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ABSTRACT 

The initial installation of a condition monitoring system 

(CMS) on a utility scale wind turbine produced a number of 

unexpected results. The CMS was installed on the 

TechnoCentre éolien Repower MM92. The installation 

allowed testing of a MEMS (microelecctromechanical 

system) based sensor technology and allowed and in-depth 

analysis of vibration data and revolutions per minute (RPM) 

data. A large 3/revolution effect, due to tower shadow and 

wind shear, required the development of an enhanced time 

synchronous average algorithm. The ability to easily 

measured changes in main rotor RPM, as a result of tower 

shadow and wind shear phenomenology, may also facilitate 

the detection of icing or blade pitch error.   

1. INTRODUCTION 

NRG System in collaborative partnership with 

TechnoCentre éolien, installed a CMS on a 2.05 MW 

Repower MM92 at the TechnoCentre‟s northern wind 

energy research location in Rivière-au-Renard. CMS allows 

operations and maintenance professionals to dramatically 

lower their costs by accurately predicting when components 

in the turbine‟s drive train are likely to fail months in 

advance. Maintenance and crane calls can then be scheduled 

at the most optimal time, such as during the low-wind 

season.  

The goal of this collaboration is to validate the performance 

of a new CMS architecture and gain experience of CMS on 

a wind turbine. During the validation processes, both raw 

and processed data is available to NRG System and the 

TechnoCenter. The CMS installation consisted of: 

 A two axis, low speed (1000 mv/g) MEMS 

accelerometer, used for measuring nacelle motion, 

 Seven, High Speed (50 mv/g, 0-32 KHz) MEMS 

accelerometers for drivetrain monitoring, 

 One tachometer (smart sensor), and 

 A local data concentrator, which provides sensor 

control, temporary data storage, and Ethernet 

access. 

The CMS was installed on a Repower MM92. This wind 

turbine uses a three stage, planetary gearbox with a total 

shaft rate increase of approximately 1:96. Power is 

generated from a double feed induction machine, allows the 

main shaft input rates to vary from 7 to 15 revolutions per 

minute (RPM, or 0.11 to 0.25 Hz). The CMS was 

configured to perform an acquisition every 10 minutes, and 

down load raw vibration data every 6 hours. 

Most industrial accelerometers have an operational range 

from 2 Hz to 10 KHz. The rates and frequencies associated 

with many of the gearbox components are below this rate. In 

order to do analysis on these components, the CMS used 

MEMS based accelerometers instead of traditional lead 

zirconate titanate (PZT) based accelerometers. The CMS‟s 

MEMS devices have a response to DC, which makes them 

appropriate for this application. 

It was important to validate this CMS on an operational 

wind turbine in that may many of the technologies have 

never before been implement in a CMS. For example, the 

CMS, in addition to validating MEMS accelerometers 

performance:  

 Tested new packaging design using conductive 

plastics to lower packaging cost of the sensor 

(approximately 1/7 cost of stainless steel 

packages), 

 Implemented all of the condition indicator (CI) 

processing and analysis (such as the time 

synchronous average, gear analysis (residual, 

energy operator, narrowband/amplitude 

_____________________ 
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modulation/frequency modulation) and bearing 

envelope analysis) on the sensors themselves. 

 Implemented a smart tachometer sensor which 

passed zero crossing data to all of the vibration 

sensors so that they can perform the shaft, gear and 

bearing analysis 

 A bused sensor system to reduce the weight and 

cost of harnessing, and 

 A cloud based user display, again to lower the 

setup and maintenance cost to the user.  

 A true prognostic capability by providing an 

estimate of the remaining useful life of a 

component based on a physics of failure model. 

Ultimately, it is anticipated that such architectures will 

deliver world class diagnostics/prognostic performance at a 

fraction of the cost of traditional, “star” architecture CMS 

using PZT accelerometers.  

1.1. System Considerations with Using MEMS 

The newest generation of MEMS accelerometers offers 

performance that in many cases is superior to traditional 

PZT devices if it is packaged correctly. MEMS 

accelerometers sense changes in capacitance, based on 

distance from a reference, instead of charge (piezoelectric 

effect) due to shear. Because of this physically different way 

to measure acceleration, these devices can measure from DC 

to 32 KHz. However, since MEMS accelerometers are 

capacitive sensor (vibration changes sensor capacitance, 

which is proportional to voltage), they are sensitive to 

electromagnetic interference (PZT have better 

electromagnetic noise immunity). As such, to ensure 

performance near a large generator, they must be packaged 

with an analog to digital converter at the sensor.  

One disadvantage of MEMS accelerometers is that they are 

noisier than PZT accelerometers. The power spectral density 

of a typical accelerometer at 1 KHz is 10 to 190 g/ Hz (see 

Analog). Compare this to a wideband MEMS device, such 

as Analog Devices ADXL001 with 4mg/ Hz, or 

approximately 2 to 40 times noisier. That said, from a 

system perspective the data acquisition, processing and 

condition indicator (CI) generation gives significant process 

gain and a large reduction in noise.  

As an example, a typical shaft analysis would result in a 

time synchronous average (TSA, Randal 2011, McFadden 

1994) of length 8196 for 20 revolutions. The reduction in 

non-synchronous noise (part of which is accelerometer self 

noise) is the product of the process gain due to the TSA 

(1/ rev or 0.2236) and the noise reduction of the spectrum 

of the TSA (1/ (length/2) or 0.011), which in total is 0.0025 

* the spectral density. This reduction is more than adequate 

for most CMS analysis. It was observed that use of a MEMS 

accelerometer does not significantly degrade the ability to 

detect component fault given the process gain of the CMS 

analysis. 

1.2. Opportunities for Using MEMS 

The MEMS accelerometer was packaged with the analog-to-

digital converter (ADC) because it is sensitive to 

electromagnetic interference. This necessitates RAM to 

store the vibration data during the acquisition, a 

microcontroller to drive the ADC, and a receiver/transmitter 

to move data. By selecting a microcontroller with a floating 

point unit, it was possible to perform all of the processing of 

the vibration data on the sensor.  

The sensor, when finished processing (about 20 seconds) 

sends condition indicator data to the local data concentrator. 

This greatly reduced to the overall system cost of the system 

by allowing the use of low cost microcontrollers vs. higher 

cost Intel or ARM based processors. 

1.3. Tachometer Function 

Because vibration processing is done locally at the sensor, 

the sensor will need zero crossing data to perform analysis 

on the components that it monitors. The zero crossing data 

is used for calculation of the time synchronous average.  

A tachometer sensor was developed that, instead of sending 

the digitized output of the Hall Effect speed sensor, 

measured the zero crossing times (ZCT). The ZCT was then 

broadcast by the tachometer sensor to all vibration sensors 

on the network. The output of the Hall Effect speed sensor 

was tied to the microcontroller general purpose input/oupt 

(GPIO) pin. When the GPIO pin went high, the 

microcontroller measured the time from the last interrupt. 

The clock on the microcontroller was 100 MHz, with a jitter 

20 parts per million.  

2. INITIAL VETTING AND VERIFICATION 

Following the installation in early December 2011, the CMS 

was evaluated to ensure: 

 That the system MEMS based sensors were 

measuring vibration data, 

 That the configuration was correct, and processing 

appropriate for Shaft, Gear and Bearing condition 

indicators. 

The CMS was configured to acquire data for 40 seconds. As 

noted, the generator is a variable speed system: a lower limit 

of 11,000 rpm was set on the CMS to ensure that the CI 

collected would be taken at similar torque/rpm values. This 

gave a range of 7 to 12 revolutions on main rotor. At the 

high speed side (total gearbox ratio of 1:96) the output shaft 

and generator has 105 to 150 revolutions.  

http://en.wikipedia.org/wiki/Piezoelectricity
http://en.wikipedia.org/wiki/Piezoelectricity
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2.1.  MEMS Accelerometer Accuracy 

There was an initial concern that the MEMS accelerometer 

would be too noisy to accurately measure the vibration on 

the gearbox. Shaker table testing found that the MEMS 

accelerometers where typically within 2% error. This testing 

was conducted at higher frequencies and G values (needed 

because of the feedback system on the shaker itself) than 

would be seen on the planetary section of the wind turbine. 

 

Figure 1 Comparison of Co-Located Sensor (1000 mv/g vs. 

50 mv/g) 

Two sensors where co-located on the main bearing of the 

turbine. The first sensor was a low frequency (0-20 Hz) 

sensor, 1000 mv/g, sampled at 1KHz. The second sensor 

was a high frequency (0-32 KHz) sensor, 50.4 mv/g, 

sampled at 3.3 Hz. This gives a time synchronous average 

(TSA) length of 32768 points.  Over the course of the 

winter, a large SO1 values was measured on both sensors 

(and on the planetary carrier sensor as well). It was 

suspected that this was an icing event, which was 

subsequently confirmed (Figure 2). Because this was real 

signal, the SO1 between the two sensors should be seen and 

were compared to see how the high frequency (low gain) 

sensor performed relative to the more accurate, low 

frequency sensor (Figure 1). 

The SO1 values were calculated from TSA with only 7 

revolutions, at a shaft rate of .25 Hz. The correlation 

between the two sensors was 0.98, with a 4% bias error in 

the high frequency sensor. The RMS error is 5e-4 Gs. This 

is remarkable performance in detecting low G signals at low 

frequency. More so in that the high speed sensor is 

operating at only 0.007% of full range. This suggests that 

the MEMS accelerometers are capable of detecting gear 

faults in the planetary section of the gearbox.  

 

 

Figure 2 Icing on Wind Turbine Blade 

2.2. Tachometer and Main Rotor Speed Variation 

It was immediately noted that the main rotor had large 

variations in speed over the 40 second acquisition. Because 

of the extremely low shaft rate (0.18 to .25 Hz), the 

acquisition must be extended long enough to capture an 

imbalance on the main rotor. Additionally, an acquisition on 

the Ring/Carrier/Planets must be long enough to generate 

valid TSA (admittedly, 7 revolutions is not a large number 

of revolutions).  Because of the large variance in wind 

speed, it was found that variation in main rotor RPM 

average 0.5%. Some acquisitions had variations in RPM of 

greater than 2.5% (Figure 3). 

These large variations in shaft speeds will be propagated 

throughout the gearbox, with the effect being greatest on the 

low speed shafts/gears. This is because the higher speed 

shafts require smaller acquisition times. As noted, the high 

speed shaft, which is turning 95.9 times faster than the low 

speed shaft, requires significantly less time to get one 

revolution. In fact, a six second acquisition results in 150 

revolutions of the shaft. 

Without some method to normalize the variation in shaft 

rate, there will be smearing in the spectrum (Figure 4). This 

example is taken from the planetary carrier sensor, where 

the 123 tooth ring gear frequency is clearly present at 27.2 

Hz. There are three planets, and which will result in 

sidebands at 26.53 and 27.86 Hz (+/-3 * shaft rate, which 

for this acquisition was 0.22 Hz). In the Figure 4 subplots, 

the spectral representation of the raw spectrum is smeared. 

At higher harmonics (2
nd

 harmonic at 54.4 Hz, and 3
rd

 

harmonic at 81.6Hz), the raw spectrum is hardly greater 

than the base noise. 
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Figure 3 Examples of Main Rotor Speed Variations 

This is in comparison to the TSA spectrum, which clearly 

shows the expected sidebands. Since many gear fault 

algorithms are based on the ratio of the gear mesh frequency 

to its sideband, without normalization, the ability to detect 

gear fault on the lower speed shaft is greatly reduced. 

 

Figure 4 Comparison of Spectrum of TSA vs. Spectrum of 

Raw Vibration Data 

2.3. The Need for Improved an TSA 

The observant reader will note that in Figure 3, there is a 

ripple in the rotor speed. On closer observation (Figure 5), it 

is seen that there is a 3/revolution change in RPM overlaid 

on the RPM change as a result of changes in wind speed. 

This phenomenology has been observed (Dolan, 2006) by 

wind turbine controls and power conversion engineers. 

These 3/rev oscillations are important from their perspective 

since they could have wide ranging effects on control 

systems and power quality. In systems connected directly to 

the grid, these torque oscillations could affect of grid power 

quality. For systems interfaced to the grid through 

converters, these torque oscillations would be more 

important in terms of converter control. 

 

Figure 5 Example 3/Rev Torque Ripple 

This torque ripple is the result of tower shadow and wind 

shear. Tower shadow occurs because the wind flow directly 

in front of the tower is stalled. As the blade passes in front 

of the tower at the bottom of the arc, it generates less lift 

which reduces the torque on the hub. Wind shear occurs 

because air is a viscous fluid: wind speed increases with 

height. As the blade reaches the top of the rotor arch, the 

blade generates more lift which increases the torque on the 

hub.  

From a condition monitoring perspective, there has been no 

reporting of this shaft behavior. This could have deleterious 

effects on the performance of the TSA. Typically 

(McFadden (1997), Bechhoefer (2009)) the model for the 

TSA assumes linear increase/decrease in rotor speed. TSA 

using Spline interpolation could control a 1/rev torque 

ripple. The 3/rev torque ripple violates both methodologies. 

This required the development of an “enhanced” TSA 

algorithm. 

Current TSA algorithms uses a tachometer input to calculate 

the time (and number of sampled data points) in one 

revolution of the shaft under analysis.  The sampled data 

points are then re-sampled using linear/spline interpolation. 

In the enhanced TSA algorithm, each revolution was 

partitioned into 16 inter revolution sections, on which the 

data points were re-sampled (Figure 6).  

16 inter revolution sections where used because: 

 From Nyquist, to reconstruct the 3/rev, at least 6 

sub-sections would be needed. 

 The Fourier Transform used in this implementation 

was a Radix-2, thus the TSA always is a power of 

2. To divide evenly, the sub-sections should also be 

a power of 2 
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 Both 8 and 16 inter revolution sections methods 

were tested, the 16 inter revolution section version 

had marginally improved performance (RMS error 

between re-sampled and original data). 

 

Figure 6 Comparison of the 3/Rev change in RPM, vs the 

TSA and "Enhanced" TSA 

For example, the TSA for the carrier sensor, based on a .22 

Hz shaft rate and a sample rate of 3296 sps, had 32768 data 

points. For each of the 16 inter revolution sections, the 

sampled vibration data was linear interpolated into 2048 

data values.   

In Figure 6, the TSA of the shaft RPM data was taken, and 

the result was de-trended.  This represents the change in 

main rotor RPM over one revolution. The old/current TSA 

algorithm would resample the data linearly between one 

revolution. The enhanced TSA represents the 3/Rev change 

in RPM by “chopping” one revolution into 16 pieces, and 

linearly interpolating. 

 

Figure 7. Difference in Phase Between Old and Enhanced 

TSA 

The enhanced TSA better represents the phase changes of 

the vibration signal better than the original TSA (Figure 7). 

In Figure 7, the two TSA algorithms start and end in phase 

(see subplot 1). However, the difference in phase soon 

becomes apparent. This phase error is similar to jitter, which 

reduces the ability of the FFT to produce an accurate 

spectrum. Similar to the comparison of a raw spectrum with 

a TSA spectrum, the enhanced TSA will show a better 

representation of the gearbox spectrum (Figure 8).  

 

Figure 8 Difference in Spectrum Between Old and 

Enhanced TSA 

Note that the enhanced TSA has more distinct side bands, 

and that the 2
nd

 and 3
rd

 harmonics of the ring gear are clearly 

more prominent that in the old/current TSA algorithm. The 

enhanced TSA algorithm itself did not greatly add to the 

processing time. 

2.4. Inline Decimation in the TSA 

There are two contending system issues when selecting the 

accelerometer sample rate. For bearing analysis, one needs 

to sample at a high enough sample rate to capture the 

structural resonance of the bearing. This is needed for 

bearing envelope analysis. For the TSA, one needs to 

sample at a low enough rate such that the length of the TSA 

is less than the maximum allowable FFT length (which is 

32768 data points). 

This becomes a problem for larger wind turbines (2MW and 

greater) where the main shaft rate is a faction of a Hertz. For 

example, consider main shaft with turning at 11 RPM (0.18 

Hertz). For the main and carrier bearing, one would like 

capture the 2 KHz to 2.2 KHz window for bearing analysis. 

This requires sampling at greater than 4.4 KHz. The closest 

sample rate for the CMS is 6104 sps. For this shaft rate, the 

length of the TSA is: 

  (1) 
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This is longer the maximum allowable FFT. The next lower 

sample rate is 3052, but this is too low for the bearing 

analysis.  

Because there is limited processing resources on the sensor, 

an inline low pass filter and decimate capability was added 

to the TSA: 

 If the length of the TSA, n  > 32768, then   

o Decimate = n/32768,  

o Filter coefficients are derived for a 4 

point, FIR filter design, where the 

normalized frequency is 1/Decimate.  

o For Decimation of 2, b = [0.204 0.593 

0.204] 

The flow of the  enhanced TSA algorithm is: 
 
for 1 to # of TSA Revolution 
    for 1 to 16 (the number of sub sections to capture 3/rev 
    interpolate the vector of zero cross times 
    get the change in time between the re-sampled data, dt. 
      for the length of each sub section 
         if decimate = 1 (no decimation) 
             interpolate the data point at 
                 index, index + 1, for time dt. 
         Else  
              Interpolate the data point by filtering  
                 the data point at index -1,0,1 using b 
                 the data point at index 0,1,2 using b 
 

 

Figure 9 Effect on In-line Decimation on TSA Spectrum 

This inline process allows the higher sample rate required 

for bearing analysis, and does not greatly increase the order 

of operations for the TSA algorithm.  It does not affect the 

gear or shaft analysis at all. Shaft analyses measures the 1st, 

2nd and 3rd harmonics (bin 2, 3 and 4 of the TSA FFT), 

while the gear diagnostics, which analysis higher harmonics, 

is improved. This is because of the reduction in higher 

frequency noise (Figure 9). 

The ring gear is 123 teeth, giving the first 5 harmonics (up 

to bin 615). There are additional tones at 2382 through 2782 

(which represent 428 to 500 hz values) are undetermined. 

Above this frequency, the spectrum is measuring broadband 

noise.   

3. VALIDATION OF BEARING FAULT DETECTION WITH 

MEMS ACCELEROMETERS 

There is a concern that the high spectral noise floor of 

MEMS based accelerometers will make them an 

inappropriate sensor for bearing analysis. Early stage (stage 

3) bearing faults have spectral content typically 3 orders or 

magnitude smaller than spectral content of gears or shafts. 

This makes fault detection difficult with even the lowest 

noise PZT accelerometers. To verify the ability to detect 

bearing faults, a test rig was developed on which nominal 

and faulted bearing could be run.  

Both inner and outer races faults were developed. Testing 

was conducted with a shaft rate of 25 Hz, which is 

approximately the rate of wind turbine high speed shaft. The 

load on the bearing was varied from 0, 25, 50, 100, 150, 

200, 250 and 300 lbs of load (the design load of the bearing 

was 1025 lbs.).  Figure 10 is an example of the outer race 

fault. 

 

Figure 10. Example Outer Race Fault 

The outer race bearing fault rate was 80.4 Hz. Envelope 

analysis performed on the sensor was with windows of: 0.5-

1.5 KHz, 2.5-3.5 KHz, 4-5 KHz, 9-10 KHz, 10-11 KHz, 13-

14 KHz, and 22-24 KHz. Surprisingly, the envelope energy 

did not vary greatly with window, and was relatively 

independent of load. For the level of damage (Figure 10), it 

was found that the damage outer race energy was 

approximately 10x the nominal bearing energy and easily 

detected (Figure 11).   

Similar results were obtained for inner race fault. This data 

set will be made available at www.mftp.org. 
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Figure 11 Outer Race Fault Using MEMS Accelerometer 

4. ALGORITHM FOR THE DETECTION OF ICE/BLADE 

PITCH ERROR 

It has been shown that the main rotor is sensitive to both 

tower shadow and wind shear. These phenomena, due to 

changes in blade lift as a result of changes in wind speed, 

could be used to detect difference in lift between each blade. 

For example, if each blade is identical, then the lift 

generated on each blade would be identical at a given angle 

on the hub. This in turn would generate a sinusoidal 

3/revolution change in RPM. The amplitude of the Hilbert 

transform of this 3/rev sinusoid would be nearly constant 

(McFadden, 1986).  

 

Figure 12 Pre/Post Icing Change in RPM 

Consider what would happen if either the blades had icing 

or if the pitch angle of one blade was in error. The lift 

generated by that blade would be less. This blade would 

generate less torque, and as a result, there would a smaller 

increase in RPM due to when coming out of the tower 

shadow or as a result of wind shear.  

Most operators will not allow one to deliberately fault a 

turbine. But, as noted (see Figure 2) icing can occur. Since 

the CMS is down loading raw, time domain data four times 

a day, if one can capture a raw data collection during an 

icing event, one can test the proposed hypothesis. This 

occurred during the January 14 icing even (Figure 12). 

During an icing event, the balance of the rotor can be 

greatly affected. Prior to the icing event, the SO1 imbalance 

was .001Gs (about .25 ips). The peak-2-peak change in 

amplitude of the Hilbert transform of the main rotor RPM 

(AHT) was 0.5 RPM. Just after the icing event, the SO1 

acceleration peaked at 0.14Gs (3.5 ips!) with an AHT of 2.5 

RPM.   

Since blade pitch error is a common cause of 

underperformance in a wind turbine, this potentially could 

be a good indicator of that type of fault. 

CONCLUSIONS  

Condition Monitoring of wind turbines poses some unusual 

requirement on the CMS. The slow shaft rate of the main 

shaft results in low amplitude, low frequency vibrations, 

while the high speed side requires high bandwidth to detect 

gear and bearing faults. This in turn requires the 

development of highly sensitive accelerometer with a 

bandwidth from close to DC (0 Hz) to above 10 KHz. While 

MEMS sensors are typically noisier than PZT 

accelerometers, it was found that the MEMS sensors were 

both accurate, an have low enough spectral noise to capture 

the vibration features on the turbine. This was observed at 

very low signal intensities and frequencies. This would be 

difficult to replicate this performance with a PZT 

accelerometer.  

The extremely low frequencies on the main shaft required 

the development of an in-line decimation enhancement to 

the TSA. This allowed the sample rate of the sensor to be 

high enough for bearing envelope analysis, while limiting 

the length of the TSA to a maximum length of 32768. 

The ability of MEMS accelerometers to diagnose and detect 

stage 3 bearing faults was also validated. 

Other peculiarities of a wind turbine are: 

 The large change in main rotor RPM due to 

changing wind conditions over an acquisition, and 

 A smaller, 3/revolution change in RPM due to 

tower shadow and wind shear.  

This required the development of an enhanced TSA 

algorithm to accurately control the 3/rev change in speed.  
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The ability to detect small changes in main rotor RPM can 

facilitate icing or blade pitch errors. This was demonstrated 

during an icing event. This new algorithm will be deployed 

and verified in the near future. 
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