be taken in advance if we predict the failures 

successfully. For health state monitoring, battery parameters 

included voltage, current, temperature and capacity are 

measured to estimate the state of charge (SOC), the State of 

Health (SOH), the end of life (EoL) and the remaining 

useful life (RUL) (here we only focus on the remaining 

cycle life) of lithium-ion battery (Saha, Goebel & 

Christophersen, 2009).  

In order to estimate lithium-ion battery RUL well and make 

an optimized design of battery-systems, both model-based 

and data-driven techniques are applied. Gao et al. presents a 

dynamic model which is suitable for virtual-prototyping of 

portable battery-powered systems. The model takes 

nonlinear equilibrium potentials, rate, temperature-variation, 

thermal effects and transient power demand into 

consideration (Gao & Liu, 2002). Rong et al. introduces an 

analytical model to predict the remaining capacity of a 

lithium-ion battery, which is in view of the cycle-aging and 

temperature effects (Rong, 2006). Erdinc et al. proposes a 

dynamic model which cares about the significant 

temperature and capacity fading (Erdinc, Vural & 
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Uzunoglu, 2009). The model-based technologies are direct 

and intelligible. However, the performances and characters 

of batteries are highly influenced by their complex operating 

conditions and internal inaccessible. Hence, it is difficult to 

establish an exact model to describe whole information of 

lithium-ion batteries. 

With the advancement of sensor and data storage 

technologies, the data-driven prognostics are emphasized. 

The data-driven approach Auto-Regressive Integrated 

Moving Average model (ARIMA) is utilized for RUL 

estimation. Without taking any physical process into 

consideration, it is possible to deal with the non-stationary 

monitoring data. But the ARIMA model is unsuitable for 

long-term prediction. Then the Extended Kalman Filter 

(EKF) is proposed to handle the nonlinear and 

non-stationary modeling. The EKF cannot accommodate the 

non-modeled process (Saha, Goebel & Christophersen, 

2009) (Do, Forgez, Benkaha & Friedrich, 2009) (He, 

Williard, Osterman & Pecht, 2011). Lots of data-driven 

methods cannot manage the uncertainty of prognostics. 

Hence, the uncertainty caused by the measurement errors, 

the environmental noise and the model noise is addressed in 

prognostics. Especially, for long-term state prediction, the 

uncertainty must be represented and managed effectively 

(He, Williard, Osterman & Pecht, 2011). Bayesian 

framework based data-driven approaches such as Particle 

Filter (PF) (Dalal, Ma & He, 2011) (Xing, Tsui & Pecht, 

2012), Relevance Vector Machine (RVM) and Gaussian 

Process Regression (GPR) can provide the uncertainty 

reprepsentation of the RUL value (Goebel, Saha & Saxena, 

2009) (Saha, Goebel, Poll & Christophersen, 2009) (Goebel, 

Saha, Saxena, Celaya &  Christophersen, 2009) (Chen & 

Pecht, 2012).  

Among these algorithms, the GPR model based on the 

Bayesian framework is flexible to be adopted in the 

non-linear regression of stochastic time series. And it can 

predict the RUL of lithium-ion batteries, offerring the 

confidence interval of predicted value and manage the 

uncertainty (Rasmussen & Williams, 2006) (Saha, Goebel 

& Christophersen, 2009). The GPR algorithm provides 

variance around its means predictions, and combines prior 

knowledge with observed data (Li & Zhang, 2010) 

(Cristianini & Taylor, 2000) (Scholkopf & Smola, 2002). 

Although the GPR provides a theoretically framework for 

prognostics, there are some limitations in practical usage. 

First, choosing proper kernel function (covariance function) 

is critical. However, it is sometimes difficult to make an 

optimal selection due to lack of knowledge about the actual 

process. In addition, the GPR model can predict the mean 

function and variance function with hyper-parameters, if the 

training data is not available enough, the prediction 

confidence bound will become so large and the result is not 

reliable (Goebel, Saha & Saxena, 2009). 

In this work, a novel empirical mode combined with GPR is 

proposed to predict the RUL of lithium-ion battery (it is as 

EMGPR). Firstly, by the combination, we can conquer the 

inconvenience of choosing the prediction covariance 

function. Secondly, the optimization of the selection of the 

training data is focused to reduce the prediction uncertainty.  

In the EMGPR framework, training data are divided into 

two parts. One is self-deterministic and could be estimated 

by empirical model. This part reflects the real physical 

deterioration of lithium-ion battery. The other is the 

disturbance components which reflects the random noise 

including measure noise, model noise and environment 

noise could be expressed by GPR. The final prediction 

result of RUL is the sum of the two parts. Experiments have 

been done with data set of NASA and the University of 

Maryland to illustrate the effectiveness of EMGPR 

prognostics framework for lithium-ion battery. 

This paper is organized as follows. The GPR method is 

depicted in Section 2. In Section 3, the lithium-ion 

prognostic method of EMGPR is introduced. Experiments 

of lithium-ion battery RUL estimation with EMGPR are 

discussed in details in Section 4. The conclusion and future 

work are described in Section 5 and 6. 

2. GAUSSIAN PROCESSING REGRESSION MODEL 

The GPR model affects input variables to output crack 

growth by probabilistically inferring the nonlinear 

relationship between input and output (Mohanty, Das, 

Chattopadhyay & Peralta, 2009). It has been widely applied 

in machine learning (Rasmussen & Williams, 2006) 

(Snelson, 2007), data mining, image processing, pattern 

recognition and prognostics of both metallic and electronics 

systems. Particularly, GPR model is utilized for the 

prognostics of lithium-ion battery (Liu, Pang, Zhou, & Peng, 

2010). 

The basic idea of GPR modeling is to define the Gaussian 

Processing (GP) to describe a function distribution. The GP 

is a collection of random and finite stochastic variables 

which follows to Gaussian distribution. GP is fully 

described by its mean function ( )m x  and the covariance 

function ( , ')k x x . 

( ) ~ ( ( ), ( , '))f x GP m x k x x            (1) 

( ) [ ( )]m x E f x                (2) 

( , ') [( ( ) ( )), ( ( ') ( '))]k x x E f x m x f x m x        (3) 

where the symbol E means the expectation. 

For the regression, we model as, 

( )y f x                   (4) 
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Here x is the input vector, f is the function output and y is 

the observed values with noise. The noise   is usually 

assumed to follow the Normal distribution.  

2~ (0, )nN                  (5) 

The prior distribution of y is, 

2~ ( ( ), ( , ) )n ny N m x K X X I         (6) 

The prior joint distribution of y and the prediction value *f  
is described as follows: 

2

*

* * * *

( , ) ( , )
~ ( ),

( , ) ( , )

n n
y K X X I K X x

N m x
f K x X k x x

   
       

  (7) 

The parameter ( , ) ( )n ijK X X K k   is a symmetric 

positive definite covariance matrix. The element in the 

matrix 
ijk means the correlation of ix  and 

jx . The 

equation 
* *( , ) ( , )TK X x K x X  is the covariance matric of 

test data *x  and training data X. * *( , )k x x  is the 

covariance of *x  itself. The symbol nI  is a unity matrix. 

We can compute the posterior distribution of prediction 

value 
*

f : 

* * **| , , ~ ( ,cov( ))f X y x N f f            (8) 

2 1

** ( , )[ ( , ) ] ( )n nf m K x X K X X I y m       (9) 

2 1

* * * * *cov( ) ( , ) ( , ) [ ( , ) ] ( , )n nf k x x K x X K X X I K X x    

(10) 

Hence, the mean of the prediction output is,  

^

* *f                     (11) 

And the variance of the prediction output is, 

^
2

* *cov( )f                  (12) 

Different mean functions and covariance functions contain 

some unknown parameters, they are hyper-parameters. 

Based on marginal likelihood Bayesian theory, we can 

identify the optimal hyper-parameters with a numerical 

optimization routine such as conjugate gradients 

(Rasmussen & Williams, 2006) (Li & Zhang, 2010). 

By analyzing Eq. (9) to Eq. (12), the main challenge is to 

determine the covariance function for the prognostics with 

GPR. 

3. PROGNOSTICS FRAMEWORK OF EMGPR 

The remaining useful capacity of lithium-ion battery is 

predicted in this paper to calculate the RUL. A fused 

framework of EMGPR is proposed to predict the RUL of 

lithium-ion battery. Here two important steps are involved. 

Firstly, the characteristic of battery is analyzed to set the 

kernel function of GPR. Secondly, experiments are 

implemented to optimize the preferable training data. 

Theoretically, any time series can be represented as 

consisting of two parts, a self-deterministic part and a 

disturbance component (Saha, Goebel & Christophersen, 

2009). The self-deterministic part depends on the real 

physical process, while the disturbance component mainly 

influenced by the random noise containing measurement 

noise, process noise, surrounding environment noise, etc. In 

the EMGPR framework, the self-deterministic part is 

described by the empirical model such as 

double-exponential model and Gaussian model, which 

influent the output by curve fitting algorithms. The 

disturbance component is expressed by GPR Model. The 

final prediction result is the fusion of the two parts. The 

prognostics flowchart is shown in Figure 1. 
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to get fitting 
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Prediction 2nd 
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Figure 1. The fusion EMGPR framework based on 

combined GPR and Empirical Model 

The detail steps of the EMGPR algorithm are as follows: 

Step 1. Choose the training data. This step is executed 

repeatedly until a satisfied training accuracy is obtained. In 



Annual Conference of Prognostics and Health Management Society 2013 

4 

this work, we assume that the training ends while the Root 

Mean Square Error (RMSE) value is less than 0.5. 

Step 2. Choose a proper empirical model to describe the real 

physical deterioration of lithium-ion battery. Similarly, this 

step is carried out repeatedly to identify the suitable 

empirical model. The criterion of choosing the training data 

and empirical model is an experienced setting with 

experiments. 

Step 3. Put the training data into the identified empirical 

model to get a fitting curve y1 (In this step, the parameters of 

empirical model are determined).  

Step 4. Predict with the model in Step 3 to obtain the 1
st
 

prediction output. 

Step 5. Subtract y1 from y to get the disturbance part, 

denoted as the variable y2. 

Step 6. Analyze the characteristics of disturbance part and 

choose the covariance function of GPR model. 

Step 7. Initialize parameters of mean function and 

covariance function of GPR model. 

Step 8. Train the hyper-parameters of covariance function. 

Step 9. Compute the prediction results of disturbance with 

GPR model (it is as the 2
nd

 prediction output). 

Step 10. Fuse the 1
st
 prediction output and the 2

nd
 prediction 

output together to obtain the final estimated value. 

4. EXPERIMENTS AND DISCUSSION 

4.1. Raw Data of Lithium-ion Batteries 

The data set used in this work to perform the lithium-ion 

battery prognostics are obtained from the data repository of 

NASA Ames Prognostics Center of Excellence (PCoE) and 

the Center for Advanced Life Cycle Engineering (CALCE) 

of the University of Maryland.  

The battery data from NASA were run through 3 different 

operation profiles (charge, discharge and impedance) at 

room temperature. Charging was carried out in a constant 

current mode at 1.5A until the battery voltage reached 4.2V 

and then continued charging in a constant voltage mode 

until the charge current dropped to 20mA. Discharging was 

performed at a constant current level of 2A until the battery 

voltage falling to 2.7V, 2.5V, 2.2V and 2.5V for batteries 

B0005, B0006, B0007 and B0018 respectively. Impedance 

measurement was carried out through an electrochemical 

impedance spectroscopy frequency sweep from 0.1Hz to 

5kHz. Repeated charge and discharge cycles result in 

accelerated aging of the batteries while impedance 

measurements provide insight into the internal battery 

parameters that change with aging processes. The 

experiments were stopped when the batteries reached 

end-of-life criteria, which was a 30% fade in rated capacity 

(from 2Ahr to 1.4Ahr). This data set offers us the discharge 

capacity of each cycle.  

Figure 2 shows the capacity degradation of battery from 

NASA, assuming that the capacity threshold is 1.41Ah. The 

horizontal axis represents the number of charge and 

discharge cycles. The vertical axis represents the capacity 

(Ah). 
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Figure 2. Capacity Degradation of Battery from NASA 

PCoE 

Another data set is obtained from CALCE of the Maryland 

University, which is tested on the BT2000 lithium-ion 

battery experimental system. The experiment data contain 

two groups. The rated capacity is 1.35Ah and 1.1Ah 

separately. The experiments were done at 20℃ to 25℃, 

and the time, charging current/voltage, discharging 

current/voltage and charging/discharging capacity values are 

offered. Charging was carried out in a constant current 

mode at 0.675A until the battery voltage reached 4.2V and 

discharge was carried out at a constant current level of 

1.35A until the battery voltage felt to 2.7V. The discharging 

rate of battery CS2_8, CS2_21, CS2_33 and CS2_34 are 

0.5C. The experiments were stopped when the batteries 

reached end-of-life criteria, which was a 20% fade in rated 

capacity (from 1.1Ahr to 0.88Ahr).  

Figure 3 shows the capacity degradation of battery from 

CALCE of. Here the capacity threshold we set is 0.88Ah. 

0 50 100 150
0.8

0.9

1

1.1

1.2

1.3

Cycle

C
a
p

a
c
it

y
(A

h
)

 

 

Capacity-CS2-8

Capacity-CS2-21

Capacity-CS2-33

Capacity-CS2-34

Capacity Threshold

  

Figure 3. Capacity degradation of battery from CALCE 
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4.2. RUL prediction with different size of training data 

The prediction result with large confidence bound using the 

non-sufficient available data is analyzed here. Experiments 

are implemented NASA battery B0007 to determine the 

better size of the training data. The training data (cycle) are 

from cycle 2 to 140, from cycle 50 to 140 and from cycle 

100 to 140, respectively. The predicted results are shown in 

Figure 4. The red line of circle is the real test data, and the 

blue line with plus sign is the prediction result with training 

data from cycle 20 to cycle 140, the grey line with triangle 

is the prediction result with training data from cycle 50 to 

cycle 140 and the green line with square is the prediction 

result with training data from cycle 100 to cycle 140. The 

grey shade represents the prediction confidence bound. 
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Figure 4. Prediction with different size of training data  

Root Mean Square Error (RMSE) and Mean Absolute Error 

(MAE) are utilized to evaluate the accuracy of the 

estimation, which are defined as Eq. (13) and Eq. (14).  

2

1

1
[ ( ) ( )]

n

i

RMSE x i x i
n 

              (13) 

1

1
( ) ( )

n

i

MAE x i x i
n 

                (14) 

Here ( )x i  and ( )x i  represent the actual test data and the 

predicted result.  

The quantified comparison is shown in Table 1. 

Table 1 RMSE and MAE with different test data 

 

Training Cycle RMSE Value MAE Value 

20-140 0.3873 0.0581 

50-140 0.2719 0.0430 

100-140 0.0676 0.0090 

 

From Table 1, we can find that better prediction result can 

be obtained and the prediction confidence bound is smaller 

with local training data set, although the local data set is 

with less data points. 

4.3. RUL prediction with different covariance functions 

In this section, experiments are executed to illustrate the 

influence of covariance function in the lithium-ion battery 

prognostics based on GPR. Predictions are implemented 

with two common covariance functions, conSEiso function 

and covMaterniso function. Based on the experiments above, 

training data are chosen from 100 to 140 cycles. Prediction 

result is shown in Figure 5. 
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Figure 5. Predicted results with different covariance 

functions 

In detail, the conSEiso function and the covMaterniso 

function are defined as Eqs. (15) and (16). In Eqs. (15) and 

(16), 1 、 2 、 3 、 、 l 、d  are hyper-parameters. The 

valuables t and t   are the real value and prediction value. 

' 2
' 2

1 2

2

( )
( , ) exp( )

2

t t
k t t 




             (15) 

' 2

3

1

1
( , ') exp( ( ) )

2

d

l

k t t t t 


          (16) 

The RMSE and MAE are shown in Table 2. 

Table 2. Predicted RMSE and MAE with different 

covariance functions 

 

Covariance function RMSE MAE 

conSEiso 0.2520 0.0416 

conMaterniso 0.0628 0.0083 

 

We can find that the covariance function plays an important 

role in the prognostics of lithium-ion based on GPR model. 

Thus, it is necessary to take more efforts to the choice of 

covariance function. 

4.4. Choice of covariance function 

We assume that the battery data is composed by two parts: 

one reflects the inherent degradation regular 
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(self-deterministic part) which can be described and 

analyzed as double-exponential or Gaussian empirical 

model. The other part is the disturbance component, which 

connects with environment factor, operating load etc., which 

are stochastic and can be estimated with GPR model. 

Usually, the lifetime of electronics component degenerates 

with double-exponential or Gaussian curve. Hence, we 

firstly use a double-exponential model, described as Eq. 

(17), or Gaussian model, described as Eq. (18), to 

approximate the self-deterministic part. 

1 1

1 1 1

b x d x
y a e c e                  (17) 

22

2

( )

1 2

x b

cy a e




                  (18) 

Here, parameters 1a , 1b , 1c , 1d , 2a , 2b  and 2c  can 

be identified by fitting with the training data. The criterion 

of the choice of the empirical model is whether the 

prediction RMSE value is less than 0.5.  

Then, we can construct the disturbance component ( 2y ) 

which can be predicted with GPR,  

2 1y y y                     (19) 

where y  is the raw data value.  

The disturbance parts are indicated in Figure 6.  
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Figure 6. Disturbance parts 

For battery B0007, we choose training data from cycle 100 

to 140, the prediction output cycle is from 141 to 168 and 

the empirical model is Gaussian model. For battery B0005, 

the training data is from cycle 100 to 140, the prediction 

output cycle is from 141 to 168 and the empirical model is 

double-exponential model. For battery CS2_8, the training 

data is from cycle 122 to cycle 130, the prediction output 

cycle is from 131 to 146 and the empirical model is 

double-exponential model.  

We can conclude that the training number is some extent 

periodical from Figure 6. Therefore, we use the covariance 

function as Eq. (20), 

2 2 '

2

2

2
exp( sin ( ( )))

2
f fk x x

l





         (20) 

With EMGPR framework, the regular of deterministic is 

represented, and the difficulty of choosing the covariance 

function of GPR model is overcome. 

4.5. RUL Prediction with EMGPR 

At last, experiments to predict the RUL of lithium-ion 

battery are realized. We predict the RUL of NASA batteries 

B0005 and B0007 and CACLE battery CS2_8 with the 

proposed EMGPR method.  

Figure 7 shows the predicted result with NASA battery 

B0007. Here, the training data is from cycle 100 to cycle 

140, and the estimated output is from cycle 141 to cycle 168. 

The covariance we use is the periodic type, as shown in Eq. 

(19), and the empirical model is the Gaussian model.  

Figure 8 shows the experiment result on CALCE battery 

CS2_8. The training data is from cycle 122 to cycle 130. 

The predicted output is from cycle 134 to cycle 146. The 

covariance function is the same with that in Eq. (20). And 

the empirical model is double-exponential model. 
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Figure 7. Predicted result of NASA battery B0007 based on 

EMGPR method 
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Figure 8. Predicted result of CALCE battery CS2_8 based on 

EMGPR method 
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The RMSE and MAE of predicted results for battery B0005, 

battery B0007 and battery CS2_8 are shown in Table 3. 

Table 3. Comparison of RMSE and MAE with different 

prognostic methods 

 
Battery index RMSE  MAE  

B0005 0.0805 0.0112 

B0007 0.0663 0.0089 

CS2_8 0.0314 0.0067 

 

From the results above, it can be concluded that the 

prognostic framework of EMGPR can predict the RUL of 

lithium-ion battery satisfied. With this method, the 

estimated result is offered with uncertainty. The uncertainty 

expression parameter confidence bound is small. Moreover, 

the covariance function is easy to choose. 

5. CONCLUSIONS 

In this paper, a fusion prognostic framework of the 

combination of the GPR model and the empirical model 

(EMGPR) is proposed. The main contribution of this paper 

can be concluded as follows. (1) The GPR characteristics is 

studied and experiments have implemented to illustrate that 

the confidence bound is smaller if the training data keep 

closer to the test data. Thus, an important step of prediction 

with EMGPR approach is to choose the proper training data. 

(2) In the framework of the EMGPR approach, the training 

data are divided into two parts. One is self-deterministic 

which can be approximated by the empirical model 

(indicates the degradation trend). The other part is the 

disturbance components which turns out to be periodic and 

can be predicted with the GPR model. The periodicity of the 

disturbance components has a positive influence on the 

decision of the covariance function of GPR. As a result, the 

challenging selection of the covariance function can be 

solved. (3) The empirical models, proved to be effective in 

RUL prognostics of lithium-ion battery, are 

double-exponential model and Gaussian model. In actual 

application, the flow of choosing the proper empirical model 

should be considered. (4) Experimental results with both 

data from NASA PCoE and CALCE show that the EMGPR 

prognostic framework can predict the RUL of lithium-ion 

battery with high performance as well as indicated its 

uncertainty. 

6. FUTURE WORK 

In future, we will explore more effective empirical models. 

The more specific theory will be studied to choose the 

empirical model directly. Moreover, the idea of EMGPR 

can be extended. Other techniques such as filter, smooth 

theory can be combined with GPR method or EMGPR for 

lithium-ion battery prognostics. In addition, uncertainty 

representation such as probability density function (PDF) 

may be utilized. 
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