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ABSTRACT 

This paper introduces a feature-extraction method to 

characterize gas turbine engine dynamics. The extracted 

features are used to develop a fault diagnosis and prognosis 

method for startup related sub-systems in gas turbine 

engines - the starter system, the ignition system and the fuel 

delivery system.  

The startup of a gas turbine engine from ignition to idle 

speed is very critical not only for achieving a fast and 

efficient startup without incurring stall, but also for health 

monitoring of many subsystems involved. During startup, 

an engine goes through a number of phases during which 

various components become dominant. The proposed 

approach physically monitors the relevant phases of a 

startup by detecting distinct changes in engine behavior as it 

manifests in such critical variables as the core speed and the 

gas temperature.  The startup process includes several 

known milestones, such as starter-on, light-off, peak gas 

temperature, and idle. As each of these is achieved, different 

engine components come into play and the dynamic 

response of the engine changes. Monitoring engine speed 

and exhaust gas temperature and their derivatives provides 

valuable insights into engine behavior. 

The approach of the fault diagnosis system is as follows. 

The engine startup profiles of the core speed (N2) and the 

gas temperature are obtained and processed into a compact 

data set by identifying critical-to-characterization instances. 

The principal component analysis is applied to a number of 

parameters, and the fault is detected and mapped into three 

engine component failures which are the starter system 

failure, the ignition system failure, and the fuel delivery 

system failure. 

In this work, actual engine test data was used to develop and 

validate the system, and the results are shown for the test on 

engines that experienced startup related system failures. The 

developed fault diagnosis system detected the failure 

successfully in all three component failures. 

1. INTRODUCTION 

The gas turbine engine is one of the most vital aviation 

components. While the heart of this propulsion system is the 

gas producer that converts fuel into mechanical energy, 

several LRUs (Line Replaceable Units) contribute to the 

overall health and remaining useful life of the propulsion 

function. Although some LRUs may not be considered to be 

engine OEM parts, they nevertheless contribute to the 

prognostic health of the propulsion system. Consequently, 

any accurate estimate of propulsion remaining useful life 

calculation from a CBM (Condition Based Maintenance) 

perspective must account for all such LRUs (Parthasarathy 

et al., 2011). 

Current LRU fault detection is achieved using built-in-tests 

(BIT). Unfortunately, these BIT implement simple threshold 

checks (i.e., hard faults) without taking a systems 

perspective of the propulsion system. Significant 

maintenance effort is expended to troubleshoot and isolate 

in-range (i.e., soft) faults.  As a result, when the component 

fails, it is too late and manifests as an engine shutdown or 

loss of power control at the propulsion function level. A 

failed LRU will drive maintenance costs and operational 

interrupts in two ways: 1) an LRU failure is misdiagnosed 

as an engine problem and the engine is removed, and 2) the 

engine must be removed to access certain LRUs. 

Most engine fault diagnosis/prognosis is performed using 

measurement data from engines that are in steady-state 

conditions. The steady-state data is used for several reasons; 

most notably, system transients can confuse fault 
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diagnosis/prognosis methods, giving incorrect results. A 

more robust approach to developing fault 

diagnosis/prognosis methods that explicitly accounts for 

transient data is required (Surender et al., 2005). 

Furthermore, most turbine engine fault diagnosis/prognosis 

methods are developed with engine performance models 

that have been validated only under steady-state conditions 

or with actual engine data at steady-state conditions. Engine 

models that accurately represent the system in transient 

conditions are difficult to develop. Nevertheless, developing 

fault diagnosis/prognosis methods designed to operate on 

system data during transient as well as steady-state 

operation has several important advantages; 1) Certain 

system faults have a distinct signature during system 

transient conditions that would not normally be discernible 

during steady-state conditions. 2) The effect of feedback 

control action is less dominant during transient conditions 

than during steady-state conditions. Because feedback 

control suppresses the effect of sensor and system faults, 

faults are more evident during transient conditions. 3) 

Certain engine component incipient faults are manifest only 

during transient conditions such as startup and shutdown 

(e.g., starter and igniter system faults) (Uluyol et al., 2006). 

Thus, for a vehicle health monitoring system that is 

comprehensive in its scope, and timely and accurate in its 

diagnosis, high fidelity engine models and a large amount of 

high-speed data both in steady-state as well as in transients 

are needed. However, limited computational resources 

available on-board, and the limited bandwidth capacity and 

the high cost of real-time data transmission place serious 

barriers to fulfilling that need (Kim et al., 2005). 

The approach presented in this paper seeks to overcome 

these barriers by separating the initial feature extraction 

stage of diagnostics algorithms from the modeling and 

trending stages. The first stage, which includes the detection 

of time instances that are critical to diagnosis and control, is 

performed on board, while the latter stages are performed on 

a ground station. This paper presents an approach that 

permits a much greater insight into the engine health than is 

possible with a couple of snapshots at takeoff and cruise, 

while keeping the data size much smaller than that of the 

complete high speed data. The fault diagnosis method for 

startup related components in turbine engines is developed 

using continuous time series data. The engine startup data 

set recorded with high speed sampling rate is analyzed to 

discover the best conditions for detecting the target 

component failure. Engine startup profiles of the core speed 

(N2) and the measured gas temperature (MGT) are then 

transformed into a compact set by a series of data 

processing steps. The processing is based on statistical 

characteristics analysis, and principal component analysis 

(PCA). The fault is detected and mapped into three engine 

component failures which are the starter system failure, the 

ignition system failure, and the fuel delivery system failure. 

The remainder of this paper is organized as follows: In 

Section 2, the functionality of startup related components is 

described. In Section 3, the engine startup process is 

described. Section 4 describes the engine startup profile and 

the critical-to-characterization (CTC) instances. Section 5 

presents the developed fault diagnosis/prognosis system 

with the steps of the algorithm logic. Section 6 shows the 

results of the developed diagnosis system. The data set used 

to develop the system is the actual engine data recorded in 

the test cell. Finally, Section 7 presents the summary and 

conclusions. 

2. ENGINE STARTUP SYSTEM AND COMPONENTS 

Gas turbine engines are complicated pieces of machinery, so 

fault diagnosis of these machines is enhanced by a detailed 

understanding of the equipment. The engine of interest in 

this work is a turbo-shaft engine. 

The startup system consists of the ignition system, starter 

motor and the fuel system. The engine ignition system 

requires an external source of power. The ignition system 

provides igniters and exciter output circuits, and each igniter 

and circuit releases sufficient energy for all ground and air 

starting requirements. The ignition channels are powered by 

28 V dc when the starter is energized. It supplies energy for 

spark at the igniter plugs. Adequate energy is supplied by 

the ignition system throughout its input voltage operating 

range to obtain successful engine starts. 

For starting on the ground, the automatic start sequence is 

enabled by the pilot placing the power level angle (PLA) in 

the IDLE position, and holding the momentary start switch. 

Given sufficient battery power, the gas producer will begin 

to accelerate with the ignition enabled. As the gas producer 

accelerates, the ECU commands introduction of fuel to the 

engine. Light-off is declared if a rise in MGT is detected 

based on the MGT rate of change or MGT increase since 

introduction of fuel, or if Ng is greater than some pre-

defined level. There is a start abort if any of the following 

are detected: excessive MGT, hung start, no light-off, or no 

Ng rotation. 

The fuel system on the turbine engine provides fuel to the 

engine for proper combustion under all circumstances. The 

fuel system comprises the FMU (Fuel Metering Unit), fuel 

pump, high-pressure filter, min-flow valve, and fuel 

manifold assembly. Fuel metering functions are provided by 

the FMU. In the installed condition, there is no accessible 

means for adjusting the FMU. The high-pressure fuel filter 

is installed upstream of the FMU. It is designed and 

constructed to minimize the release of contaminants 

upstream of the metering valve and the fuel manifold.  

3. ENGINE STARTUP PROCESS 

The key features of the transient startup process are captured 

and made available as enriched inputs to LRU fault isolation 
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algorithm. A typical engine speed plot during startup is 

shown in Figure 1. 
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Figure 1. Typical Engine Start Profile 

 

Startup includes several milestones such as starter on, light-

off, peak temperature, and idle. As each of these states is 

achieved, different components come into play, and the 

dynamic response of the engine changes. The gas producer 

core speed (NGG) and measured gas temperature (MGT) 

are two of the most informative measurements for detecting 

or verifying whether these states are achieved. Monitoring 

their derivates also provides valuable insights for engine 

behavior. 

In general, the automatic start is performed by latching a 

combined starter/igniter relay and starter/ignition systems 

are on. The maximum engine speed gradient occurs when 

the engine speed has its highest rate of change during 

startup—usually a few seconds after the starter is switched 

on. According to the engine control logic, the control system 

shall deliver regulated fuel flow at the fuel metering unit 

delivery port when core speed exceeds some pre-defined 

level of full speed. Light-off occurs when ignition 

successfully completes and the combustor is able to sustain 

combustion. The maximum temperature gradient that 

corresponds to the highest rate of change in MGT follows 

the light-off several seconds behind during startup. The 

power section then begins to provide rotational energy to the 

system. Peak temperature occurs when the engine reaches 

its highest temperature during startup. At some pre-defined 

level of engine speed, the starter system and the ignition 

system are disabled through the ignition/starter relay driver. 

Finally, the ground idle occurs when the engine reaches its 

idle speed.  

Figure 2 shows the time periods when the function of 

startup related LRUs is active during the startup process and 

they will be used to select the proper startup features. For 

example, the starter system anomaly can be detected and 

differentiated from the anomalies due to ignition and fuel 

systems, if the features are selected at ‘Fuel Enable’. For the 

ignition system anomaly detection, the features at ‘light-off’ 

and ‘peak MGT dot’ are more proper, whereas the features 

at ‘peak MGT’ and ‘idle’ are more proper for the fuel 

system anomaly detection. 
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Figure 2. Startup Partition According to LRUs Functional 

Activity 

 

By storing and analyzing engine sensor data taken during 

these key conditions of engine startup, the system and 

method is able to accurately characterize the performance of 

the engine during startup.  This information is the basis for 

LRU prognostics to determine when faults in the start 

transient regime are occurring or likely to occur.  

Furthermore, the approach provides this ability to 

characterize the engine startup performance using only the 

sensor data taken during the key conditions. 

4. STARTUP PROFILE 

In this section, we discuss how the startup can be 

characterized using a small number of data points rather 

than equally spaced time series data. 

The startup of a gas turbine engine from ignition to idle 

speed is very critical not only for achieving a fast and 

efficient startup without incurring stall, but also for health 

monitoring of many subsystems involved. The state of the 

art in monitoring engine startup is that engine parameters 

are sampled at regular frequencies and compared against 

fixed thresholds on these parameters. Often, the thresholds 

are set arbitrarily---monitoring parameters at 10%, 20%, 

30% engine speed, etc. Sometimes the thresholds are set by 

experts or based on design specifications. In either case, 

startup monitoring does not capture the changes in engine 

response accurately and in a timely manner, since the 

changes in engine response manifest as an engine achieves 

certain startup phases, and not necessarily as some arbitrary 

thresholds are reached. 

During startup, an engine goes through a number of phases 

in which various components become dominant. In the 
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absence of very detailed and costly engine models, the 

phases can be determined by monitoring the dynamic 

response of the engine. Our approach is the combination of 

monitoring physically relevant phases of a startup and 

monitoring the engine control schedule. The physically 

relevant phases can be obtained by detecting distinct 

changes in engine behavior as it manifests in such critical 

variables as core speed and exhaust gas temperature. This 

approach is superior to monitoring predetermined thresholds 

since the time the data should be captured is determined on 

the fly (hence, it varies from one flight to another). The 

engine control schedule can be obtained by the engine 

control logic. Some of the control logic provides additional 

insights of the engine operating conditions. For example, the 

engine control logic schedules the time when the fuel shall 

start to provide to the engine. This time of instance is very 

important since the performance of ignition system and fuel 

delivery system can be evaluated from this point of time. 

Unless you don’t have a very accurate fuel flow 

measurement sensor (in fact, this is not the case almost 

always), this information cannot be obtained. 

As described in the previous section, startup includes 

several known milestones, such as light off, peak MGT, and 

idle. As each of these is achieved, different components 

come into play and the dynamic response of the engine 

changes. The engine core speed (N2) and MGT are two of 

the most informative sensors. Monitoring their derivatives 

also provides, as we shall see below, valuable insights for 

engine behavior. Based on the derivatives of N2 and MGT, 

we can identify very precisely the time instances of light off, 

peak N2 dot, and peak MGT dot (Uluyol et al., 2005). 

 

Figure 3. Features Extracted from the Startup Algorithm 

 

When applied to actual startup data, the CTC instances cut 

across N2 and MGT profiles as well as other engine 

variables of interest depending on the failure type. An 

example of indication of CTC instances over the N2 and 

MGT startup profile plotted with actual data is shown in 

Figure 3. This figure helps the chronological understanding 

of the CTC instances occurrence. Notice that the CTC 

instances are nicely, but not equally, distributed between the 

start and idle speed. The distance between the lines changes 

as the startup profile changes. However, the simple patterns 

that each variable forms retain their shape, thereby allowing 

an automatic and consistent feature extraction. 

5. FAULT DIAGNOSIS SYSTEM 

The fault diagnosis system proposed in this work is 

presented in Figure 4. N2 and MGT, which are the two most 

important engine performance parameters, are processed at 

each flight to detect any startup related LRU anomalies.  
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Figure 4. Schematic description of the algorithm 

 

As emphasized earlier, the one of the ideas of developing 

fault prediction method in this work is based on the data 

reduction. The N2 and MGT startup profiles are continuous 

time series data. Considering the engine startup transient 

time, which typically takes 40-50 seconds, they consist of a 

large number of samples; the number depends on the 

sampling rate (for example, 2000-2500 samples with 50 HZ 

sampling rate, which was used in this work). Rather than 

analyzing whole continuous profiles having a large number 

of samples, the processing of a few points that represent the 

whole profile is much more efficient. In fact, there are two 

perspectives of data dimensionality reduction: technical 

perspective and practical perspective. In many problems, 

reducing the number of input variables can sometimes lead 

to improved performance for a given data set, even though 

some information is being discarded. The fixed quantity of 

data is better able to specify the mapping in the lower 

dimension space and this more than compensates for the 

loss of information (Bishop 1995). In the practical 

perspective, there are several more advantages to 

condensing the data: 1) It minimizes the cost and space for 

data collection and storage; 2) Computationally faster data 

processing makes for timely prognostic decisions; and 3) 

Not all of the engine data collection system can record 

continuous high speed data. Thus, a fault diagnosis system 

based on condensing the data set requires minimal 

modification of the existing data acquisition system. The 
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data reduction processing, which reduces the data size from 

the continuous time series data consisting as many as 2500 

samples into 2 - 6 samples, is accomplished in two steps; 

from the second step to the third step as described below. 

The first step in the algorithm covers data extraction from 

the engine and standardization of the extracted data. Since 

the startup profiles of N2 and MGT vary depending on the 

ambient conditions, the abnormal engine startup can result 

not only from the malfunctioning engine but also from 

ambient conditions. Correcting engine parameters against 

the standard condition is necessary to decouple the effect 

from the varying ambient conditions. The correction of N2 

and MGT is done using ambient temperature (T1). 

In the second step, we obtain the snapshot data at points that 

best represent the characteristics of a continuous N2 and 

MGT startup profile. The six CTC conditions, which are 

Peak N2 dot, Fuel Enable, Light Off, Peak MGT dot, Peak 

MGT, and Idle, are selected to represent the startup profile. 

The snapshot data set of five parameters---Time, N2, MGT, 

N2 dot, and MGT dot---are obtained at the six CTC 

conditions, resulting in 30 parameters per startup. 

As discussed in Section 3, the time periods when the 

function of startup related LRUs is active during the startup 

process are different depending on LRUs, the startup 

features shall be selected at different CTC instances for each 

LRU. The selection of proper features are done in the third 

step, and the resulting output from this step is the down-

selected startup features, which is represented by CI 

(condition indicator) in Figure 4. For the starter system 

anomaly detection, two CIs are selected at Fuel Enable 

condition. For the ignition system anomaly detection, six 

CIs are selected at Light-off and Peak MGT dotcondition. 

For the fuel delivery system anomaly detection, five CIs are 

selected at Peak MGT condition. 

The fourth step is to detect any anomalies related to starter 

system, ignition system, and fuel delivery system. The 

anomaly detection is done based on Principal Components 

Analysis. The output of this step is the HI (health indicator) 

indicating existence of any anomalies in the three LRUs. 

The PCA model establishes correlations between the 

features. The anomaly detection involves measuring the 

multivariate distance away from the center of the correlation 

observed from the training set. If the distance exceeds a 

given threshold, then an anomaly is flagged. 

The anomalies detected in the previous steps indicate faults 

in the startup process that encompass several components, 

including the engine. The last step is to isolate the possible 

root cause of anomalies further to subsystems or 

components, and to distinguish engine faults that manifest 

symptoms during the startup process. As shown in Figure 5, 

the fault isolation reasoner is composed of starter system 

anomaly reasoner, ignition system anomaly reasoner, and 

fuel delivery system anomaly reasoner. It also includes the 

battery fault isolation logic. The inputs to the fault isolation 

reasoner are the HIs generated from the anomaly detector, 

additional measurements of oil temperature and fuel 

temperature, and the output from a different algorithm 

detecting fuel system fault. The outputs of the fault isolation 

reasoner are HIs related to starter motor, battery, igniter, 

fuel delivery, and engine. The logic of reasoners to isolate 

the root cause of each LRUs is presented in Section 6. 
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Figure 5. Fault Isolation Reasoner 

 

6. FAULT DIAGNOSIS RESULT 

The proposed fault diagnosis system was developed and 

tested with actual engine data collected from a test cell. The 

tests were done at the various conditions such as different 

altitude, Mach no., ambient temperature, oil/fuel 

temperatures. The startup test includes the initial static start 

(both cold and hot starts), aborted take-off ground start, and 

in-flight restart. The sampling rate of this data set is 50 Hz. 

The extracted parameters are N2, MGT, and T1. The 

ambient corrected values of N2 and MGT are computed 

from the empirical correction models, which are functions 

of T1. 

Keeping the size of the data needed for the fault diagnosis 

much smaller than that of the complete high-speed data is 

advantageous and much more efficient. The rationale for 

extracting snapshot data is that a continuous startup profile 

can be represented by several points without losing its 

characteristics. Thirty snapshot datum per startup are 

obtained, each having six CTC conditions: Peak N2 dot, 

Fuel Enable, Light Off, Peak MGT dot, Peak MGT, and Idle 

for the five parameters of Time, N2, MGT, N2 dot, and 

MGT dot where Time, N2, and MGT are measured values 

and  N2 dot and  MGT dot are computed values. Table 1 

summarizes the 30 parameters showing the CTC conditions 

in the column level and the engine variables in the row 

level. In Table 1, the features selected for the starter system 

anomaly detection are marked in blue and they are the Time 



Annual Conference of Prognostics and Health Management Society 2012 

 

6 

at Fuel Enable, and N2 dot at Fuel Enable. The features 

selected for the ignition system anomaly detection are 

marked in green and they are the time interval between 

Light-off and Fuel Enable, N2 at Light-off, N2 at Peak 

MGT dot, MGT at Peak MGT dot, N2 dot at Peak MGT 

dot, and MGT dot at Peak MGT dot. The features selected 

for the fuel system anomaly detection are marked in yellow 

and they are time interval between Peak MGT and Light-

off, N2 at Peak MGT, MGT at Peak MGT, N2 dot at Peak 

MGT, and MGT dot at Peak MGT. As shown in Figure 2, 

the starter system anomaly detection is executed at Fuel 

Enable condition, the ignition system anomaly detection is 

executed at Peak MGT dot condition, and the fuel system 

anomaly detection is executed at Peak MGT condition. 

Conditions  
Parameters 

Time  N2  MGT  N2 dot  MGT dot  

@ Peak N2dot                 

@ Fuel Enable                 

@ Light-off                 

@ Peak MGT dot                 

@ Peak MGT                 

@ Idle                 

Table 1. Startup Feature Selection (Blue – starter system 

anomaly detection, Green – igniter system anomaly 

detection, Yellow – fuel system anomaly detection) 

 

The result of starter system anomaly detection is shown in 

Figure 6 - Figure 8. Figure 6 shows two startup features 

selected for the starter system anomaly detection. The upper 

plot shows the Time at Fuel Enable and the lower plot 

shows N2 dot at Fuel Enable. The x-axis represents each 

startup. The normal startup is marked with blue x and the 

abnormal startup is marked with red dot. Figure 7 shows the 

PCA model output for starter system anomaly detection. 

The red horizontal line represents the threshold for the 

anomaly and blue x represents normal case and red dot 

represents the abnormal case. From Figure 6, the features 

themselves are not so distinguishable between the normal 

and abnormal cases. But as shown in Figure 7, the PCA 

model generates a clear indication of the anomaly by 

showing the big variance from the normal correlation 

among the features. Figure 8 is the N2 startup profile 

showing differences in the case of typical normal startup 

(blue curve) and the starter system anomaly (red curve). The 

two curves are similar to each other except around the Fuel 

Enable instance; Time at Fuel Enable is much larger in the 

case of anomaly. This clearly demonstrates that the starter 

system anomaly shall be detected at Fuel Enable instance. 

The root cause of the starter system anomaly could be 

various. According to Figure 6 and Figure 8, the major 

anomaly signature is the large value of Time to Fuel Enable. 

The possible root causes of delayed Fuel Enable are the 

starter motor fault, the battery fault, the engine drag, and the 

engine rub. Figure 9 shows the logic to isolate the root cause 

of starter system anomaly. The ambiguity set is composed 

of the starter motor fault, the battery fault, the engine drag, 

and the engine rubs. When the starter system anomaly is 

triggered, two additional tests are to be done to isolate the 

root cause. If the oil temperature is too low and below a 

certain limit, then the probable cause of the delayed Fuel 

Enable is the engine drag. If the steady state scalar is higher 

than a certain level, then the Fuel Enable may be delayed 

due to the engine rubs. If none of those two tests are true, 

then the probable root causes of starter system anomaly are 

either the battery deterioration or the starter motor 

deterioration. The logic to isolate the battery problem is 

discussed later in this section. 

 

Figure 6. Startup Features for Starter System Anomaly 

Detection 

 

 
Figure 7. PCA Model Output for Starter System Anomaly 

Detection 
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Figure 8. N2 Startup Profile comparing Normal Startup 

(Blue) and Starter System Anomaly (Red) 
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Figure 9. Starter System Anomaly Reasoner 

 

The result of ignition system anomaly detection is shown in 

Figure 10 - Figure 12. Among six startup features selected 

for the ignition system anomaly detection, Figure 10 

presents the features that show the most distinguishable 

signatures between the abnormal and normal startups, which 

are the time intervals between Light-off and Fuel Enable 

and N2 at Peak MGT dot. Figure 11 shows the PCA model 

output for ignition system anomaly detection. Figure 12 is 

the N2 and MGT startup profiles showing differences in the 

case of typical normal startup (blue curve) and the ignition 

system anomaly (red curve). The two curves are similar to 

each other in the early stage of startup but show the big 

difference around Peak MGT dot instance. This clearly 

demonstrates that the ignition system anomaly shall be 

detected at Peak MGT dot instance. The root cause of the 

ignition system anomaly could be various. According to 

Figure 10 and Figure 12, the major anomaly signature is the 

large value of the time interval between Light-off and Fuel 

Enable. The possible root causes of delayed Peak MGT dot 

are the igniter fault, the battery fault, and the fuel/air 

mixture problem. The fuel/air mixture problem usually 

occurs at higher altitude resulting in denser fuel in the 

combustor chamber. Figure 13 shows the logic to isolate the 

root cause of ignition system anomaly. The ambiguity set is 

composed of the igniter fault, the battery fault, and the 

fuel/air mixture problem. There exists another algorithm to 

diagnose various fuel system faults (Mylaraswamy et al., 

2011). This algorithm is based on the performance of 

control loops by assessing the controller dynamics. This 

algorithm is called the fuel scout algorithm and it can isolate 

the fault according to the various fuel system components 

such as the stepper motor, metering valve, RVDT sensor, 

fuel manifold sensor, and fuel nozzle. When the ignition 

system anomaly is triggered, the output of the fuel scout 

algorithm is referred to confirm if the anomaly is due to the 

fuel/air mixture problem. If the fuel scout algorithm does 

not trigger, then the probable root causes of ignition system 

anomaly are either the battery deterioration or the igniter 

deterioration. Figure 14 shows the logic to isolate the 

battery problem, the starter motor problem, and the igniter 

problem. If the starter system anomaly reasoner concludes 

that the anomaly is due to either starter motor or battery, and 

the ignition system anomaly reasoner concludes that the 

anomaly is due to either igniter or battery, then the probable 

root cause of both anomalies is the battery, because the 

starter motor and the igniter are powered by the same 

battery. If the starter system anomaly reasoner outputs HI of 

starter motor and battery is true, whereas the ignition system 

anomaly reasoner outputs HI of igniter and battery is false, 

then the root cause of the starter system anomaly is the 

starter motor deterioration. If the starter system anomaly 

reasoner outputs HI of starter motor and battery is false, 

whereas the ignition system anomaly reasoner outputs HI of 

igniter and battery is true, then the root cause of the ignition 

system anomaly is the igniter deterioration. 
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Figure 11. PCA Model Output for Ignition System Anomaly 

Detection 

 

 
Figure 12. Startup Profiles comparing Normal Startup 
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Figure 13. Ignition System Anomaly Reasoner 
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Figure 14. Battery Fault Isolation 

 

The result of fuel system anomaly detection is shown in 

Figure 15 - Figure 17. Among six startup features selected 

for the fuel system anomaly detection, Figure 15 presents 

the features that show the most distinguishable signatures 

between the abnormal and normal startups, which are the 

time intervals between peak MGT and Light-off and N2 at 

Peak MGT. Figure 16 shows the PCA model output for fuel 

system anomaly detection. Figure 17 is the N2 and MGT 

startup profiles showing differences in the case of typical 

normal startup (blue curve) and the fuel system anomaly 

(red curve). The two curves are similar to each other in the 

early stage of startup but show the big difference around 

Peak MGT instance. This clearly demonstrates that the fuel 

system anomaly shall be detected at Peak MGT instance. 

The root cause of the fuel system anomaly could be various. 

According to Figure 15 and Figure 17, the major anomaly 

signature is the large value of the time interval between 

Peak MGT and Light-off. The possible root causes of 

delayed Peak MGT are the fuel system deterioration, the 

engine deterioration, and the low fuel temperature. When 

the fuel is too cold and the amount of fuel delivered to the 

combustor chamber is not sufficient enough the secondary 

fuel nozzle begins to open. The size of secondary fuel 

nozzle is bigger so the size of the fuel droplet is bigger. 

Since the fuel is very cold, the colder and bigger fuel 

sprayed into combustor chamber results in the cool-down 

and the possible blown-out. Figure 18 shows the logic to 

isolate the root cause of fuel system anomaly. The 

ambiguity set is composed of the fuel system deterioration, 

the engine deterioration, and the low fuel temperature. If the 

fuel temperature is below a certain limit, then the probable 

cause of the delayed Peak MGT is the cold fuel. Similarly in 

the case of ignition system anomaly reasoner, when the fuel 

system anomaly is triggered, the output of the fuel loop 

scout algorithm is referred to confirm if the anomaly is due 

to the fuel system deterioration. If the fuel loop scout 

algorithm does not trigger, then the probable root cause of 

fuel system anomaly is the engine deterioration. 
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Figure 15. Subset of Startup Features for Fuel System 

Anomaly Detection 

 

 
Figure 16. PCA Model Output for Fuel System Anomaly 
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Figure 18. Fuel System Anomaly Reasoner 

 

7. CONCLUSIONS 

This paper introduces a method for gas turbine LRU 

anomaly detection during the engine startup. The approach 

seeks to strike a balance between the need for a large 

amount of high-speed data for accurately characterizing the 

engine condition not only at steady-state but also at 

transients, and the limited computational resources available 

on-board and the difficulties associated with storing and 

transmitting data. Extracting features based on actual engine 

dynamics and the engine control logic can be done with 

very minimal computational resources that are already 

available on most aircraft. 

The time that snapshot data is taken is as important as the 

engine variable that is captured in the snapshot. We have 

shown that the conditions of Fuel Enable is more useful for 

the starter system anomaly detection, the Peak MGT dot 

condition is more useful for the ignition system anomaly 

detection, and the Peak MGT condition is more useful for 

the fuel system anomaly detection. The logic to isolate the 

anomaly of each LRU is also presented. 

The approach has been applied on actual engine data 

collected in test cell. The measurements of interest are the 

N2 and MGT during engine startup. The developed system 

detects the anomalies related to the starter system, ignition 

system and fuel system. The main contributions of this 

paper are; 

 This paper identifies the CTC conditions by the 

combination of the engine control logic and the engine 

dynamics.  

 This paper provides the method to condense the data 

required to characterize engine dynamics from several 

hundred seconds of high speed data to about two dozen 

data points per startup, which has tremendous 

implications in engine health monitoring. Implementing 
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the approach on-board allows real-time data transfer 

and makes timely prognostics possible. 

 This paper is focused on the different stages of the 

engine startup process, which enables to cover multiple 

LRUs which are critically associated to the engine 

startup. This paper identifies the specific time intervals 

when the function of a certain LRU is dominant, and 

the fault detection of that particular LRU is done during 

the identified time intervals.  

 Identifies three different time intervals when the fault 

detection of three LRUs are done, the three LRUs 

include start system, ignition system and fuel system.  

 Identifies three sets of fault features that exhibit the 

symptoms of three LRUs most effectively. 

 There exist a number of causes that show the anomaly 

in the fault features. This is called the ambiguity set. 

This paper identifies the ambiguity set of each three 

LRUs and isolates the root cause of each anomaly. 
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