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ABSTRACT 

In modern vehicles, controls are distributed over multiple 

Electronic Control Units (ECUs) that are connected through 

in-vehicle communication networks. Fault diagnostics for 

such a distributed control system is very challenging, which 

has resulted in many no-trouble-found (NTF) cases during 

warranty repairs. To address this problem, we propose a 

novel network-theoretic approach that detects, identifies, 

and localizes faults using both the structure of the 

communication network (topological information) and 

message flow information. The proposed method not only 

enables the characterization of normal operation and a-priori 

known faults across communication networks, which is 

already beyond the current practice of individual ECU 

centric diagnostics, but also the diagnostics of unknown or 

cascading failures emerging from unexpected operational 

environments.  

1. INTRODUCTION 

In-vehicle electrical and electronic systems (EES) are 

embedded systems that implement advanced fuel-economy, 

emission control, safety, convenience, and comfort features.  

Although EES systems are largely deterministic with 

designed subsystem and component interactions to 

accomplish desired functionality, it may become stochastic 

when vehicles operate in extreme and unexpected conditions 

with fault propagations that were not anticipated during the 

design, testing, or validation stages. It is the emerging faults 

and cascading failures that pose ever growing challenges to 

diagnostics and prognostics in complex electronics, 

especially in complex systems such as in-vehicle EES.  

The state-of-the-art diagnostic techniques for in-vehicle ESS 

are generally based on Diagnostic Trouble Codes (DTC).  

Each individual ECU records the DTCs when internal, local, 

error-checking routines detect fault conditions. Technicians 

then inspect DTC archives, and perform diagnostic tests to 

determine the root causes. In practice, one fault may be 

detected by multiple ECUs and trigger multiple DTCs. One 

single fault may also cascade from one part of the system to 

other parts of the system, and trigger multiple DTCs. In 

either case, it has been a significant challenge to identify the 

root cause of multiple observed DTCs. This situation is 

particularly challenging for communication related DTCs. 

Moreover, the error checking routines in individual ECUs 

usually consider only faults anticipated during the design 

phase, which don’t include unknown failures or cascading 

failures that emerge from unexpected operational 

conditions.  

In this paper, we propose a novel network-theory approach 

to identify and localize faults based on topological 

information of the in-vehicle communication network, 

network motif fault signatures, and message flow 

information over the network. The proposed methodology is 

an enabler to  

1. Characterize normal operation and a-priori known 

faults across communication networks which is beyond 

the current myopic view of observability employed by 

individual ECUs; 

2. Identify and localize unknown or cascading failures 

emerging from unexpected operational conditions. 

The rest of the paper is organized as follows. After a brief 

survey of related research in Section 2, we present the 

proposed approach in Section 3, and follow up with 

technical description for each module of the approach in 

Sections 4-7. We then report our initial empirical study of 

the proposed methodology on a multi-ECU system 

simulated in Vector CANoe (vector.com) in Section 8. 

_____________________ 
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Figure 1. Normal motif and fault motif signatures are trained during the off-line learning/training stage to create a detector 

and localizer that can be deployed into diagnostic software tools or real-time diagnosis assistance on vehicles.  On-board fault 

detection and isolation (FDI) monitoring point is selected based on methodology in Lu et al. (2011). 

2. RELATED RESEARCH 

Net-motifs are sub-graphs of fixed size or length which 

appear more commonly than others in a network. In this 

paper, net-motifs represent the observation of message 

transmission patterns on the communication bus.   

Milo et al. (2002) first introduced the concept of network 

motifs and demonstrated their abundance in biochemistry 

(transcriptional gene regulation), ecology (food webs), 

neurobiology (neuron connectivity), and engineering 

(electronic circuits, World Wide Web). The net-motif 

concept has not been applied to in-vehicle communication 

networks of EES.  Rather than focusing on the existences of 

network motifs in engineering field, we are taking the net-

motifs, combining with topological information, to perform 

fault identification and localization.  

Wang et al. (2009) described a network management system 

to diagnose network traffic faults for TCP/IP 

communication networks.  Their model is trained to derive 

fault signatures from temporal patterns in historical network 

traffic data, in conjunction with network topological 

information. Topological information is demonstrated for 

selfing/neighboring, containing/contained, down/up-

streaming, and tunneling.  The key concept is utilizing the 

event bursts for steps of fault signature learning and 

indexing. The term motif is mentioned, but not specifically 

utilized. Only pair-wise event interactions are considered. 

There is no mentioning of in-vehicle networks and behavior 

models.   

Dijev et al. (2011) introduced graph based statistical 

analysis on network traffic of internet for intrusion activity 

or malicious behaviors. The telescoping graph is proposed 

to capture the decomposition of a protocol graph which 

describes activity between hosts in the network for a given 

protocol, e.g. SSH protocol graph constructed from packet 

header.  A discrete hazard model is learned to detect 

anomalies from decomposed TSG graphs. Although 

statistical graph-based methods are used, there is no direct 

application to in-vehicle networks, and there is no 

consideration of topological information.   

3. SYSTEM AND METHODOLOGY 

We develop a system and methodology that assists with 

fault identification and localization for in-vehicle embedded 

electrical and electronic systems (EES) using network motif 

signatures. The system takes behavior models, topological 

information, and communication traffic as input, and 

outputs net-motif-based fault signatures and the candidate 

fault sets, if emerging or a-priori known failures occurs in 

vehicles. The system is first trained off-board to characterize 
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net-motif signatures under normal operations and known 

failure-modes in design phase, and later deployed on-board 

or embedded in a troubleshooting tool to assist failure net-

motif signature detection and fault localization (Figure 1). 

The details of each module in Figure 1 are described in the 

following sections: Dynamic Message Network Constructor 

(Section 4), Net-motif Identifier (Section 5), Net-motif 

Signature Detector (Section 6), and Net-motif Signature 

Localizer (Section 7).  Figure 2 shows the data flow of the 

proposed fault detection and localization using net-motif 

signatures. 

 

Figure 2. Dynamic message network constructor takes 

traffic log files to generate dynamic message networks; Net-

motif identifier finds network motifs in constructed dynamic 

message networks; network-motif signature detector 

compares identified motif profiles against normal operation 

motif profiles to classify fault motifs; net-motif signature 

localizer employs topological information and behavior 

models (designed message flows) to generate candidate fault 

sets. 

4. DYNAMIC MESSAGE NETWORK CONSTRUCTION 

We develop the dynamic message network constructor to 

take network traffic as input, and output a dynamic message 

network where nodes represent ECUs and edges represent 

messages flows between ECUs. The pseudo code for one 

instantiation of constructing a dynamic message network is 

described as follows.  

1. Initialize discrete counter T=1; 

2. For each message [ECUi -> ECUj, k, …]  

a. Let ttx = T;  

b. If the sender of the current message is found as a 

receive-only node (with only incoming edges) within 

the previous W seconds, counted from the current 

message timestamp (simulation or real time values) 

i. Set ttx equal to the counter value associated with 

ECUi; change ECUi  to transmit node from 

receive-only node;  

c. Else 

i. create a new ECUi transmit node and associated it 

with the counter value ttx 

d. Create receive nodes ECUj, k,…  if they do not already 

exist at the counter value ttx+1  (note this may not be 

T+1 if used previous receive node);  

e. Add edges from associated ECUi -> ECUj, k, … node 

f. Set T = ttx+1 (the receive node’s counter value of the 

current message) 

 

An example dynamic message network generation is shown 

in Figure 3. 

 

Figure 3. Dynamic message network generation: Messages 

M1, M2, M3, M5 and M4 are detected and corresponding 

networks are generated after processing each message. Due 

to the sliding window parameter, the message M3 from A4 

to A3 can have exchangeable temporal sequence with 

message M2 from A2 to A1 and A3, i.e., two directed edges 

into A3 before A3 can respond to send out M4. 

The dynamic message network constructor will be used first 

in off-line processing to establish message networks for 

identifying normal operational net-motifs and net-motif 

fault signatures. The constructor will later be utilized in on-

board diagnosis. The parameter W second is a tunable such 

that dynamic message networks could be adapted to 

different communication architectures in vehicles. 

5. NET-MOTIF SIGNATURE IDENTIFICATION 

Taking a dynamic message network as input, the net-motif 

identifier detects net-motifs by extracting and grouping sub-
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graph patterns in the network.  The output of the net-motif 

identifier are detected net-motifs with counts providing a 

distribution of motifs. We build our net-motif identifier 

based on the efficient motif discovery algorithm in (Wenick, 

2006) and efficient sub-graph isomorphism algorithms in 

(Cordela et al., 2004).   

In the extraction step, we will enumerate size-k sub-graphs 

by growing a recursion tree (RT) as follows: 

1. Assign nodes of input graphs with ordered indices 

2. Each node in a RT will be associated with two sets sub-

graph sets (Vsub) and exclusive neighbors (Vecn) 

except the root node.   

3. Nodes in Vsub are called spawning nodes and nodes in 

Vecn are nodes with indices greater than the associated 

spawning nodes in Vsub.    

4. Recursively grow the RT to the k-level which would be 

the sub graph with size k.  

In the grouping stage, we implement graph isomorphism 

algorithms in (Cordela et al., 2004) to group extracted sub-

graphs into canonical patterns of net-motifs. Figure 4 (a) 

and (b) illustrate the steps in net-motif extraction with 

recursive tree and identified motifs for an example message 

network.   

 

Figure 4. Illustration of Net-motif identification.  (a) shows 

the example 4-node net-motifs in a fragment of dynamic 

message network; (b) shows the recursive tree constructed 

to identify 3-node net-motifs in the example 5 node 

network;   

6. FAULT DETECTION USING NET-MOTIF SIGNATURE 

DISCRIMINATION 

Given net-motif distributions, we will learn a net-motif 

discriminator to classify motifs into different modes of 

operations, such as normal and failures, and detect net-motif 

of failure operations by comparing against motifs of normal 

operations to produce fault motif signatures. 

We train net-motif discriminator as follows:  

1. Simulate or collect network traffics under normal 

operational conditions 

2. Inject failures in network traffic simulation tools, such 

as CANoe, or inject failures onto real vehicles to collect 

fault traffic for known failure modes  

3. Perform dynamic message network construction to 

build network for collected traffic data 

4. Perform net-motif identification to derive net-motif 

distributions from normal and failure dynamic message 

networks.  

5. Learn net-motif discriminator on net-motif distributions 

using machine learning algorithms, such as 

probabilistic graphical models or other classification 

algorithm such as k-nearest neighbor or Support Vector 

Machines.   

6. Perform cross-validation to validate the performance of 

trained net-motif discriminator.     

The output of net-motif discriminator is categories of net-

motif signatures under normal or failure conditions.   

7. FAULT LOCALIZATION USING NET-MOTIF SIGNATURES 

Although the trained net-motif discriminator could achieve 

high detection and classification accuracy for known failure 

modes, it is impossible to simulate all combinations of all 

known failure modes in various failing sequences. 

Moreover, unknown failures may occur when vehicle 

operating in extreme or unexpected conditions. In this 

section, we describe the net-motif failure signature (NMFS) 

localizer that detects and localizes unknown faults via net-

motifs and topological information.  

The topological information is provided as an input to 

NMFS in the form of expected message flows from 

behavior models. Each message is associated with a 

sequence of flow paths starting from a sender ECU, going 

through sequences of wires, connectors, and gateways to 

finally reach the receiver ECU. For example, ECU1 sends 

message M1 on the bus and ECU2 and ECU3 are in the 

same virtual networks which are supposed to listen and 

receive message M1. We will write topological information 

of message flow as {ECU1, wire1, connector1, …., wireN, 

ECU2} and {ECU1, wire1, connector1, …, wireI, ECU3}. 

Given such topological information and profiles of normal 

operational motifs, we perform the following steps to do 

fault localization for unknown faults: 

1. Perform dynamic message network construction on 

traffic data 

2. Perform net-motif identification to extract net-motifs 

from the dynamic message network 
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3. Apply sub-graph matching to identify the deviation of 

monitored net-motifs with those in net-motif profiles of 

normal operations.     

4. Trace deviations (observed or missing messages) over 

topological information of message flow to discern the 

ambiguity sets of possible faults using set intersection 

and differentiation operations.   

The output of NMFS is an ambiguity set of likely faults for 

net-motif failure signatures that deviate from normal 

operations.  Figure 5 illustrate the concept. 

Figure 5. Fault detection localization using net-motif fault signatures. The left-panel shows the steps of fault detection which 

compare net-motif identified from dynamic message network of failure operation against net-motifs of normal operation. The 

step of fault localization applies sub-graph matching to identify the observed net-motif fault signature, which is a sub graph 

of a net-motif in normal operation. This leads to perform the operation of set differentiation over the message flows on 

topological structure (CAN bus) for observed (green) and unobserved (red) message flows, and recommend ambiguity fault 

sets of components such as wires , connectors, or ECUs. 

8. AN EXAMPLE STUDY 

We show an example communication network with 4 ECUs 

and two behavior features A and B. The topology is shown 

in Figure 6 (a) with wires (annotated with W*) and 

connectors (annotated with Co*). The behavior models are 

shown in Figure 6 (b).  The canonical dynamic message 

networks for normal operations for the two features are 

shown in Figure 6 (c).  We simulate 2 hardware wire failure 

and 4 software failure for software components in two 

features as in Figure 6 (d).   

We simulate normal and failure operations with noise, and 

generate 21 runs of varying durations corresponding to 7 

modes of operation with 3 runs for each mode. We perform 

net-motif identification over each log file and derive its net-

motif distribution. We then perform net-motif 

discrimination to derive a similarity score by comparing 

pair-wise differences in the identified distributions. We use 

the following cosine similarity function: 

  

𝑠𝑖𝑚(𝑁𝑀, 𝐹𝑀) =
∑ 𝑁𝑀 × 𝐹𝑀  

√∑ (𝑁𝑀 ) 
 √∑ (𝐹𝑀 ) 

 

 

 

Where 𝑁𝑀  is the counts of one motif distribution, and 𝐹𝑀  

is the counts of the second motif distribution. The 

dis/similarity of net-motifs for different modes of operations 

is shown in Figure 7.  
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Figure 6. Simulation of communication network traffics: (a) shows 4 ECUs, wires and connectors with their topological 

connections; (b) shows behavior models of two features implemented on 4 ECUs; (c) shows normal operational of canonical 

dynamic message network for two features; (d) shows simulated hardware and software failure modes. 

Figure 7. The resulting similarity matrix for net-motif distributions from the dynamic message constructed from simulated 

network traffic in Figure 6. Each row and each column represent one run of the simulation, and each mode of operation was  

simulated with 3 runs. The matrix is color-coded based on similarity score (green: similar, red: different).  Some net-motif 

fault signatures (e.g. B2 Fail and B4 Fail) are fairly similar to those in normal operation, and some are quite different (e.g. 

W2 Fail and W2_3 fail).  Despite this mixed of similarity, our net-motif discriminator based on k-nearest neighbor can 

discriminate different mode of operations with 100% accuracy on new log files which it was not trained on. 

9. CONCLUSION 

The increasing complexity of in-vehicle electrical and 

electronic systems poses ever-growing challenges to 

diagnostics and prognostics. In 2011, we leveraged the latest 

advancements in Network Science to develop a system and 

method based on betweenness centrality to find good 

monitoring points for fault detection (Lu et al. 2011). In 

2012, we address the challenge of emerging or cascading 

faults in EES that are difficult to be addressed by traditional 

component-level diagnostics. We present the novel network-

theoretic approach to detect, identify, and localize faults 

using both the structure of communication network 

(topological information) and message flow information 

over the communication network. The proposed method 

enables the characterization of normal operation and a-priori 

known faults across communication networks, which is 

beyond the current practice of individual ECUs point of 
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view. It also differs from conventional signature-based 

approach in that the mode of operations is classified at the 

level of modular interactions (motifs) rather than individual 

observation. It also enables the diagnostics of unknown or 

cascading failures emerging from unexpected operational 

environments. The system has been demonstrated on a 

simulated multi-ECU system in the CANoe environment, 

and shows promising results in fault diagnostics. 
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