Application of Symbolic Regression to Electrochemical | mpedance
Spectroscopy Data for Lubricating Oil Health Evaluation

Carl Byington®, Nicholos Mackos?, Garrett Argenna®, Andrew Palladino®, Johan Reimann®, and Joel Schmitigal®

12343 mpact Technologies, Rochester, N, 14623, USA

Carl.Byington@impact-tek.com
Nichol os.Mackos@impact-tek.com
Garrett.Argenna@impact-tek.com

Andrew.Palladino@impact-tek.com
Johan.Reimann@impact-tek.com

6USArmy TARDEC, Warren, Ml, 48092, USA
Joel.A.Schmitigal .civ@mail.mil

ABSTRACT

The authors have applied an advanced set of auto-regressive
tools for identifying potentially complex, linear and non-
linear relationships in data, wherein the underlying physical
relationships are not well described. In this paper these tools
and techniques are described in detail, and the results of the
application of these tools to evaluation of diesel engine
[ubricating oil health (based on electrochemical impedance
spectroscopy data) is detailed. It is demonstrated that highly
accurate models can be constructed which take as input
features derived from diesel engine lubricating oil
electrochemical impedance spectroscopy data and output
estimates of traditional laboratory based oil analysis
parameters. The electrochemical impedance spectroscopy
and laboratory analytical data used are from a field
deployment of oil condition sensors on several long-haul
class 8 diesel trucks. The dataset was divided into training
and test datasets and goodness of fit metrics were calculated
to evaluate model performance. Models were successfully
generated for nitration, soot content, total base number, total
acid number, and viscosity.

1. INTRODUCTION

An on-line oil condition monitoring device for application
to vehicular diesel engines provides significant benefit over
traditional oil sampling methods. The online nature of the
monitoring device eliminates the long delays associated
with traditional laboratory analysis and prevents the
possibility of sampling errors. Knowledge of the actual
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condition of the oil at a particular time also alows for the
real time adjustment of oil drain intervals — either extending
to take advantage of additional remaining useful life or
shortening to prevent engine damage due to abnormal fluid
conditions or contaminations. Maintenance actions can aso
be planned and carried out opportunistically.

It has long been known that electrochemical impedance
spectroscopy (EIS) can provide valuable insight into the
condition of lubricating oils and their additive packages
(Byington et al 2010, Moffatt et a 2012). In order to mature
this understanding research within this field has focused on
characterizing the relationship between lubricating oils and
electrochemical impedance spectroscopy. Lvovich V F. and
Smiechowski M. F. (2011, 2008, 2006, 2005, 2002, 2001)
are the primary contributors to this characterization and
have produced severa well behaved models of the
relationship. While these models provide tremendous
insight into lubricant chemistry, they are based on empirical
data from laboratory grade instrumentation and known oil
formulations and contaminants. For on-line lubricant
monitors, the oil formulation and contamination is unknown
and therefore samples must be drawn and traditional oil
analysis performed. These traditional laboratory tests
typicaly output lubricant chemical and mechanical
properties such as Tota Acid Number (TAN), Total Base
Number (TBN), percent soot content, viscosity, and degree
of nitration, among others.

The work presented in this paper extends the scope of
previous modeling research by establishing a direct map
between on-line oil sensor features and the underlying oil
chemistry assessed through traditional laboratory analysis.
While correlations have been observed between these on-
line EIS data and those values which represent the output of
traditional laboratory oil analysis (Mackos et al 2008),
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models have not been developed to explicate this
relationship. While EIS data alone can be used to generate
lubricant remaining useful life estimates, using models to
estimate traditional laboratory oil analysis parameters
provides additional benefits; for example, historical
condemnation thresholds established using these traditional
oil analysis parameters can be leveraged.

The physics of the relationship between measured
electrochemical data and laboratory test outputs like TAN
and TBN isvastly complex. Therefore the explicit definition
of transfer functions to trandate EIS data into the desired
laboratory test features is difficult and impractical. Several
methods exist for modeling complex scientific data. When
expert knowledge of the parametric relationships between
measured data are known, fixed-form models can be
applied. In the case that relationships are not well
understood, numerical models are often used. E.g neural
networks, naive bayes classifiers. These models however do
not explain discovered relationships intuitively and thus do
not easily distill data into scientific knowledge. Instead, the
authors have pursued the application of symbolic regression
techniques which require no a priori knowledge of the
functional relationship between the inputs and desired
outputs of such a model and result in a closed form solution
which may describe physical and chemical relationships
more clearly.

The authors have been working with US Army Tank
Automotive Research, Development and Engineering
Center (TARDEC) to develop next generation hardware for
online oil condition monitoring. As part of this effort, and
with the cooperation of the National Automotive Center,
severa sets of existing oil condition monitoring hardware
were deployed on long haul class 8 trucks. A periodic oil
sampling and laboratory analysis plan was also
implemented. These laboratory analyticals and EIS data
were used to evaluate the capability of symbolic regression
techniques to generate models for estimating TAN, TBN,
nitration, soot content, and viscosity.

2. SYMBOLIC REGRESSION OVERVIEW

The main objective of this effort was to correlate laboratory
generated tribology results with sensor generated
electrochemical impedance spectroscopy data. While there
is prior understanding of the chemical and physical nature of
oil and how it interacts with contaminants and other
breakdown processes, this understanding has never directly
resulted in models that correlate tribology data to EIS data.
Given the ground truth information this is a supervised
learning problem and since the tribology data is not
discretized, a regression method is appropriate (rather than
classifier methods such as logistic regression, neura
networks, support vector machines, etc.). Multi-variant
Linear regression is the obvious and standard method; if the
specific model for optimization is known then symbolic

regresson is unnecessary. If however the model is
unknown, the application of linear regression is a labor
intensive process, to include adding and subtracting
features, increasing and decreasing the complexity of
features included, cross-validation, and regularization. The
application of Symbolic Regression, and the toolsets which
were employed, effectively automate these processes.
Symbolic regression also provides significant benefit over
linear regression when the ultimate goal is to deploy the
models in an embedded environment. Like linear regression
a closed form equation is generated, however the operations
for inclusion in the solutions identified can be defined ahead
of time; in this manner any limitations of the embedded
platform can be accounted for. Solutions of varying levels
of complexity can also be generated and evaluated to trade
off performance in terms of accuracy and computational
complexity.

The Symbolic Regression algorithm described in this
section is used to identify general and potentially complex
relationships, in this case between the online oil-condition
monitor observations and associated laboratory generated
oil chemical and mechanical properties. The Symbolic
Regression agorithm (Koza, 1992) is a generalization to the
standard regression problem formulation in that it requires
very few assumptions regarding the underlying regression
model and the output of the algorithm is a closed form
expression that can easily be implemented on an embedded
platform. The produced closed form expressions can be non-
linear and have temporal dependencies and as a result
important information such as leading fault (temporal) or
cyclic degradation (non-linear) can be identified using this
technique. In short, the Symbolic Regression technique is an
excellent choice when faced with complex problems where
many of the underlying physical behaviors of a system are
not well described.

The Symbolic Regression tool used for this analysis relies
on Genetic Programming (Koza, 1998) to search for the best
functional/algebraic map between the produced oil
condition monitor features and the oil analysis results
reported by the laboratory. The Genetic Programming
algorithm evaluates a pool of symbolic expressions
represented by a collection of parse trees (one such tree is
depicted in Figure 1) and iteratively applies candidate
selection, cross-over and mutation operations to generate the
most effective expressions. The fitness of each expression
can be evaluated using many different metrics; however, for
the analysis performed in this work, the mean absolute error
was used. As with most data driven modeling tools, special
attention must be paid to avoid over-fitting the derived
model to the provided data. For Symbolic Regression the
over-fitting problem is addressed at two different levels.
First, the agorithm provides a Pareto front of optimal
solutions that allows the researcher to select the ideal
solution in terms of functional complexity and performance.
For instance, if a simple solution performs only dlightly
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worse than a much more complex expression, the Symbolic
Regression tool will provide both solutions to the researcher
who can then select the correct solution in terms of
complexity and performance. By providing this
functionality, it is possible to eliminate overly complex
expressions that tend to be highly tuned to the training data.
The second technique used to prevent over-fitting is the
standard cross-validation approach. That is, the generated
expressions are optimized to fit a training set, say 80% of
the original data, but when evaluating the performance of
the expressions the remaining 20% of the datais used. This
simple approach reduces the likelihood of over-fitting.

Functions

Terminais

Figure 1. An example of a parse tree corresponding to the
expression 2+3+x*7+Y /5.

In addition to the ease of implementing the derived
expressions on an embedded platform, it is also possible to
analyze the individual terms in each of the expressions to
determine what their impact may be on the overall model
response. This sensitivity analysis step provides insight into
how important each term is, and also into what features
should be generated by the oil condition monitor.

It is worth noting that the Symbolic Regression analysis is
only performed during the development of the oil
assessment model. That is, the symbolic regression process
will not be running on the sensor itself; only the functional
output of the symbolic regression process would be
considered for embedded implementation. It should also be
noted that Symbolic Regression analysis tools are freely
available to developers through the Eurega software
developed by a group of researchers at Cornell University
(Schmidt & Lipson, 2009). This tool is mature and allows
users to distribute the search task over a large number of
computers through Amazon Cloud Services
http://aws.amazon.cony.

3. APPLICATION TO DIESEL ENGINE LUBRICATING OIL

3.1. Description of the Dataset Used

The underlying technology for the oil condition monitor
detailed herein is electrochemical impedance spectroscopy
(EI1S), wherein the fluid under test is subjected to a dynamic

electrical signal and the fluid's effects on the signal are
measured and correlated to various chemical and physical
phenomena. The oil condition monitor's embedded
algorithm trends temperature-normalized and filtered
electrochemical impedances measured at a high frequency
(HF), medium frequency (MF), and low frequency (LF).

As previously described, a field deployment on several long
haul class-8 trucks was used to generate the necessary EIS
and laboratory analytical data for this effort. Across these
installations, online oil condition monitoring devices
collected data continuoudly for several months, resulting in
a dataset which spanned more than ten oil changes.

Throughout most of the test period, oil samples were taken
from the vehicles and sent to a third party laboratory for
analysis. Three of the trucks in the installation were selected
for inclusion in the symbolic regression study based on the
quality and consistency of their corresponding data sets.

In the following section, the output of the models generated
through the application of the previously described symbolic
regression techniques are presented against laboratory
analytical data for comparison.

3.2. Symbolic Regression Results

Symbolic regression models were created for the following
laboratory generated analyticals: nitration, TBN, TAN, Soot
and viscosity. These models are represented by closed form
mathematical expressions suitable for implementation in
embedded hardware. An example of the kind of expressions
that comprised these models is given in Eq. (1) below,
wherein Feature 1 is one of the electrochemical features
generated by the oil condition monitor and X, Y, and Z are
constants.

TBN est.= log(Feature1 —XeY) —Z (1)

To ensure that the model did not over-fit the data the model
performance metrics were computed by performing cross-
validation using 50% of the data. For each laboratory
analytical a single model was created based on data from all
of the trucks so that the repeatability of the model across
different oil condition monitoring hardware and different
vehicles could be evaluated.

In Figure 2 below, the model based Nitration estimate is
represented by black data points. The vertical lines indicate
when an oil change occurred. As expected, the nitration
level dropped after each oil change. The squares indicate the
nitration measurement made off-line through laboratory
analysis using oil samples drawn from each truck during the
test. The squares are plotted along the x-axis according to
when the sample was drawn. Also note that more online EIS
results have been acquired than laboratory analytical data at
the time of writing of this paper. This is especially the case
for truck 3, for which oil samples have not yet been received
for operation after Jan 21,
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The model performs well across al three trucks and across
the entire test. The only laboratory measurement that did not
line up well with model results was the first sasmple drawn
in March on truck 1. It is more likely that the laboratory
measurement is wrong rather than the sensor model estimate
since it is unlikely that the nitration level increased,
decreased and increased again across one oil cycle; this is
not typical of nitration trending. The sensor installed on
truck 2 also underestimated nitration on the fifth oil cycle.
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Figure 2: Nitration estimate plotted with Lab Nitration
M easurements

Statistical results are summarized in Table 1 and a
histogram of the differences between the model predicted
values and the ground truth is depicted in Figure 3.

Standard Deviation of the 1.7934 (Abs)
Residual
Mean of the Residual -0.0380 (Abs)

Table 1: Nitration Model Performance Metrics

Nitration estimate error
250

Residual

Figure 3: Histogram capturing error between the model
generated Nitration value and the laboratory results

The model appears to perform well given that the Nitration
values observed in the laboratory data ranged from 6 to 24
(Abs). That is, the standard deviation of the modeling error
i$9.9% of the range of the laboratory measurements.
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Figure 4: Soot estimate plotted with Lab Soot
Measurements

Figure 4 shows the results from the same data set but
applying the soot estimation model and comparing with
|aboratory soot measurements.

The model performs well across al three trucks and across
the entire test. The first sample drawn in March on truck 1
continues to line up poorly with inline data. This meansit is
most likely due to a misrepresentative oil sample being
drawn / analyzed. The sensor installed on truck 2 aso
underestimated soot content on the fourth il cycle.
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The statistical results are summarized in Table 2 and a
histogram of the differences between the model predicted
values and the ground truth is depicted in Figure 5.

0.0722(%)

Standard Deviation of the
Residua
Mean of the Residual

-0.1373 (%)

Table 2: Soot Model Performance Metrics

The model appears to perform well given that the Soot
values observed in the laboratory data ranged from 0.5 to 2
(%). That is, the standard deviation of the modeling error is
4.5% of the range of the laboratory measurements. Based on
this observation, the soot estimation model was the highest
performer among the 5 models cal cul ated.

Figure 6 shows the results from the same data set but
applying the TBN estimation model and comparing them
with laboratory TBN measurements.

Soot estimate error
350

-2 -1.5 -1 -0.5 0 0.5 1
Residual

Figure 5: Histogram capturing error between the model
generated Soot value and the |aboratory results

Truck 1

"',\_Jf‘% r\ J\\J\

Feb Mar Apr

TBN (mgKOH/g)
m

Z">

\{ sl \l \A‘h‘dr uf\

Truck 3

-, |r‘\ \Jf\ Jr\,

Oil Change ‘

[

TBN (mgKOH/g)
G’

Z">

\l‘«

|
Nov Dec

TBN (mgKOH/g)
G’

TBN Model Estimate Lab. TBN Measurement

Figure 6: TBN estimate plotted with Lab TBN
Measurements

The model performs well across al three trucks and across
the entire test. There are a greater number of extreme
outliers than the Soot and Nitration models produce but still
a healthy performance within one standard deviation as is
shown in Table 3 below.

Standard Deviation of the 0.3220 (mgK OH/qg)
Residual
Mean of the Residual -0.1940 (mgK OH/g)

Table 3: TBN Model Performance Metrics

TBN estimate error
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Figure 7: Histogram capturing error between the model
generated TBN value and the laboratory results

Given that the TBN values observed in the laboratory data
ranged from 2.8 to 7.9 (mgKOH/g), the standard deviation
of the modeling error is till only 6.3% of the range of the
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laboratory measurements. Therefore while there are a
greater number of residua outliers than Nitration for
example, it still out performs the Nitration model the
majority of the time.

Figure 8 shows the results from the same data set but
applying the TAN estimation model and comparing with
laboratory TAN measurements.
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Figure 8: Soot estimate plotted with Lab. Soot
M easurements

TAN appears to be the worst performer of the five models
created. However the model does appear to show a
correlation. The statistical performance shows that the
model does not perform well enough to be relied upon.

Standard Deviation of the 1.2993 (mgK OH/qg)
Residual
Mean of the Residual 0.5829 (MgK OH/Qq)

Table4: TAN Model Performance Metrics

Considering that the laboratory data ranged from 1.79 to
4.22 (mgKOH/qg), the standard deviation of the modeling
error is over 50% of the range of laboratory measurements.
In other words the confidence bounds of the estimate extend
to over half the range of typical data.

Finally, Figure 10 shows the results from the same data set
but applying the Viscosity estimation model and comparing
with laboratory Viscosity measurements.

TAN estimate error

Residual

Figure 9: Histogram capturing error between the model
generated TAN value and the |aboratory results

Truck 1

At A

Truck 2

s 'Ww‘ﬂ WLAVAVM "‘v

Truck 3

44, AP,

Visc (cSt @100C)

Visc (cSt @100C)

=
o

Visc (¢St @100C)

14 I
Nov

‘ e  Viscosity Model Estimate M Lab. Viscosity Measurement Oil Change‘

Figure 10: Viscosity estimate plotted with Lab. Viscosity
M easurements

The model performs well across all three trucks with
perhaps a dightly weaker performance implemented on
truck 3 data. The statistical results are summarized in Table
5and Figure 11.

Standard Deviation of the 0.1188
Residual (cSt @100C)
Mean of the Residual -0.0673

(cSt @100C)

Table5: Viscosity Model Performance Metrics
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Viscosity estimate error

Residual

Figure 11: Histogram capturing error between the model
generated Viscosity value and the laboratory results

The model appears to perform well given that the Viscosity
values observed in the laboratory data ranged from 14.4 to
16.3 (mgKOHY/g). That is, the standard deviation of the
modeling error is 6.3% of the range of the laboratory
measurements.

3.3. RUL Estimation Plan

The data shown in Figure 2, Figure 4, Figure 6, Figure 8 and
Figure 10 can be reconditioned to display the features vs.
hours on oil by identifying top-ups and oil changes and
adjusting the time on oil accordingly. The resulting
reconditioned data for Nitration, Soot, TBN and Viscosity
estimates are shown from Figure 12 through Figure 15. The
bands of data are represented by a family of feature curves.
The traditional oil analysis results are also plotted on each
plot as colored sguares. Each deterministic curve, after
filtering for noise, is monotonically increasing and can be
fitted to a general function form, n™ order or exponential,
depending on the feature type. As one can readily see, while
there is significant spread of the values, the trend on each is
clear and a regressive model can be used to predict a future
threshold exceedence on any parameter.

25
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Hours on Oil

Figure 12: Hours on Qil vs. Nitration Estimate
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Figure 13: Hours on Qil vs. Soot Estimate

TBN Estimate (mgKOH/g)

L e
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Hours on Oil

Figure 14: Hours on QOil vs. TBN Estimate
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Viscosity Estimate (cSt @100C)

0 50 100 150 200 250 300 350 400 450
Hours on Oil

Figure 15: Hours on Qil vs. Viscosity Estimate

Given the nature of the data and in order to better
approximate the uncertainty band for each considered
feature, a Monte Carlo method was chosen to estimate
remaining useful life probabilistic outputs. The approach
starts with identifying the core parameter drivers of the
model and assigning an initial distribution to each variable.
The drivers can be identified by performing a sensitivity
analysis to quantify the influence of a parameter with
respect to the probabilistic outputs, such as the remaining
useful life distribution. A Monte Carlo simulation is then
performed and consists of randomly sampling from the
initial distributions and running the models into the future
over a predefined operating profile.

Monte Casio Simulation Approach [

Trilicad damage Level

Likelihood

Operating Profie
uit)

Figure 16: Monte Carlo Probabilistic Method

Figure 16 is an illustration of the approach. By sampling the
initial parameter distribution, a family of model curves is
generated and can be used to calculate vertical or horizontal
slice predictions. A horizontal slice is generally taken at the
critical damage level and will generate a distribution on time
to critical damage which also represents the remaining
useful life probabilistic output. A vertical dice is taken at
any point in time and represents a distribution on predicted
damage at specified timet.

It was also determined to limit the number of input
parameter distributions to three or less. The more
distributions are being sampled from, the more simulations
are needed to obtain a better approximation on the
uncertainty spread. Different sampling methods, such as
importance sampling, can be applied to reduce the
simulation time and till output a reasonable approximation
of the spread.

One of the advantages of this approach is the ability to
optionally update the initial input distributions given ground
truth information. The underlying assumption is that if the
module has access to accurate oil analyticals, these results
can be used to update the initial distributions. By producing
more accurate initial conditions for the prognosis model, the
system is capable of improving the subsequent prognosis
results.

The RUL determination is a direct adaptation of the authors
prior work in health-based prognostics. The prior
demonstrated method uses Particle Filters to perform feature
trend predictions (Zhang et a., 2008). Particle filtering is an
application of Bayesian state estimation that calculates an a
posteriori probability density function (PDF) of a state of a
system based on a priori observations or measurements. If
the calculation of the future state of the system is extended
in multiple steps with the use of a model, the particle
filtering algorithm can perform long term predictions. In this
case, the system observations are initially used to build a
PDF of the “present” or “current” system condition, as
illustrated conceptually in Figure 17.

@ System _

o observations Expectation of
.% (feature values) current system
g state

(O]

2 /

19}

2 p
@ PDF of

current system
| state
Filtered / smoothed
estimate of state
Present time Time

Diagnostic horizon <+ Prediction horizon

Figure 17. Determination of the state of a system asa PDF
based on feature values

This PDF is then sampled into “particles’ representative of
potential system states with individual weights. Using the
model, the prognostic algorithm simulates the progression
of the weights in time to do a prediction of possible future
system states, asillustrated in Figure 18.
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Figure 18. System state prediction and progression curves

Just as with the initial state, future states of the system can
be represented by PDFs. Once the progression of the system
state has been determined, the algorithm can be used to
predict the time required for the system to reach a condition
of interest, such as a need for maintenance. The condition
predicted is represented by a “prediction threshold” line.
Because there is uncertainty in the future system states (as
represented by the different state progression curves), there
is aso uncertainty in the predicted time to reach the
threshold. This uncertainty in time is represented also by a
PDF, referred to as the “time-to-threshold” (TTT) PDF. The
definition of prognostic confidence istied to how the area of
the TTT PDF is divided. To determine the minimum time
remaining to reach the prediction threshold, called the “just-
in-time” point, a confidence specification is required. Figure
19 illustrates how a 95% prediction confidence is used to
determine the just-in-time point. This approach has been
successfully used in a range of different mechanical and

electrical prognosis problems.
PDF of
Ti melo—lhr@ho? C_\/\V
-prediction threshold H /\

Progression Prediction
Threshold

PDF of curves
I current 12

system state
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/ A i
1 95% Ari

POF 5% Areal )
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1
1
1
Future state 1
1
1
1
1
T

- PDF -

- Just-in-Time point Time
\___ (95% confidence)

=0 & Present system condition Time

Figure 19. Determination of the prediction timeto reach a
prognostic threshold with a given prognostic confidence (the
inlay box provides an example using 95% confidence)

4. CONCLUSION

Of the five models created, al but one performed well
enough for embedded implementation in a next generation

online ail condition monitor, with the highest performing
estimate being soot estimation, and TBN and Viscosity
model s a close second.

It should be noted however that the laboratory data ranges
mentioned for each analytical also represent boundaries
within which the model can be implemented. If, for
example, soot content extends above 2%, the model can no
longer be trusted to perform with the stated accuracy. Once
datais acquired outside the range of this data set, the models
can be matured to handle the increased range and the
performance of the model will have to be reassessed.

Another limitation of the model is the singular oil type in
use during this field trial. To remove potential installation or
vehicle specific artifacts contained in the models they will
need to be verified against more diverse data sets.

Lastly the approach and framework has been offered to
extend this regressive analysis approach to perform real-
time prediction of oil RUL. Several specific methods were
offered to handle the uncertainty and also produce a useful
prediction in automated software. Realization of this
technology will not only alow for improved equipment
protection and enhance the underlying oil-wetted
component effective reliability with its ability to look for
contaminants and aging/wear out mechanisms, but it will
also alow both il sampling/lab tests and oil changes to be
performed on a predictive condition-based schedule. Thus,
this technology has the ability to provide significant return
of value to the operator and maintainer as well as provide
environmental/green movement benefits with the reduction
in oil usage and subsequent disposal.
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NOMENCLATURE
EIS Electrochemical | mpedance Spectroscopy
TAN Total Acid Number

TBN Total Base Number
TARDEC Tank Automotive Research, Development and
Engineering Center
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