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ABSTRACT 

Acoustic Emissions (AE) are stress waves produced by the 
sudden internal stress redistribution of material caused by 
changes in the internal structure of the material. Possible 
causes of these changes are crack initiation and growth, 
crack opening/closure, or pitting in monolithic materials 
(gear/ bearing material). Where as vibration can measure the 
effect of damage, AE is a direct measure of damage. 
Unfortunately, AE methodologies suffer from the need of 
high sample rates (4 to 10 Msps) and relatively immature 
algorithms for condition indictors (CI). This paper 
hypothesizes that the AE signature is the result of some 
forcing function (e.g. periodic motion in the case of rotating 
machinery). By using analog signal processing to 
demodulating the AE signature, one can reconstruct the 
information carried (e.g. modulation) by the AE signature 
and provide improved diagnostics. As most on-line 
condition monitoring systems are embedded system, analog 
signal processing techniques where used which reduce the 
effective sample rate needed to operate on the AE signal to 
those similarly found in traditional vibration processing 
systems. Further, by implementing another signal 
processing technique, time synchronous averaging, the AE 
signal is further enhanced. This allowed, for the first time, 
an AE signal to be used to identify a specific component 
within gearbox. This processing is tested on a split torque 
gearbox and results are presented. 

1. INTRODUCTION 

The promise of condition based maintenance (CBM) 

systems is to produce maintenance saving by reducing 
unscheduled maintenance events. As confidence in CBM 
improves and systems mature, maintenance paradigms can 
be moved to a true, “On Condition” practice.  
Unfortunately, for many industries, CBM is an immature 
technology and has not proven itself in operational 
circumstances. The low penetration (3% of installed 
turbines) of condition monitoring systems (CMS) into the 
wind turbine industry is symptomatic of the lack of 
confidence in the ability of CMS to deliver their’ promised 
performance. The industry needs better sensing and analysis 
capabilities in order to capture these markets.  

One aspect of condition monitoring on wind turbines is the 
extraordinarily low frequencies of the environment. The 
main shaft rate on utility scales wind turbines range from 
0.11 to .25 Hz. With typical planetary gearbox frequencies 
of 1:5, gear mesh frequencies in the range of 10 to 25 Hz are 
not uncommon. Because acceleration is the second 
derivative of displacement, gear mesh frequencies are on the 
order 0.005 to 0.02 G’s, making gear fault detection difficult 
with tradition vibration condition monitoring systems. 

Acoustic Emissions (AE) are the stress waved produced by 
the sudden internal stress redistribution of material caused 
by the changes in the internal structure of the material. 
Possible causes of these changes are crack initiation and 
growth, crack opening and closure, or pitting in various 
monolithic materials (gear, bearing material) or composite 
materials (concrete, fiberglass).  Most sources of AE are 
damage related. Thus the ability to detect AE can be used to 
give diagnostics indications of component health. 

AE is a direct measure of damages instead of the indicator 
of the result of damage (such as vibration). AE can 
potentially be a more sensitive of fault, especially in the low 
frequency seen on the planetary gearboxes of wind turbines. 

_____________________ 
Bechhoefer, E. This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 
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However, AE systems tend to be more expensive and 
difficult to implement over vibration based non-destructive 
test or CMS. 

From a development perspective, AE has a number of 
perceived disadvantages: 

• AE signals are relatively high frequency, 1 to 4 
MHz, thus the sample rates are high (4 to 10 
MSPS), 

• Processing of the data, needed for feature 
extraction, is made more difficult because of the 
high sample rates and large volume of data needed 
to be processed (consider 10 MSPS for 40 seconds, 
which would capture just 6 revolutions on a 2.5 
MW wind turbine, is 400 million samples!), 

• Typical AE analysis is limited in its “action 
ability”, meaning that its can detect or count AE 
events, but does not tie the event to a component in 
the gearbox. 

The ideal CMS would: 

• Allow for fault detectability afforded the direct 
measure of damage in the AE signal, which is 
independent of rotation rate,  

• The maturity of vibration processing techniques to 
provide actionable information by identifying the 
component which is damages, 

• Reduce the computation burden of AE by 
sampling at the lower rate. 

• Improve the detection of low frequency 
components which are now difficult to do with 
vibration based CMS. 

We developed an analog Hilbert envelope circuit to 
demodulate the AE signal, which greatly reduced the sample 
rate typically needed for AE. This reduces the cost of a AE 
CMS system by allowing the use of lower end, audio analog 
to digital converts and low end microcontroller for 
processing of that data. Additionally, we applied time 
synchronous averaging of the demodulated signal to 
improve the signal to noise ratio of the signal which 
normally would be undetectable, but also allowed the 
identification of the damaged component (AE analysis 
typically only identifies that there is damage, but not what is 
damage). Finally, this new technique was compared against 
tradition vibration analysis, using similar algorithms, and 
was found to be significantly better and gear fault detection. 

2. AE: ACOUSTIC EMISSIONS 

AE as phenomena, has been observed in many disparate 
fields of study. The earliest use of AE analysis was in 
geology and seismology. Here the analysis of elastic waves 
produced by an earthquake was used to find the location and 

depth of the event. Similarly, AE was proposed as a method 
to predict rockburst in mines. Tinsmiths have noted the “tin 
cry” associated with twinning deformation, and the clicks 
noted during heat treatment of steels is well documented 
(this is related to martensitic transformations of metals, 
which has been show to be a strong emitter of AE). 

The general acceptance that AE is associated with 
dislocation and plastic deformation/crack propagation in 
metal was first proposed by (Liptai, 1969). The essential 
principles of AE where explored in (Liptai, 1970), by 
considering a grain of polycrytstalline material (steel, for 
example), where the grain boundary has a diameter of d=5 x 
10-3in. During a strain event, the upper half of the grain slips 
over the lower half by a distance of d=1 x 10-3in. Given a 
shear modulus of G=4 x 106 psi, then the stress driving the 
deformation is eq 1, and the energy change occurring with a 
deformation is eq. 2. 

€ 

σs = sG d              (1) 

€ 

ω = s
2GA

2d ≡10
−12 in

lbs          (2) 

where A is the sheared area. This allows one to estimate the 
frequency of an event as: 

€ 

ω = 2GA
dm ≈ 5 ×106 rad sec ≈ 0.8MHz     (3). 

where m is the half mass of the grain (assumed to be steal). 
While estimates vary with density, grain size, and material, 
this estimate serves to bound the AE frequency from 500 
KHz to perhaps 40 MHz. 

2.1. AE: State of the Art 

Most AE products quantify five basic condition indicators 
(Figure 1): Amplitude, Duration, Rise Time, Counts and the 
mean area under the rectified signal envelope (MARSE). 
Other condition indicators (CI), such as average frequency 
(counts/duration), are function of the basic AE CIs and have 
been found to be useful in non-destructive test literature 
(Miller, 2005). Cumulative counts and cumulative absolute 
energy have also been shown to correlate to the fatigue 
crack growth process (Barsoum  2009).  

More recent studies have focused on the use of wavelet to 
de-noise and enhance the AE signal. For example (Abouel-
seoud 2012) used a continuous wavelet transform improve 
the signal to noise ratio for diagnostics on a wind turbine 
planetary gearbox.  In (Gu, 2011), a signal processing 
method for AE signal by envelope analysis with discrete 
wavelet transforms followed by spectral analysis allowed 
visualization of the gearbox fault frequencies.  

It most be noted that none of these analysis can directly tie 
the AE CI with a specific component within a gearbox. 
Instead, these techniques can give indicators that there is a 
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fault present, and rely upon more tradition techniques such a 
Borescope to identify the damage component.  

 

 
Figure 1 AE Condition Indicators 

These methodologies, while successful in diagnostics, 
fundamentally do not address the hardware/software need to 
sample at lower data rates (needed for lower cost systems). 
Additionally, wavelets required off-line processing/ 
optimization techniques to select coefficients/levels to 
achieve successful diagnostics.  

For a commercial product, the reapplication cost (e.g. off 
line analysis, configuration for the given application, etc.) 
and hardware costs are a large driving factor. This is the 
motivation to develop a system with the performance of AE 
fault detection, but without sacrificing the cost advantage of 
tradition vibration based systems. 

3. ANALOG PROCESSING TO IMPROVE THE AE SENSOR 

The AE signal is generated by an impulse or forcing 
function, which causes a dislocation in the material. For 
rotating components such as gears, that force and the 
resulting damage is periodic. With this view, we 
hypothesized that the AE signal is the carrier signal on 
which the forcing function is modulated. The forcing 
function information content relates to the damage it is 
exciting (e.g. the AE signal). For nominal gears, there 
should be no AE signal, while a damaged gear should 
generate a period AE response. 

In the fault case, the information of interest is not the AE 
signal, but the modulated force/load that is causing the AE 
burst. This type of information process is similar to the 
information in an amplitude modulated (AM) radio 
frequency signal, where the information is recovered by 
demodulating the radio signal.  

In an AM radio, the carrier is demodulated using an analog 
signal conditioning circuit. This allows the system to be 

designed at audio frequencies (10s of KHz vs. MHz of the 
carrier signal). In the proposed analysis, the AE signal is 
demodulated with an analog circuit, and the result 
acquisition system is designed to performance at tradition 
vibration processing frequencies (100 KHz vs. MHz). The 
signal processing can then be performed on low cost 
embedded microcontrollers instead of higher end computers. 

A demodulator shifts the carrier frequency to baseband, 
eq(4), followed by low pass filtering and enveloping. 

( ) ( ) ( ) ( )[ ]bababa ++−=× coscos21coscos     (4) 

The envelope is the absolute value of the Hilbert transform. 
In frequency domain, the Hilbert transform is defined in the 
Fourier domain as: 2X(f), for f>0, and X(f) = 0, for f<0, 
which easily computed in software. As stated, one of the 
objectives is to perform this signal processing in an analog 
circuit, such as in (Figure 2). The raw, time domain signal 
from the AE sensor is defined as x(t). x(t) is quadrature 
demodulated by convolving the signal x(t) with a frequency 
near the carrier frequency (cos(ft)) and then low pass 
filtered to remove the image. The carrier frequency is 
generated by a voltage-controlled oscillator (VCO) or 
through low pass filtering a pulse width modulated (PWM) 
signal. This allows one to configure the demodulation 
process for different materials (which may have different 
AE carrier frequencies) or for different AE sensors, which 
may have different frequency responses.  

After low pass filtering to remove the image (e.g. cos(a+b)) 
of the baseband signal, the quadrature is create by phase 
shifting the baseband signal by π/2 radian. The quadrature 
signals are then squared, summed and the square root is 
taking. This circuit can be built at low cost using operational 
amplifiers (op amps) per (Horowitz, 1995) or by using a 
monolithic multiplier/divider such as the AD532. This 
transforms the AE signal to its demodulated envelop. 

 
Figure 2 Analog Signal Process for the AE Sensor 

 
The advantage of using an analog/hardware solution instead 
of the using a digital approach is a greatly simplified 
acquisition and processing system. Instead of designing a 
system to sample at potentially 10 MSPS (which includes 
increased memory, a high performance processor, high 
speed ADC, increased capacity of the power supply, 
increased heat dissipation), more modest 100 KSPS system 
can be designed. Note that the limit of the system is no 
longer the sample rate of the ADC, but the bandwidth of the 
analog devices, typically on the order to 2 GHz.   
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While other researchers have “enveloped” the AE signal by 
low pass filtering the rectified AE signal (Miller, 2005), this 
does capture the modulation rate of the forcing function. 
This is because a rectified/low pass enveloping technique 
does not heterodyne the AE signal to base band, as does the 
presented technique. 

For rotating machinery, e.g. a gearbox, where the load is 
periodic the, the envelope of the AE sensor contain the 
information related to any gear faults within the gearbox. 
This has the advantage of giving actionable information as 
to the faulted component, as the AE signal is generated as a 
result of the periodic load of a specific component. As such, 
the modulation rate is the same as the damaged component 
rate. This in turn is easily identified through spectral 
analysis.  

3.1. Feature Extraction from the AE Envelope 

Vibration signatures for machinery faults tend to be small 
relative to other vibration signatures. For example, in the 
typical gearbox, the energy associated with gear mesh and 
shaft vibrations will be orders of magnitude larger than a 
fault feature. This is also the the case in performing analysis 
on the AE envelope. Spectral analysis or root mean squares 
(RMS) of AE signal are not powerful enough CIs to detect 
an early fault, let alone provide information useful for 
prognostics. Additionally, since all rotating equipment has 
limits on the feedback controls driving it, there is some 
variation in speed. When taking the spectrum, this variation 
in shaft speed violates requirement of stationarity.  

To improve the performance of the gear analysis and to 
control for variation in shaft rates, the analysis will based on 
operations of the time synchronous average (Bechhoefer, 
2009). Time synchronous averaging (TSA) is a signal 
processing technique that extracts periodic waveforms from 
noisy data. The TSA is well suited for gearbox analysis, 
where it allows the AE signature of the gear under analysis 
to be separated from other gears and noise sources in the 
gearbox that are not synchronous with that gear. 
Additionally, variations in shaft speed can be corrected, 
which would otherwise result in spreading of spectral 
energy into an adjacent gear mesh bins. In order to do this, a 
signal is phased-locked with the angular position of a shaft 
under analysis.  

This phase information can be provided through a n per 
revolution tachometer signal (such as a Hall sensor or 
optical encoder, where the time at which the tachometer 
signal crosses from low to high is called the zero crossing). 

The model for vibration in a shaft in a gear box was given in 
(McFadden, 1985) as: 

x(t) = Σi=1:K Xi(1+ ai(t))cos(2πi fm(t)+ Φi)+b(t)      (5) 

where: 

Xi is the amplitude of the kth mesh harmonic 

fm(t) is the average mesh frequency 
ak(t) is the amplitude modulation function of the 
kth mesh harmonic. 
φi(t) is the phase modulation function of the kth 
mesh harmonic. 
Φi is the initial phase of harmonic k, and 
b(t) is additive background noise.  

The mesh frequency is a function of the shaft rotational 
speed: fm = Nf, where N is the number of teeth on the gear 
and f is the shaft speed, with no reduction in the analysis 
performance. This is a general model, and it is hypothesized 
in this paper that the vibration signal can be replace by the 
AE envelope signal.   

This TSA model assumes that f is constant. As noted, due to 
the finite bandwidth of the feedback control, there is some 
wander in the shaft speed due to changes in load or feedback 
delay. This change in speed will result in smearing of 
amplitude energy in the frequency domain. The smearing 
effect, and non synchronous noise, is reduced by resampling 
the time domain signal into the angular domain: mx(θ) = 
E[x(θ)] = mx(θ+Θ). The variable Θ is the period of the 
cycle to which the gearbox operation is periodic, and E[] is 
the expectation (e.g. ensemble mean). This makes the 
assumption that mx(θ) is stationary and ergodic. If this 
assumption is true, than non-synchronous noise is reduce by 
1/sqrt(rev), where rev is the number of cycles measured for 
the TSA. 

3.2. Condition Indicators based on the TSA 

The TSA is an example of angular resampling (McFadden, 
1985), where the number of data points in one shaft 
revolution (rn) are interpolated into m number of data points, 
such that: 

• For all shaft revolutions n, m is larger than r, 

• And m = 2ceiling (log2 (r)) (assumes a radix 2 Fast 
Fourier Transform). 

Linear, bandwidth limited linear interpolation, and spline 
techniques have been used. In this study, linear interpolation 
was used as it is considerable faster than spline or 
bandwidth limited filtering, with no apparent reduction in 
analysis performance of the TSA. 

The TSA itself can be used for CIs. Typically, a CI is a 
statistics of a waveform (in the case the TSA). Common 
statistics are RMS, Peak to Peak, Crest Factor, and Kurtosis. 

3.2.1. Gear Fault Condition Indicators 

There are at least six failure modes for gears (IS10825, 
2007): surface disturbances, scuffing, deformations, surface 
fatigue, fissures/cracks and tooth breakage. Each type of 
failure mode, potentially, can generate a different fault 
signature. Additionally, relative to the energy associated 
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with gear mesh frequencies and other noise sources, the 
fault signatures are typically small. A number of researchers 
have proposed analysis techniques to identify these different 
faults (McFadden, 1985, Zakrajsek, 1993). These analyses 
are based on the operation of the TSA. In this study the fault 
is a broken tooth, and the following analysis where 
conducted (note the gear mesh frequency is found by: take 
the FFT of the TSA, take the absolute value of the number 
teeth + 1 bin): 

• The common statistics of the TSA. 

• Figure of Merit 0: the TSA peak-to-peak divided 
by the sum of the 1st and 2nd gear mesh frequencies; 

• Side Band Modulation: the ration of the sum of the 
gear mesh side bands (+/-1 bin) divided by the gear 
mesh frequency. 

• Residual Analysis: where shaft order 1, 2, and 3 
frequencies, and the gear mesh harmonics, of the 
TSA are removed. Faults such as a soft/broken 
tooth generate a 1 per rev impacts in the TSA. In 
the frequency domain of the TSA, these impacts 
are expressed as multiple harmonic of the 1 per 
rev. The shaft order 1, 2 and 3 frequencies and gear 
mesh harmonics in the frequency domain, and then 
the inverse FFT is performed. This allows the 
impact signature to become prominent in the time 
domain. CIs are statistics of this waveform (RMS, 
Peak 2 Peak, Crest Factor, Kurtosis). 

• Energy Operator: which is a type of residual of the 
autocorrelation function. For a nominal gear, the 
predominant vibration is gear mesh. Surface 
disturbances, scuffing, etc, generate small higher 
frequency values which are not removed by 
autocorrelation. Formally, the EO is: TSA2:n-1 x 
TSA2:n-1 x – TSA1:n-2 x TSA3:n . The bold indicates 
a vector of TSA values. The CIs of the EO are the 
standard statistics of the EO vector 

• Narrowband Analysis: operates on the TSA by 
filtering out all frequencies except that of the gear 
mesh and with a given bandwidth. It is calculated 
by zeroing bins in of the Fourier transform of the 
TSA, except the gear mesh. The bandwidth is 
typically 10% of the number of teeth on the gear 
under analysis. For example, a 23 tooth gear 
analysis would retain bins 21, 22, 23, 24, and 25, 
and there conjugates in frequency domain. Then 
the inverse FFT is taken, and statistics of waveform 
are taken. Narrowband analysis can capture 
sideband modulation of the gear mesh frequency 
due to misalignment, or a cracked/broken tooth. 

• Amplitude Modulation (AM) analysis is the 
absolute value of the Hilbert transform of the 
Narrowband signal. For a gear with minimum 

transmission error, the AM analysis feature should 
be a constant value. Faults will greatly increase the 
kurtosis of the signal 

• Frequency Modulation (FM) analysis is the 
derivative of the angle of the Hilbert transform of 
the Narrowband signal. It’s is a powerful tool 
capable of detecting changes of phase due to 
uneven tooth loading, characteristic of a number of 
fault types. 

For a more complete description of these analyses, see 
(McFadden, 1985., Zakrajsek, 1993).  

The analysis for the experiment used 17 CIs. In general, 
there is no consensus on which CIa are best, as different CIs 
seem to work better than other CIs depending on the fault 
type.  

4. EXPERIMENTAL TEST 

The test was conducted on a split torque gearbox (STG). 
While not a planetary gearbox, the TSG similarly splits the 
torque path from a drive pinion to a driven gear. A full 
description of the article is available in (Li, 2012). The test 
consisted of the comparison of the nominal gears, with a 
idler shaft pinions that was missing 100% of a tooth (e.g. 
the “Bad Gear”). The idler shaft rate was rate was 0.556 x 
the input shaft, on which a 1/rev tachometer takeoff was 
mounted (Figure 3).  

A Physical Acoustic sensor, model: WD was used. This 
sensor is a wideband differential sensor with high sensitivity 
and bandwidth (100-900 KHz). The sensor was mounted on 
the output side of the gearbox, and after pre-amplification, 
was demodulate using a Analog Devices quadrature 
demodulator. The heterodyne frequency was 500 KHz. This 
frequency was optimized via testing using a Hsu-Neilsen 
source. The output of the demodulator and the tachometer 
1/rev signal was sampled at 100 KHz using a 18 bit 
National Instruments data acquisition system. This 
represents an AE bandpass signal of 400 to 600 KHz, and an 
envelope bandwidth of 50 KHz. The gearbox was run at 60 
Hz input shaft speed, where data was collected for 8 seconds 
per trail. 
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Figure 3 Split Torque Gearbox, Exploded View 

4.1. Initial Results 

The tachometer, shaft ratio and AE envelope signal was 
processed using the linear interpolation TSA algorithm 
presented in (Bechhoefer 2009).  For the 8-second 
acquisition, the TSA had approximately 250 revolutions. 
The TSA length was 2ceil(log2(100000/(60*40/70)) = 4096 
points. Some experimentation was performed where inline 
decimation was conducted to reduce the effective sample 
rate to 50000, with no loss in signal fidelity (Bechhoefer, 
2012). Figure 4 displays the nominal vs. bad gear. The Bad 
Gear tooth fault is clearly visible when compared to the 
Nominal Gear. 

 
Figure 4 TSA of the AE Envelope: Nominal vs. Bad Gear 

By removing the 1/Rev and gear mesh tone, the residual 
signal improves the fault visually (Figure 5).  

 
Figure 5 Residual of the AE Envelope 

The one per revolution seems to be the result of an eccentric 
output gear, as the 1/Rev was present in both the nominal 
and damage gear TSA waveform. The Bad Gear fault is also 
clearly evident in the Energy Operator (Figure 6). The 
waveform of the FM analysis shows a large phase reversal 
at the fault, which large Frequency modulation RMS/Peak 
to Peak (Table 1). The TSA, Residual, Energy Operator and 
Frequency modulation condition indicators are highly 
significant (Table 1). 

It should be noted that without TSA, the raw spectrum of 
the demodulated AE signal indicated that the “Nominal 
Gear” was more damaged than the “Bad Gear”, as evident 
by a large 50 Hz frequency associated with the shaft rate. 
This was likely caused by the eccentric pinion – the fault 
was not discernable without the use of the TSA.  

4.2. Quantifying Result Performance 

To quantify the performance, the measure of seperatbility 
was calculated using the pooled sample standard deviation. 
The sample size was 5 acquisitions per trail, where the 
populations for the null set came from the nominal gear (no 
damage) and the alternative set came from the damage gear 
population. 
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Figure 6 Energy Operator of the AE Envelope 

The test statistics is then: 

€ 

T = E Y1[ ]− E Y2[ ] Sp 2
n               (6) 

where,  

( ) ( ) 2211 2
2

2
1 −−+−= nSnSnSp        (7) 

A test statistic T greater than 3.58 is considered significant 
and would indicate that the CI could detect the fault 
(Wackerly, 1996). Note that AE is for the T statistics using 
the AE Envelope, while Vib is the T statistics from an 
earlier study using vibration data alone (Table 1). 
 

Table 1. AE Envelop CI Algorithm Results 

Condition Indicator AE Vib 

TSA RMS 21.6 3 
TSA Peak-to-Peak 9.2 4 
FM0 3.25  
Sideband Modulation 3.14 4.3 
Residual RMS 24.45 2.8 
Residual Kurtosis 6.54 0.065 
Residual P2P 15.4 2.75 
Residual Crest Factor 6.91 1.24 
Freq. Mod. RMS 6.65 0.22 
Freq. Mod. P2P 4.14 0.616 
Energy Operator RMS 33.26 3.5 
Energy Operator P2P 7.74 2.4 

Narrowband RMS 5.87 1.1 

Narrowband P2P 6.6 0.1 

Narrowband CF 5.24 7.1 

Amp. Mod. RMS 6.04 1.1 

Amp. Mod. P2P 6.9 3.1 

 

These results are very encouraging. In general, the AE 
envelope T statistics is far more significant than the 
vibration based T statistic. 

5. CONCLUSION 

The AE envelope analysis show promises to be a powerful 
tool for gear fault diagnostics. By heterodyning the raw AE 
signal, it is possible to reduce the hardware resources and 
cost normally associated with AE processing. In this 
experiment, the acquisition-sampling rate of 100 KSPS was 
used on an AE sensor with a signal bandwidth of 600 KHz, 
using an analogy Hilbert transform circuit. 

The AE envelope signal was then processed using time 
synchronous averaging (TSA). The TSA is commonly used 
with vibration-based diagnostics: this is the first time its use 
has been published using AE data. The TSA of the AE 
envelope was used to control for variation in shaft speed, 
and to reduce non-synchronous noise. The use of the TSA 
allowed the gear fault to be identified. 

Condition Indicators, based on the TSA, were calculated for 
both the AE sensor and the for vibration sensor 
(accelerometer). The CIs for the AE enveloped signal were 
3x more statistically significant than for the vibration 
sensor. This indicated that the combination of demodulated 
AE sensor data and the use of the TSA was superior for gear 
fault detection than traditional vibration/accelerometer 
sensors.  

Currently, we are working on the deployment of a prototype 
AE sensor for application in wind turbines.  

REFERENCES 

Liptai, R., Dunegan, H., and Tatro, C., (1969). Acoustic 
Emissions Generated During Phase Transformation in 
Metals and Alloys, Int. J. Nondestruct. Test. 1, 213 

Liptai, R., Harris, D., Engle, R., and Tatro, C., (1970). 
Acoustic Emissions Techniques in Materials Research, 
Proceedings of the Symposium on Advanced 
Experimental Techniques in Mechanics of Materials. 

Miller, R.K., Hill, E.v.K., and Moore, P.O., (2005). 
Nondestructive Testing Handbook, 3rd Ed., Vol. 6. 
Acoustic Emission Testing. Columbus, OH: American 
Society for Nondestructive Testing, p. 32 

Barsoum, F. F., Suleman, J., Korcak, A., and Hill, E. V., 
(2009). Acoustic Emission Monitoring and Fatigue Life 
Prediction in Axially Loaded Notched Steel Specimens, 
J. Acoustic Emission, 27. 



Annual Conference of Prognostics and Health Management Society 2013 
 

8 

Abouel-seoud S. A., Lemosry, M., (2012). Enhancement of 
Signal Denoising and Fault Detection in Wind Turbine 
Planetary Gearbox Using Wavelet Transform, 
International Journal of Science and Advanced 
Technology, Volume 2 No 5 May. 

Gu, D. S., and Choi, B. K., (2011). “Machinery Faults 
Detection Using Acoustic Emission Signal, Acoustic 
Waves - From Microdevices to Helioseismology, ISBN 
978-953-307-572-3. 

Horowitz, P., Winfield, H., (1998). The Art of Electronics, 
Cambridge University Press. 

AD532 data sheet, “Internally Trimmed Integrated Circuit 
Multiplier”, www.analog.com 

McFadden, P. (1987). A revised model for the extraction of 
periodic waveforms by time domain averaging. 
Mechanical Systems and Signal Processing 1 (1), 83-95  

Bechhoefer, E., Kingsley, M. (2009). A Review of Time 
Synchronous Average Algorithms. Annual Conference 
of the Prognostics and Health Management Society 

McFadden, P., Smith, J., (1985), A Signal Processing 
Technique for detecting local defects in a gear from a 
signal average of the vibration. Proc Instn Mech Engrs.  

ISO 10825. (2007) Gears -- Wear and damage to gear teeth -
- Terminology 

Zakrajsek, J. Townsend, D., Decker, H. (1993). An Analysis 
of Gear Fault Detection Method as Applied to Pitting 
Fatigue Failure Damage. NASA Technical 
Memorandum 105950.  

Li, R., Seckiner, S. U., He, D., Bechhoefer, E., Menon, P.,  
(2012) Gear Fault Location Detection for Split Torque 
Gearbox Using AE Sensor, IEEE Transactions on 
Systems, Man, and Cybernetics – Part C:, Applications 
and Reviews” IEEE 1094-6977. 

Bechhoefer, E., Wadham-Gagnon, M., Boucher, B., (2012). 
Initial Condition Monitoring Experience on a Wind 
Turbine, PHM Society Annual Forum, Minneapolis, 
MN. 

Wackerly, D., Mendenhall, W., Scheaffer, R.,(1996), 
Mathematical Statistics with Applications, Buxbury 
Press, Belmont. 

Bechhoefer, E., Li, R., He, D., (2009). Quantification of 
Condition Indicator Performance on a Split Torque 
Gearbox, American Helicopter Society 65th Annual 
Forum, Grapevine, Texas, May 27-29 

BIOGRAPHIES 

Eric Bechhoefer received his B.S. in Biology from the 
University of Michigan, his M.S. in Operations Research 
from the Naval Postgraduate School, and a Ph.D. in General 
Engineering from Kennedy Western University. His is a 

former Naval Aviator who has worked extensively on 
condition based maintenance, rotor track and balance, 
vibration analysis of rotating machinery and fault detection 
in electronic systems. Dr. Bechhoefer is a board member of 
the Prognostics Health Management Society, and a member 
of the IEEE Reliability Society. 
 

Yongzhi Qu received his B.S. in Measurement and Control 
and M.S. in Measurement and Testing from Wuhan 
University of Technology, China.  He is a PhD student in 
the Department of Mechanical and Industrial Engineering at 
The University of Illinois-Chicago.  His research interests 
include: rotational machinery health monitoring and fault 
diagnosis, especially with acoustic emission sensors, 
embedded system design and resources allocation and 
scheduling optimization. 
 
 
Junda Zhu received his B.S. degree in Mechanical 
Engineering from Northeastern University, Shenyang, 
China, and M.S. degree in Mechanical Engineering from 
The University of Illinois at Chicago in 2009.  He is a Ph.D. 
candidate at the Department of Mechanical and Industrial 
Engineering.  His current research interests include 
lubrication oil condition monitoring and degradation 
simulation and analysis, rotational machinery health 
monitoring, diagnosis and prognosis with vibration or 
acoustic emission based signal processing techniques, 
physics/data driven based machine failure modeling, CAD 
and FEA. 
 
David He received his B.S. degree in metallurgical 
engineering from Shanghai University of Technology, 
China, MBA degree from The University of Northern Iowa, 
and Ph.D. degree in industrial engineering from The 
University of Iowa in 1994.  Dr. He is a Professor and 
Director of the Intelligent Systems Modeling & 
Development Laboratory in the Department of Mechanical 
and Industrial Engineering at The University of Illinois-
Chicago.  Dr. He’s research areas include: machinery health 
monitoring, diagnosis and prognosis, complex systems 
failure analysis, quality and reliability engineering, and 
manufacturing systems design, modeling, scheduling and 
planning. 
 
 
 

 


