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ABSTRACT 

Sensor selection in data modeling is an important research 
topic for prognostics. The performance of prediction model 
may vary considerably under different variable subset. 
Hence it is of great important to devise a systematic sensor 
selection method that offers guidance on choosing the most 
representative sensors for prognostics. This paper proposes 
a sensor selection method based on the improved grey 
correlation analysis. From empirical observation, all the 
continuous-value sensors with a consistent monotonic trend 
are firstly selected for data fusion, and a linear regression 
model is used to convert the multi-dimensional sensor 
readings into one-dimensional health factor (HF). The 
correlation between HF and each of the selected sensors is 
evaluated by calculating the grey correlation degree defined 
on two time series. The optimal sensor subset with a 
relatively large correlation degree is selected to execute the 
final fusion. The effectiveness of the proposed method was 
verified experimentally on the turbofan engine simulation 
data supplied by NASA Ames, using instance-based 
learning methodology, and the experimental results showed 
that RUL prediction with fewer sensor inputs can obtain a 
more accurate prognostics performance than using all 
sensors initially considered relevant. 

1. INTRODUCTION  

Prognostics and health management (PHM) of complex 
engineered systems has gained increasing attention from the 
research community worldwide. Prognostic builds the 
foundation of PHM, and its outcome directly affects the 
other PHM components such as operations planning, timely 
maintenance, logistics, etc. Hence prognostics can play an 
important part in reducing cost, increasing safety, and 
accomplishing critical missions (Heng et al., 2008). 
Generally, prognostics can be divided into the detection of 
failure precursors and the prediction of remaining useful life 

(RUL). Comparing to the detection of failure precursors, 
RUL prediction is mostly irrelevant to the application. The 
methods for RUL prediction are almost the same to all 
prognostics applications. 

The ultimate aim of most prognostics systems is accurate 
estimation the RUL of individual systems, and the 
prediction accuracy relies not only on the prediction models 
used, but also on the types and number of sensors selected 
(Cheng et al., 2010).  As the performance of system 
degrades, the monitored parameters tend to change 
accordingly. These raw multi-dimensional sensor data or 
features extracted from them may be used to track the 
degradation behavior of system. Typically, these 
degradation data can be used as the inputs of data-driven 
prognostics model to make RUL estimation. Degradation 
data may consist of sensor readings, such as temperature 
and pressure, or inferred features, such as model residuals or 
physics-based model predictions. Commonly, it is beneficial 
to fuse sensor readings and inferred features into a single 
health factor, which is considered as a more robust input to 
the prognostics model (Coble, 2010). However, inclusion of 
irrelevant or redundant variables during the fusion may lead 
to over-fitting or less sensitivity of prognostics model, 
which is adverse to the prediction performance. Hence 
variable selection is critical to make an accurate RUL 
estimation. Typically, sensor selection is left to expert 
knowledge, empirical observation of available data, and 
intimate knowledge of degradation mechanisms. These 
methods are time-consuming, and scale with the number of 
available sensors and possible fault modes (Zhang, 2005). 

For many real-world systems, it is almost impossible to 
fully understand the degradation behavior of the systems 
and employ the first-principle models for prognostics. Since 
Instance-based learning (IBL) approach develops 
prognostics model based on a mass of historical instances, it 
becomes a preferable choice (Xue et al., 2008). As the rapid 
development of communication and sensor technology, 
abundant data collection from complex systems, such as 
aircraft engines, satellite power system, etc, becomes 
possible. These massive life-cycle condition data collected 
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from various instances of the equipment further promotes 
the application of IBL prognostics approach. 

The current work focuses on improving the RUL prediction 
accuracy of complex systems via sensor selection. In real 
applications, complex system is operated under dynamic 
operating conditions, and k-means clustering algorithm is 
employed to cluster the operational conditions into a finite 
number of operating regimes. According to the empirical 
observation, those sensors with a consistent monotonic trend 
under different operating regimes are selected, and a linear 
regression model is employed to convert the selected 
multivariate sensor readings from individual regimes into a 
one-dimensional HF, then all the HFs are merged to form a 
complete HF time series with the original time stamps. The 
correlation between HF and each of the selected sensors is 
evaluated by calculating the grey correlation degree defined 
on two time series. The optimal sensor subset with a 
relatively large correlation degree is selected to execute the 
final fusion. Finally, the obtained HF time series is 
integrated into an IBL prognostics architecture consisting of 
model recognition, similarity evaluation and RUL prediction. 
Moreover, the performance of the sensor selection strategy 
is verified experimentally on the turbofan engine simulation 
data supplied by NASA Ames, using the integrated IBL 
prognostics architecture. 

The paper is organized into the following sections. In 
section 2, the sensor selection scheme based on improved 
grey correlation analysis is introduced. In section 3, the IBL 
prognostics architecture is summarized. The turbofan engine 
application is elaborated in section 4. The experiment results 
and discussions are presented in section 5. Conclusion is 
drawn in section 6. 

2. SENSOR SELECTION SCHEME 

Sensor selection is mostly relevant to the application, and it 
aims at reducing the unnecessary redundancy while 
maximizing the relevance in the sensor subset (Wang et al, 
2008). According to the characteristics of collected data, the 
sensor selection scheme probably consists of operation 
condition division, empirical observation, data fusion and 
grey correlation analysis.  

2.1. Operation Condition Division 

In real applications, the dynamic operation conditions have 
a great impact on the sensor readings or inferred features 
from the system and complicate the system degradation 
behaviors over time. The sensor time series may show little 
trend. However, if the operation conditions are clustered 
into several operating regimes by the use of certain 
clustering algorithm, the sensor data collected from different 
regimes may exhibit a prominent trend.  

The vector ic represents the operation conditions of the 
system at time it . Suppose the operational conditions c can 
be concentrated into a limited number of operating regimes 

1 2={ , ,..., }PO O OΟ
 
using k-means clustering algorithm f . 

The output of f  is defined as: 

1 2= ( )=( , ,..., )Pf S S SS c                             (1) 

where pS
 
is membership score when pO∈c . 

In case of discrete operation conditions, the output of f  can 
be simplified as: 

=1,...,
( )= arg max kk P

f Sc                                (2) 

2.2. Empirical Observation 

The objective of empirical observation is to eliminate the 
sensors which are obviously not suitable for prognostics 
modeling. The visual inspection procedures of sensor data 
under different operating regimes are as follows: 

1. Some sensors with one or multiple discrete values are 
firstly discarded, from which it is difficult to track the 
degradation trend of the system. 

2. Some other sensors have continuous values, but exhibit 
non-monotonic trend during the life time of the 
instances, should also be discarded. 

3. All the remaining sensors with continuous values 
exhibit a monotonic trend, but some of them show 
inconsistent evolution trend among the different 
instances, which may represent various fault modes of 
the system. As it is hard to quantize or identify the fault 
modes without system relevant information, those 
sensors with inconsistent trend are eliminated. 

4. Only those sensors with a consistent monotonic trend 
under different operating regimes are selected for data 
modeling or other processing.  

2.3. Data Fusion 

In this paper, data fusion refers to convert the selected 
multivariate sensor data from individual regimes into a 
single HF within a normalized range. Therefore, the HFs 
obtained from each regime can be merged to form a new 
one-dimension time series, as described in Fig.1. 

For operating regime pO , one local regression model is 
created: 

z = h (x ; ( ) )pθ                                  (3) 

where x  represents the multivariate sensor data, and ( )pθ
denotes the local model parameters. 
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Figure 1. Data processing for RUL modeling through   
multi-regime health assessment 

To make the HF comparable under different operating 
regime, the obtained HF should be normalized to a range, 
usually between 0 and 1, hence, the learning procedures of a 
local regression model can be followed: 

• For those samples ( , )i ic x collected at early stage, that is 

1<it T , assign the matching output iz = 1; 

• For those samples ( , )i ic x collected at middle stage, that 
is 1 2< <iT t T , will not participate model training; 

• For those samples ( , )i ic x collected at late stage, that is 

2>it T , assign the matching output iz = 0. 

The number and parameters of local models vary with the 
assigned thresholds 1T  and 2T , which can greatly influence 
the model performance. Commonly, the parameters are 
chosen by the rule of thumb, e.g. 1 = *10%ET t  and 

2 = *90%ET t , where Et represents the whole lifespan of the 
instance. Above all, once the sensor data of training 
instances ix  are provided, they will be divided into finite 
groups in accordance with different operating regimes and 
applied to learn different local regression models. 

2.4. Grey Correlation Analysis 

As mentioned, the sensors are preliminary selected by 
empirical observation, and the sensor fusion method is 
provided. One major problem lies in whether the sensor 
subset can be further optimized. Due to large noise and low 
sensitivity, some sensors exhibit an unclear trend compared 
with the others. Including them in the data fusion may lower 
the prediction accuracy. Hence certain analysis method 
should be adopted to further select the sensors. 

Grey correlation analysis is a principle theory of grey 
system theory, which can be applied in grey system analysis 
and random variables processing (Zhang & Zhang, 2007). 
The correlation between factors is represented by the 

similarity level of geometry which is called grey correlation 
degree, and the correlation degree between reference 
sequences and comparison sequences can be quantitatively 
estimated.  Grey correlation degree describes the relative 
change between different factors in the process of system 
evolution, and the larger the correlation degree is, the higher 
the similarity level is. Thus, the correlation degree can 
represent the impact of different sensors on the system 
degradation behaviors. By the calculation of improved 
correlation degree between HF time series and sensor time 
series, the sensors with a relatively large correlation degree 
are selected since they have a larger impact on the HF. The 
calculation steps of grey correlation degree between HF and 
sensors are as follows: 

1. The HF time series which can represent the system 
degradation behaviors is set as the reference sequences 

{ }= ( )| =1,2,...,z k k nZ , and the sensor time series which 
can affect the system degradation behaviors are set as 
the comparison sequences 

{ }= ( )| =1,2,..., , =1,2,...,i iX k k n i mX . 

2. Due to the various units of measurements, the 
dimensions of sensor data are different, which may lead 
to a wrong correlation analysis result. Thus, the data 
should be converted into dimensionless form. There are 
many dimensionless processing methods, such as 
equalization, initialization, etc. In this paper, 
initialization method is applied, and the whole data in 
the original sequences are divided by the initial data, 
which is shown as follows: 

( )
( )= , =1,2,..., ; =1,2,...,

(1)
i

i
i

X k
x k k n i m

X
           (4)  

3. The correlation is substantially the fitting degree of 
geometry between curves, thus the difference between 
curves is considered as the performance indicator of 
correlation. Set ( ) ( ) ( )i ik z k x k∆ = − , the grey 
correlation coefficient between ( )z k  and ( )ix k is: 

min min ( ) max max ( )
( )

( ) max max ( )
i ii k i k

i
i ii k

k k
k

k k

ρ
ξ

ρ

∆ + ∆
=

∆ + ∆
         

(5) 

where (0, )ρ ∈ ∞ , and its effect lies in enhancing the 
significance of difference between the correlation 
coefficients. The value of ρ is commonly set as 0.5. 

4. The correlation coefficient represents the correlation 
between reference sequences and comparison 
sequences at various points, and there is a 
corresponding correlation coefficient at each point. 
However, the decentralized information is inconvenient 
for holistic comparison. To solve the problem, the 
correlation degree is proposed, which can be  
represented by the mean of the correlation coefficients: 
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1

1 ( ), 1, 2,...,
n

i i
k

r k k n
n

ξ
=

= =∑                     (6) 

5. The above-mentioned correlation degree is calculated 
without considering the diversity of correlation 
coefficients at different point. Therefore, the stability of 
correlation coefficient sequences is proposed: 

     

2

1

1( ) ( ( ) )
n

i i i
k

S r k r
n

ξ
=

= −∑
  

                     (7) 

On the basis of the stability, the computing model of 
grey correlation degree is improved: 

* ( )
1 ( )

i

i

r
r i

S r
=

+
                                (8) 

The object of calculating grey correlation degree lies in 
comparing the impact of different sensors on system 
degradation behaviors. If 1 2>r r , the comparison 
sequence 1X  has a greater impact on Z  than 2X . 

3. IBL PROGNOSTICS ARCHITECTURE 

From the above-mentioned sensor selection scheme, an 
optimal sensor subset is selected, and HF time series is 
formed by sensor data fusion, which is integrated into IBL 
prognostics architecture. In this architecture, a number of 
HF time series extracted from the historical monitoring data 
of the training instances with known failure times are used 
to form a library of degradation models. The similarity 
between a test instance and each of the models are evaluated, 
and each model can give an individual RUL estimation to 
the test instance. These RUL estimations can fuse into a 
final RUL prediction by the similarity-weighted sum. The 
architecture consists of model recognition, similarity 
evaluation and RUL prediction. 

3.1. Model Recognition 

The HF time series extracted from one training instance is 
available to establish a model depicting the whole 
performance degradation process of the instance, and the 
model library { }iM  can be constructed based on the 
multiple HF time series extracted from training instances. 

iM  is commonly a deterministic model that can give a 
predicted output at a given time: 

: ( )+ , 0i i iM y m t T tε= − ≤ ≤                        (9) 

where ε  is noisy term, iT  is the lifetime of the training 
instance used to establish the model.  

The selection of model type is application dependent. For 
complex engineered systems, the main consideration is 
commonly focused on the long term degradation trend of the 
system, and the fluctuations in the degradation process can 

be recognized as interference or noise. Hence, a model with 
smoothing function of the time series can be adopted. 

3.2. Similarity Evaluation 

The definition of similarity between different instances has 
a great impact on the performance of IBL prognostics 
method. In this paper, grey correlation degree and Euclidean 
distant are adopted to respectively represent the similarity 
between the test instance { }= ( )| =1,2,...,T z k k rZ

 
and 

degradation model iM . The calculation steps of grey 
correlation degree between different data sequences have 
already been introduced in section 2.4 and will not be 
reiterated here.  

The Euclidean distant between TZ  and iM  is defined as: 

2 2
1

( , , ) ( ( ) ( )) /r
T i i ij

D M z j m r jτ τ σ
=

= − − − +∑Z
       

(10) 

where 0 1iT rτ≤ ≤ − + , τ  represents the time span that the 
time series TZ  is moved away from cycle zero of model 

iM , and 2
iσ  is the prediction variance provided by iM . 

The smaller the distance is, the higher the similarity is. 

Moreover, the similarity degree between TZ  and iM  is 
defined as: 

( , , )T iS Mτ Z = exp ( )( ), ,T iD Mτ− Z           (11) 

3.3. RUL Prediction 

Once the definition of similarity is defined, each model iM
in the library can give an individual RUL estimation to the 
test instance: 

- - arg min ( , , )i i T iRUL T r D M
τ

τ= Z               (12) 

All RUL predictions and corresponding similarity degrees 
form a set ( )( ){ }, , , | 1, 2,...,i T iRUL S M i Iτ =Z , where I  

represents the number of models in the library. The 
similarity-weighted method is applied to fuse all the RUL 
predictions in the set to get a final RUL estimation: 

=1

=1

( , , )

( , , )

I
T i ii

r I
T ii

S M RUL
RUL

S M

τ

τ

⋅
= ∑

∑
Z

Z
                (13) 

4. CASE STUDY 

In this section, the performance of the sensor selection 
scheme will be validated experimentally on the turbofan 
engine simulation data available from NASA Ames 
Prognostic Data Repository (Saxena & Goebel, 2008), using 
the integrated IBL prognostics architecture.  
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  Set 1  Set 2  Set 3  Set 4 
Fault modes 1 1 2 2 
Operation condition 1 6 1 6 
Training units 100 260 100 248 
Testing units 100 259 100 249 

Table 1. Experiment settings of the data sets 

4.1. Data Description 

Four data sets with different simulation settings such as the 
number of operation conditions and fault modes are 
provided by NASA, and these data sets consist of 
multivariate time series from multiple instances of the 
turbofan engine. The collected data for each instance 
consists of a 24-dimensional time series (3 operation 
conditions and 21sensor readings for each flight cycle), and 
these data can represent the condition of engine throughout 
its flight history. The experiment settings of the data sets are 
described in Table 1. 

Furthermore, each data set is divided into training and 
testing subsets. The instances in the training subset have 
complete run-to-failure data, which can be applied to 
develop prognostics model, while the instances in the 
testing subset have up-to-date data and corresponding 
failure time data, which can be applied to validate the 
performance of prognostics model. In this paper, data set 2 
is selected to evaluate the effectiveness of the proposed 
sensor selection scheme. Nevertheless, only the training 
subset is applied for validity assessment, for the testing 
instances with incomplete run-to-failure data are not suitable 
for performance evaluation metrics based on successive 
RUL estimations throughout the whole life. Hence, the first 
200 training instances will be applied for training, and 30 
out of the 60 remaining training instances will be selected 
randomly for testing.  

4.2. Performance Metrics 

In the context of prognostics, the traditional accuracy-based 
or robustness-based performance metrics are inadequate to 
fairly assess the performance of prediction algorithms. 
Hence, four performance metrics proposed by Saxena et al. 
(2010) are adopted with minor modification. These metrics 
are on the basis of successive RUL prediction for each 
instance. 

1) Prediction horizon  

Prediction horizon (PH) is defined as the RUL estimation 
that firstly satisfies the α -bound criteria: 

PH= -Et tα                                      
(14) 

where Et  is the end-of-life time stamp, and tα  represents 
the time stamp of the RUL estimation that firstly satisfies 

the α -bound criteria. At each time stamp it , the 
corresponding RUL estimation is ir . tα  is defined as: 

 
* *= min{ | [ , ], - + }i i s f i E i i Et t t t t r t r r tα α α∈ ⋅ ≤ ≤ ⋅        (15) 

where st  is the start time of the RUL estimation, and ft  
denotes the end time of the RUL estimation. 

2) Rate of acceptable predictions 

Rate of acceptable predictions (AP) is defined as the rate of 
predictions that fall into an acceptable cone-shape area 
when  i ht t≥ :  

* *

AP=Mean({ | })

1,  if (1- ) (1- )
=

0,  otherwise

i h i f

i i i
i

t t t

r r r

δ

α α
δ

≤ ≤

 ≤ ≤



               (16) 

where ht  is chose as PH calculated above. Obviously, AP is 
a stricter metric than the prediction errors. 

3) Relative accuracy 

Relative accuracy (RA) is defined as the mean absolute 
percentage errors for all i ht t≥ : 

*

*

-
RA=1-Mean({ | })i i

h i f
i

r r
t t t

r
≤ ≤                  (17) 

RA can give a quantitative metric of the prediction accuracy 
within the specified RUL, comparing with AR. 

4) Convergence 

Convergence (CG) evaluate how fast the prediction 
performance improves when more historical data is 
available: 

2 2
+1=

+1=

1 ( - ) 12CG=1- -
-( - )

f
i i ii s

sf
f si i ii s

t t E
t

t tt t E



⋅
  

∑
∑

             

 (18) 

where performance metric *= -i i iE r r . The value of CG is 
between 0 and 1, CG>0.5 indicates convergence for the 
prediction. 

5) Performance evaluation 

To assess the prediction performance based on multiple 
series from K testing instances, the median of four 
performance metrics is used: 

PH=Median({ PH} )

AP=Median({ AP} )

RA=Median({ RA} )

CG=Median({ CG} )

k
K

k
K

k
K

k
K

                        (19) 
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Within the four metrics, PH represents the size of time 
interval while the others have a value between 0 and 1 (1 
means perfect). 

4.3. Training Stage 

From visual inspection, the sensor data in the training 
instances exhibit no prominent trend, as shown in Fig.2. 
Hence, k-means clustering algorithm is employed to cluster 
the 3 operation conditions of all the 200 training instances, 
and the operation conditions are clustered in 6 discrete 
operating regimes, labeled by an ID from 1 to 6. By this 
way, the sensor data from each regime may exhibit a rising 
trend, as shown in Fig.3 

On the basis of the empirical observation mentioned in 
section 2.2, the 9 sensors with a consistent monotonic 
degradation trend under all of the 6 operating regimes are 
selected for further processing, namely #2, #3, #4, #7, #11, 
#12, #15, # 20 and #21. For instance, the readings of sensor 
#2 from all the training instances under regime 1 are 
illustrated in Fig.4. 

 
Figure 2. Raw data of sensor 2 from one training instance 

under all regimes  

 
Figure 3. Raw data of sensor 2 from one training instance 

under regime 4 only 

 
Figure 4. Raw data of sensor 2 from all the training 

instances under regime 1 

Since the sensors have been preliminary selected, HF time 
series can be obtained through data fusion. It is remarkable 
that the selected sensors exhibit a consistent monotonic 
trend under different operating regimes, and a linear model 
can fit well for data with consistent trend. Hence, a linear 
regression model is adopted to convert the multi-
dimensional sensor data into HF: 

Tz α= + ⋅β 9

1 i ii
xε α β ε

=
+ = + +∑x                 (20) 

where x represents the selected 9-dimension sensor data, z
is the health factor, and ε  is the noise term.  

The sample set Ω ={ , }zx( )  is used to learn the linear model: 

Ω = 2 1{ ,0 } { ,1 }i i i it T t T> ∪ <x x( )| ( )|              (21) 

In this paper, the thresholds are set as 1 =- *90%ET t  and 

2 =- *10%ET t , where Et represents the whole lifespan of the 
instance. Finally, 162 HF time series are extracted from all 
the 200 training instances, one of the time series is showed 
in Fig. 5. 

 
Figure 5. HF time series extracted from one training 

instance 
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Ranking #203 #205 #206 #209 
1 1(1) 1(1) 1(1) 1(1) 

2 0.73636(6) 0.74473(6) 0.76490(8) 0.78437(8) 

3 0.72580(8) 0.74145(8) 0.76392(6) 0.77928(6) 

4 0.72313(3) 0.73965(3) 0.75887(3) 0.77731(2) 

5 0.72121(2) 0.73890(2) 0.75671(2) 0.77700(3) 

6 0.71695(4) 0.73636(4) 0.75041(4) 0.77345(4) 

7 0.55575(10) 0.56147(10) 0.55503(9) 0.66692(9) 

8 0.55283(9) 0.55972(9) 0.55435(10) 0.66538(10) 

9 0.54224(5) 0.55115(5) 0.54571(5) 0.65627(5) 

10 0.54137(7) 0.55020(7) 0.54537(7) 0.65556(7) 

Table 2. Computing results of correlation degrees in the 
selected 4 training instances 

The HF time series and corresponding 9-dimension sensor 
time series are labeled by an ID from 1 to 10. The grey 
correlation degrees between 162 HF time series and their 
corresponding multivariate sensor time series are calculated, 
and the results are sorted in descending order. Among them, 
the computing results of correlation degrees from 4 training 
instances are shown in Table 2. 

From Table 2, the maximal correlation degree equals to 1, 
namely HF time series has a perfect similarity with itself. 
The correlation degrees ranked from 2 to 6 are rather close 
to each other, and so are the correlation degrees ranked from 
7 to 10, but the correlation degrees between these two 
subsets have an obvious difference in value. It means that 
the first 5 sensor time series have a greater impact on the 
system degradation behaviors than the latter 4. By now, the 
first 5 sensors, namely #2, #3, #4, #11 and #15, might be 
selected to further optimize the sensor selection. To verify 
the generality of grey correlation analysis, the statistical 
information related with correlation degrees are given in 
Table 3. 

From Table 3, the correlation degrees of two sensors #15 
and #11, are ranked from 2 to 3 in most cases, the between 
HF and each of the sensors in all training instances 
correlation degrees of the sensors #2 and #3, are always 
ranked from 4 to 5, and the correlation degree of sensor #4 
is ranked as 6 in most cases. Meanwhile, the correlation 
degrees of the first 5 sensors are rather close in value. 
Moreover, the correlation degrees of the remaining 4 
sensors have never featured in the top 6 rankings, and the 
sensors ranked in the top 6 have an obviously higher 
coefficient degree than the sensor ranked in 7. Hence, the 
similarity between HF time series and the sensor time series 
can be well represented by the improved grey correlation 
degree, and the selected sensor subset includes 5 sensors, #2, 
#3, #4, #11 and #15. Furthermore, whether the selected 
optimal sensor subset can be further reduced remains to be 
discussed.  

Ranking #2 #3 #4 #7 #11 #12 #15 #20 #21 

2 0 0 0 0 28 0 134 0 0 
3 9 7 0 0 128 0 18 0 0 
4 89 66 0 0 6 0 1 0 0 
5 64 89 3 0 0 0 6 0 0 
6 0 0 159 0 0 0 3 0 0 
7 0 0 0 0 0 0 0 94 68 
8 0 0 0 0 0 0 0 68 94 
9 0 0 0 87 0 75 0 0 0 

10 0 0 0 75 0 87 0 0 0 

Table 3. Statistical information of correlation degrees  

As seen in Fig.5, HF time series demonstrate an exponential 
degradation trend. Thus, the exponential regression models 
are adopted to describe the relationship between the HF z
and operating time t : 

= exp ( + )+ +z a b t c d σ⋅ ⋅                           (22) 

where a , b , c , and d are the model parameters to be 
learned from HF time series, and σ is the noise term. The 
equation =0z  indicates the failure of the instance, which is 
equal to the constraint exp ( + )+ =0Ea b t c d⋅ ⋅ . After solving 
the parameter d , the following model form can be achieved: 

= (exp ( + )-exp ( + ))+Ez a b t c b t c σ⋅ ⋅ ⋅                 (23) 

The model library { }iM  can be constructed based on the 
162 HF time series extracted from all the 200 training 
instances.  

4.4. Testing Stage 

The sensor data in the testing instances should be converted 
into HF time series. For each testing instance, the selected 
sensor data will be clustered by operating regimes, and 
transformed by the linear regression models obtained during 
the training stage, and fused to obtain a HF time series.  

In this paper, the similarity between the test instance
 
and 

each of the degradation models are respectively evaluated 
by grey correlation degree and Euclidean distance, using Eq. 
(8) and (11). The final point estimation of RUL is obtained 
using Eq. (13). 

5. PERFORMANCE EVALUATION 

For each testing instance, multiple RUL estimations will be 
made at different time stamps along the life of the instance, 
and each RUL prediction is made based on the up-to-date 
data till the corresponding time. In this application, the start 
time of prediction st  is set to 50; the end time of prediction 

ft  is set to -10Et ; the time interval of prediction is set to 5. 
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1) Impact of the sensor selection scheme on prediction 
performance  

By empirical observation, the  sensors with a consistent 
monotonic degradation trend under all of the 6 operating 
regimes are selected, namely #2, #3, #4, #7, #11, #12, #15, # 
20 and #21, which is represented by sensor subset 1. 
Furthermore, based on the grey correlation analysis, the 
optimal sensor subset 2 with a relatively large correlation 
degree is selected, and the subset includes 5 sensors, labeled 
by #2, #3, #4, #11 and #15. In this experiment, Euclidean 
distance is adopted to evaluate the similarity, and the 
thresholds of linear regression models are set as 

1 =- *90%ET t  and 2 =- *10%ET t . 30 testing instances are 
selected randomly to validate the impact of different sensor 
subsets on prediction performance, and the comparison 
results are described in Table 4. 

As seen in Table 4, integrate with the IBL prognostics 
algorithm, the proposed sensor selection scheme improves 
the RUL prediction performance significantly. AP, RA and 
CG are improved by 25.9%, 4.3% and 1.6% while PH is 
nearly 10 cycles larger than before. Hence, the sensor 
selection scheme based on improved grey correlation 
analysis can effectively improve the RUL prediction 
performance. The sensor subset 2 will be adopted for data 
fusion in the subsequent experiments  

2) Impact of different threshold settings for linear 
regression models on prediction performance  

Not all the multivariate sensor data series can be converted 
into corresponding HF time series through linear regression. 
The number and parameters of linear regression models will 
vary with the different threshold settings. In this experiment, 
Euclidean distance is adopted to evaluate the similarity, and 
the thresholds of linear regression models are set to 

1 =- *90%ET t  and 2 =- *10%ET t , 1 =- *95%ET t  and 2 =- *5%ET t , 
and 1 =-240T  and 2 =-20T  respectively. 30 testing instances 
selected here is identical to that of the previous experiment, 
which are used to validate the impact of different threshold 
settings on prediction performance, and the comparison 
results are described in Table 5. 

As seen in Table 5, when 1 =- *90%ET t  and 2 =- *10%ET t , AP, 
RA and CG are much greater than those in the other two 
threshold settings, except that PH is relatively small. 
Moreover, it seems as if the setting of threshold parameters 
using a certain percentage of the total life of the instance can 
lead to a better prediction effect than the threshold 
parameters with fixed value. If hard threshold is applied, All 
the training instances whose lifetime are smaller than 1T , 
cannot be used to train the linear regression models, 
resulting in the decreasing of the model types in the model 
library. 

 

Performance  
Metric  Subset 1  Subset 2 

PH 134 144.5 
AP 0.49515 0.62337 
RA 0.78859 0.82270 
CG 0.67914 0.68985 

Table 4. Prediction performance of IBL prognostics 
algorithm under different sensor subsets 

Performance  
Metric 

1 =- *90%ET t  
2 =- *10%ET t  

1 =- *95%ET t  
2 =- *5%ET t  

1 =-240T  
2 =-20T  

PH 144.5 145 160.5 
AP 0.62337 0.31743 0.29872 
RA 0.82270 0.60669 0.58335 
CG 0.68985 0.56431 0.53223 

Table 5. Prediction performance of IBL prognostics 
algorithm under various thresholds 

3) Impact of different similarity measurements on 
prediction performance  

The definition of similarity between different instances has 
a great impact on the performance of IBL prognostics 
method. The purpose of this experiment is to figure out 
either Euclidean distance or grey correlation degree is a 
preferable similarity measurement. In the experiment, 30 
testing instances which have been selected in the previous 
experiment are used to validate the impact of different 
similarity measures on prediction performance, and the 
comparison results are described in Table 6. RUL 
predictions of certain testing instances using different 
similarity measures are shown in Fig.6. 

As seen in Table 6, combined in the IBL prognostics 
method, Euclidean distance is a preferable similarity 
measurement. AP, RA and CG are respectively improved by 
19.3%, 8.8% and 3.2%, but PH is relatively smaller. 

Above all, when sensor selection is executed based on grey 
correlation analysis, the threshold parameters are set to 

1 =- *90%ET t  and 2 =- *10%ET t , and Euclidean distance is 
chosen as the similarity measurement, the IBL algorithm 
can achieve an optimal RUL prediction performance.  

Performance  
Metric 

Euclidean 
Distance 

Grey Correlation 
Degree 

PH 144.5 161.5 
AP 0.62337 0.52272 
RA 0.82270 0.75639 
CG 0.68985 0.63457 

Table 6. Prediction performance of IBL prognostics 
algorithm under different similarity measurements 
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(a) Instance ID: 218 

 
(b) Instance ID: 235 

 
(c) Instance ID: 247 

 
(d) Instance ID: 260 

Figure 6. RUL predictions for selected instances using 
different similarity measures 

From Fig.6, the selected instances show a desirable 
performance, where the RUL predictions converge to the 
true RUL as time increases. In the final stage, the RUL 
predictions are almost equal to the corresponding true RULs, 
indicating that the IBL algorithm has an excellent 
convergence and prediction effect in this application. 

6. CONCLUSION 

A grey correlation analysis method to selecting the most 
representative sensors for the RUL prediction of complex 
engineered systems is developed. The performance of 
sensor selection scheme integrated with IBL prognostics 
algorithm was evaluated using four performance metrics 
designed in the context of PHM. The addition of other 
sensors not selected by grey correlation analysis to the input 
sensor subset has led to a decreasing in the prediction 
performance, confirming the effectiveness of the sensor 
selection scheme. The scheme presented is expected to gain 
a similar performance for other complex engineered systems.  
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