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ABSTRACT 

A proof-of-concept prognostic solution for certain failure 

modes in the power electronics that drive the flight-critical 

F-35 Joint Strike Fighter (JSF) electrohydrostatic actuators 

(EHA) is presented. This program was led by Ridgetop 

Group under U.S. NAVAIR Small Business Innovation 

Research (SBIR) funding, and included Lockheed Martin 

Aeronautics Company (LM), Moog, and Dell Services 

(Netherlands). Degradation of the optocoupler that isolates 

the control electronics from the power electronics was 

simulated in the lab by physically changing resistance 

values to alter the current transfer ratio. It is proposed that 

this degradation would also be indicative of insulated gate 

bipolar transistor (IGBT) wearout. The experimental 

approach, the test facility, the data analysis and the findings 

are discussed. An Off-Board Prognostics Health 

Management (OBPHM) Demonstrator, developed by 

Ridgetop Group and Dell Systems and representative of the 

production OBPHM application currently deployed for the 

F-35 is described. Implementation considerations and 

challenges are also discussed. 

1. INTRODUCTION 

The F-35 electrohydrostatic actuators (EHA) were designed 

to be maintenance-free, i.e., there were not going to be 

scheduled maintenance activities for the life of the aircraft. 

The only repair activities would be associated with 

identification of faults via built-in test (BIT) or integrated 

cautions and warnings (ICAW) from system monitors which 

provide coverage for all critical failure modes. Prognostics 

have been proposed for some failure modes of the EHA, but 

not the power electronics unit (EU), which provides the 

power and control to its associated EHA. 

Predicting the future state of health (SOH) of critical 

components in the EHA system (EHAS) could possibly 

prevent some loss of mission availability due to unforeseen 

failures. The objective of this program was to identify the 

feasibility of assessing the SOH of certain critical 

components in the EHA power electronics via a novel 

approach to pre-flight BIT. This approach utilizes 

frequency-shaped actuator commands during BIT to assess 

SOH. The program was led by Ridgetop Group under U.S. 

NAVAIR Small Business Innovation Research (SBIR) 

funding, and included Lockheed Martin Aeronautics 

Company (LM), Moog, and Dell Services (Netherlands).  

Ridgetop Group specializes in electronic prognostic 

solutions for critical systems. These include sensor array 
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detectors, harnesses for “prognostic-enabling” critical 

systems, and analysis software to comprise a complete 

solution.  

As the prime contractor for the F-35 Program, LM’s 

operational experience with the EHA system and flight 

control system BIT design was instrumental in defining the 

data requirements, test plan definition and execution, and 

assessing the feasibility of integrating diagnostic/prognostic 

capabilities into the F-35 EHA and the Autonomic Logistics 

Information System (ALIS).  

Moog leads the F-35 EHA subcontractor team which has 

responsibility for development of the actuators for the 

primary and secondary flight control surfaces (Figure 1). 

Moog’s design expertise with the EHA power electronics 

was utilized to help identify the candidate electronic 

components that could be artificially degraded during the 

experiments, and they also provided the test labs and test 

personnel to conduct the experiments. 

 

Figure 1. F-35 “Power-by-wire” systems  

Dell Services has more than a decade of experience working 

with Lockheed Martin on the design and development of the 

Off-Board Prognostics & Health Management (OBPHM) 

system during the Concept Demonstration and System 

Design & Development phases of the F-35 program (see 

Figure 2). This knowledge and experience was used to 

create a low-cost OBPHM-compatible prognostic 

demonstrator framework that will be used to present the 

viability of prognostic capability for the EHA system. 

The experimental approach, the test facility, the data 

analysis and the findings are discussed in the following 

sections.  

 

Figure 2. Autonomic Logistics Information System (ALIS) 

OBPHM system sketch 

2. EHA SYSTEM PROGNOSTIC EXPERIMENTS 

Various experiments were designed and conducted at 

Moog’s East Aurora Aircraft Controls facility to 

characterize fault-to-failure progression (FFP) signatures of 

the EHA. The original objective was to emulate insulated 

gate bipolar transistor (IGBT) degradation in the motor 

drive H Bridge and assess if this degradation could be 

identified during initiated built-in test (IBIT) by 

examination of the actuator response to an input command. 

However, since the servo drive IGBTs are typically 

packaged as a single hybrid module with DC-link and gate 

drive inputs, along with 3-phase motor drive outputs, it was 

impractical to vary the high-side collector resistance to 

directly emulate IGBT degradation. Hence focus was shifted 

to the more accessible gate driver board and propagation of 

damage from this isolated low-voltage control circuitry to 

the high voltage power electronics circuitry. 

Our fundamental hypothesis is: 

 Degradation or damage to the discrete circuitry 

surrounding the gate drive logic could result in 

measurable drift from nominal switch operation. 

 Decreased dead-time between high- and low-side 

device switching could lead to both high- and low-side 

power transistors in resistive (linear) mode 

momentarily. 

 Excessive power transistor heating accelerates wear and 

ultimately results in premature end of life. 

We then analyzed the gate driver circuitry to identify the 

components that would affect device switching parameters, 

be relatively easy to apply synthetic degradation to, and 

perhaps, be prone to wear. The EHA design utilizes 

optocouplers to isolate the gate drive circuitry from the 

PWM controller. Prior research strengthens our basic 

premise that as damage to the optocoupler accumulates, its 

ability to deliver switch signals to the IGBT on time may be 

inhibited. Additionally, the optocoupler circuit includes a 

series resistor that can easily be modified to synthesize 

.  
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decreased current transfer ratio (CTR) consistent with 

damage to the optocoupler’s crystalline lattice. Therefore, 

the optocoupler was selected. 

Applying our proven servo drive damage propagation 

analysis methodology, shown in Figure 3, entails: 

 Applying various fault conditions to each critical stage 

of the servo drive, starting with the gate driver (D1 in 

Figure 3) and progressing to the power transistors (D2) 

and motor windings (D3) of each phase.  

 Conducting lab experiments to acquire and characterize 

the pertinent multivariate servo drive data associated 

with each fault condition and the resulting stress effect 

on other components in the system.  

 Analyzing the FFP signatures of the acquired 

multivariate data to produce reasoner algorithms that 

effectively detect precursor events that mark incipient 

failure of the servo drive subsystem or damage to its 

individual components.  

 

Figure 3. Damage propagation analysis methodology  

The optocoupler was synthetically aged by changing the 

series resistor value to acquire FFP signatures from no 

degradation to total device failure, under various load 

conditions. Five different resistance values were utilized to 

emulate 25%, 50%, 75%, 95% and100% degradation. The 

100% degradation represented a catastrophic collector-to-

emitter open circuit fault. The acquired data were recorded 

in a database and used to develop analysis algorithms to 

assess the SOH and estimate the remaining useful life 

(RUL) of the actuator servo drive power electronics. 

2.1. EHA System Prognostic Testing 

The IBIT and power-up built-in test (PBIT) requirement is 

that failure detection be designed to detect and isolate 

greater than 99% of all functional failures within the EHA 

system. IBIT is executed in two parts, one to test the 

processing circuitry and the other to verify the drive 

electronics and the EHA, including the bypass solenoids. 

These tests are capable of being invoked separately, with the 

processing circuitry test always engaged prior to the drive 

electronics/EHA test. The purpose of IBIT is to execute a 

series of test steps as a means to detect latent system failures 

that would prevent the system from meeting its reliability 

and availability requirements. IBIT for the EHA system is 

invoked by a signal from the vehicle management computer 

(VMC). IBIT is exited upon a Terminate IBIT command 

from the VMC. 

The particular test that would lend itself to evaluation of the 

frequency response characteristics consistent with the goals 

of the test program would be the EHA rate test. 

The duplex actuators on the flaperon and horizontal tail each 

have dual pumps and motors that are tested. In addition, 

there is triplex redundancy in the control electronics (two 

physical, one model) for each pump/motor. Consequently, 

six maximum rate command tests are run. 

The critical item is the amount of time available for each of 

the six tests. It can be calculated that there is approximately 

a 300 msec time allocation for each of the six max rate 

commands. There is a total maximum time allocation to 

IBIT for the EHAS so any dynamic movement of the 

surfaces should be kept to less than 300 msec as a target 

value for each of the six tests. 

In order to maximize the prognostic signature available 

during IBIT, different types of frequency shaped actuator 

motion profiles were tested. These included: 1) a chirp type 

of sine sweep command, and 2) a sinusoidal input at a 

selected frequency.  The bandwidth for these sinusoids was 

chosen at the upper end of the frequency response capability 

for the actuators in order to maximize the number of 

sinusoids in the motion profile. For the chirp signals, this 

was initially selected to be a 5.5 to 10 Hz frequency sweep. 

The waveforms for a linear chirp for a 300 and 600 msec 

time period are illustrated in Figure 4(a) and Figure 4(b), 

respectively. The 600 msec waveforms were utilized in the 

test program to identify any improvements to the prognostic 

signature that could be obtained with more sinusoids in the 

stimulus. 

An exponential chirp waveform for a 5.5 to 10 Hz frequency 

sweep is illustrated in Figure 5(a) and Figure 5(b) for a time 

period of 300 and 600 msec, respectively. For this limited 

frequency sweep and time, there is not a significant 

difference in the waveforms between the linear and 

exponential chirp signal. 
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(a) 300 msec, 5.5 to 10 Hz   

  

(b) 600 msec, 5.5 to 10 Hz 

Figure 4. Linear Chirp Waveforms 

 

(a) 300 msec, 5.5 to 10 Hz 

 

(b) 600 msec, 5.5 to 10 Hz  

Figure 5. Exponential signal waveform 

2.2. Experiments Overview 

The Moog test facility in East Aurora, New York was 

utilized to conduct the experiments. The lab setup is 

illustrated in Figure 6 through Figure 8. This includes the 

flaperon EHA, shown in Figure 6, the power drive 

electronics (PDE) unit shown in Figure 7, and the integrated 

test computer (ITC) in Figure 8. 

 

Figure 6. Flaperon EHA used in experiments 

The PDE shown in Figure 7 is where the fault-seeded gate 

driver circuit is housed. Oscilloscope probes, visible on the 

left side of the PDE, are monitoring the gate driver output.  

 

Figure 7. Power drive electronics (PDE) unit 

The ITC shown in Figure 8 controls the operation of the test 

stand and downloads data from the digital recorder. Motion 

profiles and test stand digi-rec (digital recording) commands 

are configured from this workstation.  

Figure 9 shows a portion of the gate driver circuit 

schematic, which was the source of fault seeding. As 

previously mentioned in Section 2.0, different resistor 

values were placed in the input diode’s cathode branch to 

simulate degradation of the optocoupler. The resistor values 

were changed by physically removing a resistor and 

soldering in a new one with the specified ohmic resistance. 
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Figure 8. Integrated test computer (ITC)  

 

Figure 9. The gate drive circuit with Rgd 

(gate driver resistor) circled in red 

Five different levels of degradation were chosen, simulating 

an even decline in health from nominal degradation to 

terminal failure. Note that the actual degradation 

percentages are slightly different from the previously stated 

values due to the available resistor characteristics. 

 

Table 1. Gate driver configurations 

2.3. Motion Profiles 

It was determined that the best plan of action was to collect 

baseline data for each individual motion, and then string 

them into a composite motion of appropriate length to 

improve test and analysis efficiency. A detailed summary of 

the motion profiles is shown in Table 2. 

 

Table 2. Motion description 

2.4. Monitored Variables 

Several variables were monitored in the test fixture as well 

as hardware test points inside the gate driver circuit. All 

software test points were downloaded and all hardware test 

points were captured with a 2 GS/s oscilloscope.  

Table 3 provides a complete listing of collected data points. 

 

Table 3. Monitored test points 

3. DATA ANALYSIS 

A significant amount of data was collected during the 

testing. Approximately 2.4 gigabytes of data were collected 

through the course of 72 trials. Each motion profile that was 

tested was recorded three times for repeatability analysis. 

The data analysis methodology uses data collected while 

running a composite motion profile with different resistor 

values, as previously shown in Table 1.  

3.1. Analysis Methodology 

Data collected with a resistor value of 440 Ω is used as the 

“golden,” “healthy,” or “reference” data. The goal of this 

data analysis methodology is to create a signature that can 

be used to compute the level of degradation of any future 

test runs. This methodology computes differences from the 

Hardware Config. Actual Degradation Rgd (ohms) 

Baseline 0% 442 

Degradation 25% 25.70% 681 

Degradation 50% 55.10% 953 

Degradation 75% 76.30% 1150 

Degradation 95% 95.70% 1330 

Terminal Degradation 100% 1370 

 

Motion Signal Frequency – Hz Max Velocity (°/sec Duration (msec) Amplitude (In.)  

1 Run 54° / sec 560 3 

2 Step (50% duty) 60° / sec 500 .3 

3 Sinusoid 4 Hz 500 0.227 

4 Sinusoid 6 Hz 500 0.151 

5 Sinusoid 8 Hz 500 0.113 

6 Linear Chirp 5.5 -> 10 -> 5.5 Hz 20 ms dead time 600 -> 300 Max allowable 

7 Geometric Chirp 5.5 -> 10 -> 5.5 Hz 20 ms dead time 600 -> 300 Max allowable 

9 Linear Chirp 5.5 -> 10 -> 5.5 Hz 100 ms dead time 600 -> 300 Max allowable 

10 Geometric Chirp 5.5 -> 10 -> 5.5 Hz 100 ms dead time 600 -> 300 Max allowable 

 

Variable 
Sampling 

Frequency 
Test Point tag // 

270 V internal  8064 Hz Software ITC #i8 A1 

270 V Bus Link Capacitor Voltage 8064 Hz Software ITC #i9 A2 

Phase A Motor Current 8064 Hz Software ITC #i10 A3 

Phase B Motor Current 8064 Hz Software ITC #i11 A4 

Phase C Motor Current 8064 Hz Software ITC #i12 A5 

Commanded Position (inches) 80 Hz Software ITC #i13 A6 

Actuator Position (inches) 560 Hz Software ITC i#17 A7 

Actuator Velocity (rad/sec) 2240 Hz Software ITC #i18 A8 

Local Motor Velocity CMD 560 Hz Software ITC #i19 A9 

Quadrature Axis Current Error 8064 Hz Software ITC #i20 A10 

Phase A Gate Driver Command 
(GATE_DVR_A-_OUT) 

2 Gs/s Hardware O-Scope Scope 1  

Phase A IGBT Gate (G2_A) 2 Gs/s Hardware O-Scope Scope 2  
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golden signature and sums the differences over time. The 

summed differences relate to fault degradation. The fault 

degradation is used to determine a fault-to-failure 

progression. 

The algorithm flow of extracting signatures from a data set 

is described in Figure 10. There is a basic assumption that 

there is both a nominal data set and a fault-seeded or 

degraded data set. There is also an assumption that the 

degraded data sets are ordered in increasing levels of 

degradation. We begin with the “golden” data set. Each data 

set (nominal and degraded) is made up of a certain number 

of measured parameters, recorded at a certain frequency 

over a certain time interval. 

1: For golden data set, 

2:    For each time i, 

3:        

4:        

5:        

6:    End For 

7: End For 

8: For each degraded data set, 

9:    For each time i, 

10:       For j = 1;3, 

11:           

12:       End For 

13:        

14:    End For 

15:    For each windows, T 

16:     

17:    End For 

18:    Compute a minimum gap 

19: Compute the maximum of the minimum gap 

20: End For 

Figure 10. Analysis methodology procedure 

A brief explanation of the analysis methodology to identify 

the actuator motion profile that provided the best prognostic 

signature follows. From Line 1 to Line 6, three amplitude 

values and a middle value mi is calculated from three 

amplitude values for each time in the golden data set. This 

means that the nominal data set produces a total of n middle 

values where n is the number of golden data sets. From Line 

8 to Line 14, a degraded data set is considered, and an 

intermediate distance value, , and the average of the 

three intermediate distance values, , are computed, 

where k refers to the degradation level. Thus a total of n 

average intermediate values are computed for each level of 

degradation. From Line 15 to Line 17, the final average of 

the distances is computed from the data set consisting of n 

time values. A window size is chosen of w time values 

where w is less than or equal to n. This produces T final 

averages for each of the degraded data sets. Last, we find 

the maximum of the minimum gaps. A minimum gap is 

generated by first calculating the difference between the 

final average for successive degradation levels, DT,k – DT,k-1. 

A total of k-1 differences are determined, one less than the 

total number of degradation levels. The minimum gap is the 

minimum of these differences and indicates the distances 

from the nominal relative to degradation. The maximum of 

the minimum gaps provides the right edge of the time 

window T corresponding to the signature. This tells you 

where there is a good separation of the means of the 

measured parameters that correspond with degradation. 

Figure 11 shows the maximum of the minimum gaps in 

green, motion profile in black, and best signature time in 

red. 

 

Figure 11. 300 ms signature search motion profile  

The application of the methodology identified the 

quadrature axis current error (QACE) data signal (see 

Figure 12) as the best failure precursor when combined with 

a simple 6 Hz sinusoidal motion profile.  

 

Figure 12. Quadrature axis current error (QACE) 
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The initial data analysis methodology used all of the data 

collected at 8 kHz. However, since data are written to the 

VMS bus in the aircraft at only 80 Hz, the prognostic 

analysis methodology would need to work at this data rate.  

Consequently, the analysis was performed again with the 

data decimated down to 80 Hz.  The results are illustrated in 

Figure 13. 

 

Figure 13. Total sum_gaps for 80 Hz samples 

After the QACE 8 KHz data from all test runs were 

decimated to 80 Hz, the search for the maximum of 

minimum gaps produced the same signature as shown in 

Figure 11 above. 

The fault-to-failure signature utilizing the analysis 

methodology applied to the QACE data is plotted in Figure 

14 for all resistor values: 440 Ω (⊙), 681 Ω (□), 953 Ω (∎), 

1150 Ω (◊), and 1330 Ω ( ). This plot illustrates the 

increasing prognostic signature as the synthesized 

degradation increases. 

 

Figure 14. Total sum 

SOH assessment is calculated for subsequent tests by 

comparing the subsequent test measurements with recorded 

reference signature values. The subsequent total sum gap is 

compared with totals recorded in the signature file and the 

SOH is derived by interpolating the new total between the 

recorded subgaps and percentage degradation for different 

resistors. 

The RUL is calculated from the SOH assessments acquired 

at various times. A linear RUL estimate is calculated from 

the assessment times and SOH at the two most recent 

assessments. The change in SOH per unit of time is 

assumed to be a constant. The RUL is a linear extrapolation 

of the two most recent states of health and assessment times. 

More accurate RUL is attainable by monitoring SOH 

degradation over real time on a real system. 

4. OFF-BOARD PHM DEMONSTRATOR AND REASONER 

FACTORY 

The work on the PHM Demonstrator consisted of 

establishing the system engineering tasks and activities 

required for the design of a signal parser and OBPHM 

Demonstrator. Dell Services provided domain knowledge, 

software engineering, and business process expertise 

required to design the OBPHM Demonstrator such that 

future integration of algorithms into production systems is 

realistic.  

The flow depicted in Figure 15 represents the path the data 

follow from on-board to off-board systems for processing. 

The data are taken off the aircraft by means of a portable 

memory device. The unclassified PHM and signal data are 

split off from the classified data and transferred to the 

OBPHM system, which calculates, tracks, and visualizes 

RUL of various components. Additionally, maintenance 

work orders can be generated for repair and replace actions 

as needed. The rationale for the approach that was taken to 

minimize costs associated with transferring technology from 

a research and development to a production environment is 

self-explanatory. To achieve the highest possible level of 

compatibility between the concept demonstrator and the 

production OBPHM system, software components were 

developed with functionality similar to that in a production 

environment. Also, the same software development toolset 

that Dell used to support OBPHM development was used 

for this work. 

 

Figure 15. System sketch 
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The tools developed are outlined in Table 4: 

 

Table 4. System design tools 

The Demonstrator Software Prototype and Data Parser 

Software Emulator Prototype runs in a single environment 

for demonstration purposes. A distributed architecture was 

not developed as part of the initial capability. Figure 16 

represents the architecture for the Demonstrator. The EHAS 

architecture consists of components and interfaces and 

supports loose coupling. Each component implements a 

single related set of functionality.  

 

Figure 16. Demonstrator overview 

The EHAS architecture consists of the following 

components: 

 Concept Demonstrator User Interface: This 

component represents the interface to the end user for 

interaction with the Parser component, Algorithm 

Engine component, and the RUL Analyzer component. 

 Parser Component: The Parser component has the 

capability to parse datasets, offers the capability to view 

the parse results, and the ability to delete these results. 

The Parser component has a Parser Interface, which is 

utilized by the Concept Demonstrator UI component. 

 Algorithm Engine Component: The Algorithm 

Engine component has the capability to run algorithms 

and to view the run results. The Algorithm Engine 

component has an Algorithm Interface, which is 

utilized by the Concept Demonstrator UI component. 

The algorithm engine also ensures that parsed data sets 

are processed in chronological sequence. 

 Remaining Useful Life (RUL) Analyzer Component: 

The RUL Analyzer component offers the capability to 

view the RUL analysis and has an Analyzer Interface, 

which is utilized by the Concept Demonstrator UI 

component. 

 EHAS Database: The EHAS Database component 

offers a Data Access Interface to the other components 

to view, create, update, and delete data required by the 

various Concept Demonstrator functions. 

The architecture puts in place the basic framework of being 

able to parse signal data, process parsed data, and display 

RUL. More work is needed to make the system more robust. 

For example, as we learn more of the performance 

characteristics of the air vehicle it may be necessary to 

recalculate remaining life of one or more components. 

Flight/system data are stored starting, in some cases, during 

production. There can be cases where all the flight data need 

to be reprocessed starting from day one or some other point 

in time during the life of the aircraft. 

This basic design principle introduces additional 

complexity. For example, it does not make sense to 

recalculate remaining life for components that have already 

been scrapped. Also, parts may be refurbished, returned to 

the supply chain and end up on a different aircraft from the 

first install; the component may even end up on an aircraft 

belonging to a different country’s air force. Therefore the 

OBPHM system needs to be able to track which component 

was installed on which air vehicle and the period of time 

that it was installed. Additionally, it is essential that 

Performance-Based Logistics contracts are put in place with 

partner nations or we may not be able to feed the system all 

the needed flight and performance data to effectively 

perform prognostics and health management. PHM and 

remaining life data accompany the component throughout 

its life so for each period that a component is “on wing” it is 

known what its start and end RUL characteristics were. 

Finally, as the aircraft matures over time, changes will be 

incorporated. For the PHM demonstrator the signal 

definitions are most important, as this is a configuration-

managed item. So it is not enough to know which part flew 

in which air vehicle for a given flight of the air vehicle. We 

must also be able to determine the correct set of signal 

definitions that are an essential input to the parser function. 

System Design Specific Tools 

 Requirements Tools  

  Starteam  http://www.borland.com/us/produ

cts/starteam/ 

 Modeling Tools  

  Together Control Center 2007  http://www.borland.com/together/   

  XML Spy http://www.xmlspy.com/ 

 Configuration Management Tools  

  Subversion  http://tortoisesvn.tigris.org/ 

 Database Tools  

  Oracle  http://www.oracle.com/  

  Toad Oracle (Tool for Database 

Administrators) 

http://www.toadsoft.com  
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Since we expect to tighten tolerances used in the PHM 

algorithms as the air system matures, it is essential that 

algorithms do not require to be recompiled with version 

updates to the OBPHM system. Many copies of the 

OBPHM system run in multiple locations and countries. 

Version updates of the OBPHM software are therefore not 

trivial and are time-consuming to roll out. Hence the design 

requirement for PHM algorithms to be parameter-driven, 

which in the current version of the demonstrator they are 

not. 

4.1. Reasoner Development 

For the final demonstration, two reasoners were successfully 

developed and integrated with the OBPHM demonstrator, 

using the supplied test run datasets presenting both the SOH 

and RUL. In addition, the system was able to repeatedly 

discover the signatures of interest as the data were 

decimated from 8 kHz down to 80 Hz, proving that the same 

algorithm without change could detect the degradation with 

fewer data points. Figure 17 and Figure 18 show the final 

EHAS concept demonstrator using the datasets at 80 Hz 

with a 300 ms detection window for SOH and RUL. 

 

Figure 17. Results SOH report screen 

 

Figure 18. Results RUL report screen 

5. PROGNOSTIC ARCHITECTURE AND IMPLEMENTATION 

CONSIDERATIONS 

The essential idea of the prognostic methodology presented 

in this paper is to sum the absolute value of the difference 

between a degraded signal and a golden (reference) signal. 

The gaps or differences between different levels of 

degradation are then computed and the running sums again 

calculated to obtain sum_gaps. An average gap is then 

computed to be used as an indicator of the strength of the 

prognostic signal. The implementation of two error 

summations essentially applies a “magnifying glass” to the 

differences between the degraded signals and the reference 

value so that the best failure precursor signal, on a relative 

strength level, can be identified.  

The application of this methodology identified the QACE as 

the data signal that provided the best failure precursor when 

combined with motion profile 4, a 6 Hz sinusoidal motion.  

5.1. Prognostics Architecture Feasibility 

There are two primary factors in going forward with 

technology implementations on the F-35. The first is 

technical feasibility, and the second is return on investment 

(ROI). By ROI, we essentially mean that the technology has 

to earn its way on the aircraft by providing a cost benefit 

that will result in net cost savings over the life of the 

program. 

5.1.1. Technical Feasibility 

The F-35 vehicle systems network (VSN) is the primary 

means for transfer of data between vehicle system 

subsystems and components. This includes transfer of data 

between the VMCs and the EHA EU.  

The lab experiments and data analysis indicated that a 

prognostic algorithm to calculate RUL for a degraded 

optocoupler is feasible for this particular failure mode when 

tested in a lab environment. The key question is how would 

the algorithm perform in an operational environment? Since 

the motion profile would be implemented during IBIT, 

which would provide a somewhat repeatable field 

environment, variability in the EU states and resulting effect 

on the prognostic algorithm would be minimized. The 

concern is then the effects of noise and other environmental 

factors such as temperature on the QACE signal and RUL 

calculations. 

Temperature variations could have a significant effect at the 

extremes of the operational environment. It is highly 

probable that the EU behavior would be significantly 

different at -20 °C than at 23 °C due to lower fluid 

temperatures requiring more power input to the motor. 

Temperature and resulting power variations and their effect 

on the QACE would have to be considered in the prognostic 

algorithm. 
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Variations in signal strength or noise due to other external 

sources such as variability in components would most likely 

have to be compensated for. The strategy computes SOH 

utilizing the sum_gaps obtained from the laboratory testing 

based on field data obtained during IBIT. The RUL could 

then be inferred from the current sum_gap value and its rate 

of change and projected time to reach the 100% degradation 

value. However, since the sum_gap is essentially a “double 

summation” over time of the errors from the golden values, 

variations in noise could produce significant deviations from 

the sum_gaps established in the laboratory testing. This is 

illustrated in Figure 19. Four levels of random, Gaussian, 

zero-mean noise were simulated (with standard deviations 

of 0.1, 1.0, 3.0, and 5.0). Note that the Iq deviation values 

have an amplitude mostly less than 10 A. The chosen noise 

signals thus have standard deviations ranging from 1% to 

50% of the amplitude of the signal. The blue line represents 

the sum gap between the 681 and 440 ohm resistance 

values, the green line between the 953 and 440 resistance 

values, etc. There are two reference levels on the plot, one 

with the reset function (dashed horizontal colored lines), and 

one without (solid colored horizontal lines). The one 

without is the reference value of interest since the reset 

function is neither necessary nor desired for a prognostics 

implementation based on IBIT data. 

 

Figure 19. Effect of noise on Sum_Gap calculations 

Would the QACE signal have much variation due to noise 

or temperature? We do not know the answer to that. But as 

the plot illustrates, even with a standard deviation of 1, 

significant errors in the reference values used to estimate 

RUL would be incurred. Consequently, this would have to 

be monitored. 

5.1.2. Return on Investment (ROI) 

In order to justify implementation of a prognostic algorithm 

for the EHAS EU, it has to address a significant issue that 

could affect the operational costs and mission availability of 

the fleet. Performing prognostics for the optocoupler only 

would most likely not meet those criteria. The question is 

which other failure modes in the EU would also show up in 

the QACE signal? Another question is how would you 

isolate between an IGBT failure mode or optocoupler failure 

mode or any other failure modes that would affect the 

QACE signal? Different failure modes would most likely 

have different sum_gaps associated with their remaining 

useful life calculations. Distinguishing between failure 

modes would most likely require data fusion of different 

signals, and lab data to establish sum_gap levels associated 

with failure. 

6. CONCLUDING REMARKS 

The laboratory testing at Moog on a simulated optocoupler 

failure proved to be successful with regard to performing 

degraded electronic component testing, identifying a motion 

profile that would fit the severe constraints associated with 

F-35 IBIT and the VMS architecture, and extracting a 

prognostic signal that showed progressive degradation 

commensurate with the induced degradation.  

Distinguishing which failure mode might be showing up in 

the QACE signal is probably a more difficult challenge. 

This would most likely require a detailed circuit and failure 

modes, effects & criticality analysis (FMECA) for the 

power circuitry, and additional degraded component test 

work to identify a prognostic signature associated with a 

particular failure mode. A recommendation would be to 

perform testing on degraded EUs that have been returned 

due to failures so that a prognostic QACE signature could 

be established for a known component failure. EUs with 

failed IGBTs would be a significant opportunity for a test 

program. 

One other strategy for implementation would be to start 

collecting the QACE signal during IBIT and then 

monitoring it as a precursor that something is going wrong 

even if the particular failure mode is unknown. Suggested 

steps in implementing the methodology are shown in Figure 

20. 

 
Figure 20. QACE tasks 
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