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ABSTRACT

For manufacturers systems monitoring or production 
equipment optimization solutions are founded on specific 
algorithms that produce low level local information about 
risk of degradation or production loss. In either case local 
results are combined in synthetic reports aimed to help 
decision taking at higher level. This work is about the 
description of an automatic fusion mechanism able to build 
expert output with direct understanding of the system 
behavior and help to infer causes of efficiency loss. An 
example application was built and tested in a semiconductor 
fab. The algorithms diagnosed yield degradation in different 
subsystems or work-area and were digested in a weekly 
report that highlighted the main production problems. We
deployed the same methodology for condition based 
maintenance of aircraft engines on a test platform. The first 
part of this document sketches out some notations, the 
second part describes the semiconductor application and the 
conclusion is dedicated to the transfer in the aeronautic 
domain for the decision level of an engine fleet health 
monitoring system.

1. METHODOLOGY

Our decision implementation is based on a Bayesian 
framework (Yu, Cleary, Osborn, & Rajiv, 2007) but is also 
known as a mixture of experts (Yuksel, Wilson, & Gader, 
2012). A decision process is based on available information 
with confidence levels. Health monitoring information is 
mainly the result of computations of diagnosis algorithms. 
This result, for an algorithm �, is the probability that a score 
	�� reaches a given level		��. We call this probability a risk, 
�� in Eq. (1):

�� = �(�� > ��) (1)

We often complete this risk value with precision 
information �� computed as an estimation of the output 
variance or a square error obtained by a supervised cross-

validation process. 

Each algorithm produces values from a variety of 
experiments. An experiment is materialized by a set of 
observations. For example one observes successive flights 
of the same aircraft and registers all parameters during the 
last month; this leads to a dataset ��������� ([� −
1	month, �]). This dataset may be used by an algorithm that 
produces a risk ��(�). If we shift the observation window 
(one month) by one new day (about 10 flights), we obtain 
another lot of observations and the same algorithm will 
compute a new risk ��(� + 1	day). Others results may also 
be obtained by modification of the algorithm’s parameters. 
For example a change in the input sources, a change of a 
scale parameter, etc. We finally get a whole population of 
available results at a given time.

1.1. Fusion operator

Many results are linked together and from the analyst point 
of view it may be interesting to transform raw risk data into 
something more accurate that better corresponds to the 
underlying problem. 

A fusion operator, Eq. (2), is a function that transforms a 
collection of risk results with precision into a new risk with 
a higher meaning for the analyst.

��� = Φ������, ��� , … , ���� (2)

This seems to be another way to increase the risk 
population. But this process may be represented graphically 
and leads to better interpretation. We progressively replace 
low level risk computations by synthesis about subsystems 
or components.

If we use the case of successive diagnostics, then a fusion 
operator may also be some diagnostic confirmation that 
exploits the list of preceding computations to ensure the 
presence of degradation (e.g. the probability that one 
observes 8 detections over the last 10 flights).

1.2. Implication coefficients

Looking at the algorithm’s parameters, its input sources and 
the observed dataset, we may associate each risk result to 
system component fault � with a weighting vector. The 
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implication value ��� = �(� = �|�� > ��) may be 
interpreted as an a priori probability that fault � may occur 
when algorithm a result let us expect a risk of degradation.

The first implication vectors are defined by experts for 
initial algorithms which already are based on specific fault 
identification. It is more complex after some fusion 
operation. Moreover, as there may always be some 
dependencies between faults, even across different 
components, those implication vectors will be updated by a 
learning procedure using capitalization of experience.

1.3. Synthesis or projections

The decision process should use all available risk data. But 
the plurality of risk results makes it impossible. So we need 
to reduce the amount of information in a synthesis for each 
subsystem we want to monitor.

Suppose we have a component � that may be damaged
according to a list of possible faults � ∈ �. Let ��� = �(�|�)
the probability that fault � leads to a damage of component 
�. This value is often available from design and certification 
documents like the FMEA (Failure modes and Effect 
Analysis). A nice projection representing the risk of 
component � to be damaged may be given by Eq. (3):

�� =�	
���

�� � ���
�� ��

�/��
����∈�

(3)

This proposition is just a simple example using a logical 
weighted sum without taking care of faults and algorithms 
dependencies. Normalization constants �� and �� are used 
to ensure that the weighted sum has a value between 0 and 1 
and keeps a meaning as kind of risk. Different fusion 
methods may also be used (like for example taking the 
highest detection). Eq. (4) below can be used to update the 
implication coefficients by a supervised learning procedure.

Independency of scores may be reached by designing 
algorithms related to subsystems. For example, in a 
fabrication process, if different but equivalent tools are 
used, local algorithms using only local measurements are 
independents. Using independent sets of faults and 
corresponding algorithms may lead to an exact formulation 
of a probability that a component is defective.
Methodologies exist to group results into independent 
variables (Alhoniemi et al., 2007). Our actual goal is to 
converge to an approximate formulation with a Bayesian 
neural network. Other approaches may use dependency 
matrixes (Singh & Holland, 2010) or decision trees 
(Ricordeau & Lacaille, 2010) but at the end we always get a 
parametric model we may update with new experiments.

Fusion algorithm with risk result �� is associated to the 
component � . If needed, we may compute implication 

values ��� from Bayes rule: ��� = ����(�)/�(�) , the latter 
two probabilities are known and updated by maintenance 
people: �(�) is the occurrence rate of fault � and �(�) is 
the repair or change rate of component �. The computation 
of this new implication coefficient serves the only purpose 
of being able to chain the analysis drawing a hierarchic
graph of decisions from subsystems’ components to higher 
subsystems and the global system that is monitored.

1.4. Confidence and efficiency

The main goal to achieve in decision making is gaining 
expert confidence. An optimization process manipulating 
the risk population is driven by this confidence. Gaining 
confidence is assured by a measure of the efficiency of the 
synthesis results.

Each expert may be viewed as a “human” or test algorithm 
� . So each expert produces one risk �� usually linked to 
specific component’s faults. Implication of the expert �� is 
straightforward and given by the expert himself. However, 
an expert is subject to mistakes and so his precision �� is 
unknown and should be estimated. Usually, expert risk is a 
binary result: either faulty �� = 1 or healthy �� = 0.

In datamining processes, the expert result is known as 
supervision information. This supervision is used to build an 
efficiency measure like the mean-square error in Eq. (4).

��� =� (�� − ��)�
����

	 〈��. ��〉
�

(4)

This value gives for any algorithm a measure of the 
adequacy between expert knowledge and the algorithm 
computation. It may be calculated for any component 
projection �� and measure a confidence level for a decision 
about the health of this component.

2. SEMICONDUCTOR FAB YIELD LOSS ANALYSIS

An experiment at the ST-Microelectronics 8'' fab in Rousset 
(France) showed that a great deal of information measured 
during the manufacturing process had a direct impact on the 
output yield. An influence analysis (measures of entropy 
and mutual information) measuring the stochastic 
dependences between the yield and automatically selected 
combinations of measurements proved the need to develop a 
prototype based on defectivity measurements. 

A pilot project for collecting defectivity measurements and 
information on the routing of the wafers in the fab ran in 
real time at the Rousset fab (Lacaille & Dubus, 2005; 
Lacaille, 2008). It has highlighted many causes of wafer 
deterioration. Engineers and defectivity operators where 
able to automatically generate synthesis reports to supervise 
equipment health and production quality (Lacaille, 2005).



Annual Conference of the Prognostics and Health Management Society 2013

3

2.1. Microfabrication process

In a semiconductor fab, wafers are produced with a high rate 
(more than 1000 wafers a week). A single wafer is 
processed during almost three months and different products 
are manufactured at the same time by the same equipments. 
Wafers are grouped together in lots of 25, each lot is carried 
in a pod and all wafers in a pod are of the same kind. 
Sometime a lot is inspected, specific metrology equipments 
observe 4 to 6 wafers in this lot and we get defectivity 
measurements. Almost 20% of the lots are inspected for 
defectivity observations. This procedure allows only a very 
small proportion of the production to be observed. Moreover 
as defectivity operations are not productive steps, operators 
bypass them.

The defectivity metrology measures defects and produces 
observations like a number of defects of a minimal size, a 
defect density and a proportion of dies affected by the 
defects on the wafer area. Those defects are responsible of 
almost 80% of the yield loss in an industrial fab for a mature 
product.

Figure 1 - Inspection steps are dispatched over the route of 
the wafers in the fab. The yield is computed at the end of the 

production by test steps.

In the 8'' fab of ST in Rousset, defectivity operation steps 
are put on the wafer/product route but can be moved
randomly to improve the metrology sampling on specific 
parts of the production (Figure 1). The route of the lot is 
determined by the product recipe but for each production 
step, each layer, the specialized operator can choose 
randomly between similar but certified equipments in his
work-area.

To analyze the overall fab production in ST Rousset 8'' it 
was necessary to model the random trajectories of wafer 
pods within the park of equipments. The stochastic nature of 
these trajectories is the result of the availability of similar 
and interchangeable equipments per work-area.

On those trajectories (simplified by successive arrows on 
Figure 2), defectivity steps appear like some measurement 
points (red dots) on a very complex curve. And route 
information, WIP (wafer in process) data, can provide 
observations on the same curve. For each step and each 
wafer we observe route information: date, equipment, recipe 
of the equipment, delay from the last step, slot position in 
the pod and sometime metrology information like defect 
density or defective dies. Route information is systematic 
while metrology is random.

Figure 2 – Trajectories of wafers in the fab are complex 
curves (arrows) on which specific defectivity measurement 

points (red dots) are set.

The yield is measured at the end of the production in a 
specific back-end area by an electrical batch of tests. The 
yield information, results of those tests, almost corresponds 
to a proportion of surviving dies on the wafer.

2.2. Diagnosis methodology

The solution exploits a population of micro-algorithms: the 
agents. Those algorithms try to estimate a low-yield risk 
using some measurements taken on the wafer trajectories. 
This risk output �� for each agent � is the probability of a 
low yield output.

Each agent uses only few points of measurements, thus 
ensuring the robustness of its calculation. In fact, the small 
analyzes carried out independently are not sufficient to 
explain the behavior of the fab, but a global information 
with a high degree of accuracy emerges from the entire 
population of local predictors.

Each agent uses some defectivity measurements taken 
during the route of the pods and/or process information 
taken from the tools (temperatures, pressures, etc.) and/or 
logistic data like equipment-id, receipt, inter-operation 
delays… The largest agent uses no more than 6 entries. The 
very large number of available measurements implies the 
existence of a lot of possible combinations of small number 
of measurements. The software solution solves this problem 
by using a population of agents distributed on a network of 
computers. This population evolves every day to adapt to 
the fab production.

This methodology is an implementation of machine 
ensemble theory (Figueiras-Vidal & Rokach, 2012) which 
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goal is to model complex functions using an ensemble of 
small data-driven components. One of the reference work in 
this domain is (Jacobs, Jordan, Nowlan, & Hinton, 1991).

2.2.1. Neural networks agents

The agents are self-adapting algorithmic components. Each 
one of them contains a batch of neural-networks regularly 
calibrated in real time. Each agent uses about fifty neural-
networks (Figure 3). Each network inputs are the same 
inputs given to the agent; it is a small selection of WIP 
measurement points in the fab: defectivity, process values, 
and logistic data which are measured for each wafer. The
neural-network models a relation between its inputs data
and the wafer yield, the quality measure obtained by electric 
tests at the end of the fabrication process. Prediction error 
on calibration set is a quality indicator of the estimator. The 
wafer set used for calibration is a subset of the past 
processed wafers so the difference between two neural-
networks comes from the “random” selection of the subset 
of wafers (see below). The final response of the agent is 
given by an estimation ��	 of the yield from a vote of a 
selection of the 20 best neural-networks. Then each agent �
produces a low yield score �� = �(�� < �) and associated 
quality indicator �� as a final estimation of �� 	 precision. 
The threshold � is fixed according to the current fab 
expectation but may be adapted specifically for each 
product. 

Figure 3 – Description of the inside of the agent. 50 neural 
networks, essentially multi-layer perceptrons with 3 layers, 

predict the yield from given parameters. Each neural 
network is learnt on a different training set ensuring 

accessibility to local behavior models. 20 among the best 
predictors are kept and used simultaneously in a voting 

process.

In this specific implementation the experts’ skill is limited 
to the electric tests giving the real yield �� and risk �� =
�(�� < �) for each processed wafer (�� = 1 or may be 
adapted by product). It is possible to compute an efficiency 
measure �� from Eq. (4). This measure is used by the

population optimization algorithm (Figure 4) to select the 
best agents.

The input observations sent to each neural network for 
calibration may be product-specific. Some agents work with 
all kind of products but the majority is specialized. A 
classification algorithm automatically selects the set of old 
products adapted for an agent based on the prediction 
efficiency on past measurements. Then new products are 
compared with preceding technologies using an 
unsupervised clusterisation algorithm to initiate implication 
values between agents and new products.

2.2.2. Agent population optimization

To make the agent population relevant at each time when 
the fab production evolves, we implement a genetic 
algorithm (Figure 4): the agents communicate together and 
exchange information on the relevance of each one of their 
inputs. The agent inputs are exchanged when agents meet 
together. The whole population is really moving over the 
fab and can be seen as a sort of swarm. The population of 
agent evolves gradually and it emerges an increasingly 
relevant response while leaving the system able to integrate 
each day some new characteristics of the fab production.

Figure 4 – A genetic algorithm optimizes the agent 
population.

The genetic algorithm optimizes the quality of the agent 
population but it has to respect hard constraints to ensure a 
homogeneous repartition of the agents over the whole fab
and all products (see Figure 5).
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Figure 5 – A constraint forces the agents’ population to be 
dispatched with a similar repartition to the production.

2.3. Decision help by fusion of diagnostics

A homogeneous population of agents emitting each one the 
same type of information replaces the complexity of the 
trajectories of the pods of wafers. The outputs of each 
algorithm are a risk of “low yield” �� and a measurement of 
reliability ��	(Figure	6). Thus one can produce dashboards 
measuring the health of the equipments of work-areas, 
anticipating the quality of production and locating the 
equipments responsible for crisis and deterioration of the 
quality (Figure 8, Figure 9 and Figure 10).

Figure 6 – Output of an agent. The risk (x-axis) is drawn 
with the yield (y-axis) for tested wafers. The green stars are 

computation of more than 66% of reliability, the orange 
have an reliability between 33% and 66% and the red ones 

are less than 33% of reliability. 

Figure 7 schematizes the production of high level outputs 
from the original risk computations. The following figures 
are examples of such fusion algorithms.

Figure 7 – Organization of the statistic computations. Risks 
are only intermediate results used by high-level fusion

projectons.

Figure 8 is a fusion over an etch work-area. Here the fusion 
sums risks of low yield estimated for each wafer going 
through a given etch tool. For each tool, the summation is 
weighted according to Eq. (3) (with just one fault 
corresponding to the degradation of a die causing a decrease 
of the yield) and using implications that are high if the agent 
use information acquired on the given equipment, lower if 
not but if the wafer was processed by this equipment
(depends on the distance on the wafer’s route).

Figure 9 shows the evolution over time of the low yield 
estimation for a given tool using the same preceding 
computation. This graph helps to understand how to build 
alerts when a local risk crosses a maximum threshold or 
how to detect tendencies and eventually anticipate a crisis.

Figure 10 presents a synthesis for the worse equipments 
within all work-areas of the fab with recall of the past 
evolution.

Figure 8 – High-level and detailed risk analysis of the 
equipements in a work-area. One have imediately a snapshot 

of the efficiency of each tool.
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Figure 9 – Real-time survey of equipment. Alerts are 
automatically sent to operators.

Figure 10 – Global analysis across all work-areas. All 
equipments of the fab are sorted by decreasing risks or 

decreasing risk-variations. The graph can also be filtered by 
work-areas or technologies.

2.4. Automatic inline scheduling

This whole system is entirely distributed over a cluster of 
computers (Figure 11). The agents are independent and their 
computations can be done in parallel. Only a central 
database for data collection (DC) is needed but it can be 
accessed simultaneously by different requests.

Figure 11 – Distributed architecture of the system.

The computation uses two internal cycles (Figure 12). 

 The on-line scheduling cycle is based on the acquisition 
of new measurements. The new data are automatically 
pushed to the system by an ftp channel and the loader 
program automatically detects the arrival of new 
information.

 The genetic algorithm and the maturity of the agent 
population drive the internal scheduling cycle.

Figure 12 – System scheduling. The system is working non-
stop ensuring a maturity of the agent population when the 

production evolves.

3. ENGINE CONDITION MAINTENANCE

Advanced health monitoring is becoming a standard for new 
engine applications, in order to enable in-service event 
reduction and engine maintenance optimization. The goal is 
to reduce operational events such as IFSD (In Flight Shut 
Down), ATO (Aborted Take-Off), D&C (Delay & 
Cancellation) and to substitute them with maintenance 
operations that are planned long enough in advance in order 
to minimize their operational impacts for the airlines. IFSDs 
and ATOs are very seldom but still stressing for the pilots 
and they often produce secondary damages that might 
increase reparation costs. D&Cs are usually not critical but 
occur more often; their consequences can be traffic 
disorganization, customer dissatisfaction. They are partially 
linked to procedures and controls to perform 
troubleshooting (Lacaille, 2012; Ricordeau & Lacaille, 
2010).

The performance of engine health monitoring functionalities
is driven by the capability to model the engine behavior and 
to identify engines on healthy or unhealthy conditions.
Methodologies based on fusions of diagnostics applied to 
aerospace monitoring may be find in (Tang et al., 2009) for 
optimization of remaining useful life (RUL) estimations; in 
(Klein, Rudyk, & Masad, 2011) for the identification of 
bearing faults using vibration or acoustic signatures 
extracted from multiple microphones or accelerometers; and 
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in (Romessis, Kyriazis, & Mathioudakis, 2007) for 
performance analysis of the turbofan engine.

3.1. Health monitoring algorithms

Algorithms written for health monitoring purpose in 
Snecma are decomposed in two parts: the first one is made 
of embeddable code aimed to produce health indicators 
from engine raw measurements. Those computed indicators 
are sent to the ground with context information coming from 
the aircraft computer. 

The ground application hosts the scoring process (Figure 
13). The scoring process transforms health indicators into 
risk of abnormality �� . This algorithm first uses a 
normalization phase to suppress the context dependency 
(flight specification like altitude, speed, weather conditions 
…) The second phase is either a model of normality which 
produces a likelihood to measure a range from normal 
behavior or an identification process using physical 
knowledge of the monitored system to target specific faults. 
At the end we have generic novelty detectors implying a 
subsystem in general or specific fault diagnostics (Lacaille 
& Nya Djiki, 2010; Lacaille, 2009, 2010).

Figure 13 – Two phases of the ground diagnostic process. 
CRN (Context Removal and Normalization) suppress flight 
dependencies and FDI (Fault Detection and Identification) 

detects unusual behavior and try to identify the specific 
faults of a subsystem.

Precision �� of each algorithm is given by an estimation of 
the diagnostic error computed on a supervised dataset
(Figure 14).

Figure 14 – Precision quality value (PQV) of the algorithms 
computed by an estimator learned on a supervision dataset.

The engine start capability (ESC) algorithm is a good 
application example (Flandrois, Lacaille, Masse, & Ausloos, 
2009). Different subsystems and components are involved
(Figure 15): the auxiliary power unit (ACU) that provides 
external pressure to the starter, the admission valve, the fuel 
pump, the fuel metering unit (FMU), the ignition system, 
etc.

Figure 15 – Subsystems parts of the start system of a 
turbofan engine.

The health indicators are extracted from the raw temporal 
measurements with a “specific instant detection algorithm”. 
They are mostly time delays (Figure 16).

Figure 16 – Health indicators for the ESC algorithm.
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Normality scores are computed for each indicator or 
coherent group of indicators if a multivariate observation is 
needed. At the end we build 8 scores listed in the following 
Table 1:

Table 1 – List of scores used for degradation risks
computation of the ESC application.

3.2. Decision methodology

Decision step (on the ground) takes inputs from the set of 
risks generated by each specific algorithm. The specificity 
of algorithms comes from their design: there exist 
algorithms to detect each pump fault, gear wear, damaged 
bearings, oil leakage, filter clogging, intermittent sensors, 
etc. The faults relative to e a c h  subsystem produce 
comparable effects so the risk measurements are highly 
dependent. 

The decision layer is actually built following the scheme
presented in section 1 and derived specifically for a 
semiconductor fab in section 2. But in the case of aeronautic 
data we have a very small number of observed degradations, 
it is why the algorithms are mostly based on normality 
scores and their efficiency measured on a small number of 
observations. The implications come from expert knowledge 
but are progressively adapted using troubleshooting tools 
that records new data.

For the engine start capability (ESC) algorithm, the 
implication coefficients are roughly initialized by experts
(Table 2). Decision on each impacted component is 
computed by fusion knowing the relation between faults and 
components.

Efficiency of the results is measured using maintenance 
reports on which identification of the problem is given after 
repair. Maintenance results are not always known by the 
manufacturer but as engine’s design is completely mastered 
by the company; experts systematically give prognostics 
about the engines conditions. This supervision helps 
improving the implication values by a learning procedure.

Figure 17 shows an example of fusion of ESC detection 
algorithms. This fusion gives information about all 
components used in this process: APU, starter, valves, etc. 
This image presents the results of an artificial scenario 
where several defects were simulated sequentially.

The final decision is obtained only after some confirmation 
process that uses successive risk computations to solve 
incompatibilities and increases likelihood by a temporal 
confirmation.

Table 2 – Implication coefficients between faults and 
indicators. Values are roughly proposed by experts.

Figure 17 – Synthesis of the decision process for the 
different components that impacts the engine start system. 
Here the computed risk corresponds to the probability of a 

component failure leading to a D&C.

3.3. Conclusion

There is still a lot of freedom in the parameters used for 
normalization and identification algorithms as well as in 
size and shape of the confirmation by fusion of past 
computations. The methodology presented in the first 
section, applied in the second on a manufacturing process is 
compatible with engine health monitoring and is currently 
tested on Snecma’s health monitoring research platform.
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NOMENCLATURE

APU Auxiliary Power unit
ATO Aborted Take-Off
CRN Context Removal and Normalization
DC Data Collection
D&C Delay and Cancellation
ESC Engine Start Capability
FDI Fault Detection and Identification
FMEA Failure Mode and Effect Analysis
IFSD In Flight Shut Down
PQV Predictive Quality Value
WIP Wafer In Process
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