
A Reasoning Architecture for Expert Troubleshooting  
of Complex Processes 

Abdul Naveed1, Jiaming Li2, Bhaskar Saha3, Abhinav Saxena4, and George Vachtsevanos5 

1, 2, 5 Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332,USA 
naveed@gatech.edu 
jli339@gatech.edu 
gjv@ece.gatech.edu 

3Palo Alto Research Center, Palo Alto, CA, 94304, USA 
bhaskar.saha@parc.com 

4SGT Inc., NASA Ames Research Center, Moffett Field, CA, 94035, USA 
abhinav.saxena@nasa.gov 

 

ABSTRACT 

This paper introduces a novel reasoning methodology, in 
combination with appropriate models and measurements 
(data) to perform accurately and expeditiously expert 
troubleshooting for complex military and industrial 
processes. This automated troubleshooting tool is designed 
to support the maintainer/ repairman by identifying and 
locating faulty system components. The enabling 
technologies build upon a Model Based Reasoning 
paradigm and a Dynamic Case Based Reasoning method 
acting as the intelligent database. A case study employs a 
helicopter Intermediate Gearbox as the application domain 
to illustrate the efficacy of the approach. 

1. INTRODUCTION 

Complex military and industrial systems (machines, aircraft, 
etc.) experience fault/failure modes that must be diagnosed 
accurately and rapidly in order to sustain the operational 
availability of these systems as high as possible. 
Considerable downtime translates into loss of productivity 
and increased maintenance costs. In a manufacturing or 
industrial setting, problems reported by the machine’s 
internal checks (fault indicator) or an operator alert the 
maintainer of possible problem areas that must be 
addressed. Unfortunately, in these situations, the alert or 
advisory does not offer sufficient information to the 

maintainer that may permit the accurate and rapid diagnosis 
of the problem.  

An “expert” observes the faulty system, determines the root 
cause of the problem and composes a work order to 
schedule people, tools/equipment, or materials for repair 
and maintenance. If the problem is not diagnosed correctly 
and corrected, the troubleshooting and repair task is passed 
on to other technical personnel until a successful solution to 
the problem is reached. Early efforts to assist the maintainer 
with troubleshooting and early diagnosis have ranged from 
built-in test (BIT), and built-in test equipment (BITE) to 
interactive electronic technical manuals (IETM’s). More 
recently, several organizations have employed rule-based 
expert systems to provide the maintainer with more 
systematic tools and methods for fault/failure diagnosis. 
Although significant improvements have been reported in 
the troubleshooting arena, the challenge of minimizing the 
diagnosis/repair cycle and returning critical equipment to 
service as soon as possible is still remaining and new 
methods/tools are sought to address it.  

This paper addresses the development, testing and 
evaluation of an intelligent and systematic methodology to 
troubleshooting that aims to improve current practice and 
expedite the diagnosis/repair cycle. An expert decision 
support system is designed to assist the maintainer in 
navigating through complex system interconnections while 
reducing the variability of coupled components/subsystems 
into a well understood series of steps. The enabling 
technologies borrow from the domains of data mining, 
modeling and such reasoning paradigms as Model Based 
Reasoning and Case Based Reasoning. The objective is to 

_____________________ 
Abdul Naveed et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited.  



Annual Conference of the Prognostics and Health Management Society 2012 

 

 

 

integrate trouble-shooting practice with technologies from 
Condition Based Maintenance as many military and 
industrial installations are adopting these new and emerging 
technologies. The vision is the eventual development of a 
rigorous and automated diagnosis and troubleshooting 
architecture that will optimize maintenance, repair, and 
overhaul of complex assets. 

2. THE TROUBLESHOOTING METHODOLOGY 

Diagnostic reasoning algorithms use troubleshooting 

information modeled in a specific way to select the 
appropriate troubleshooting procedure, recommend tests and 
corrective actions as new evidence is acquired, and 
determine the root cause of the system failure. As shown in 
Figure 1, we suggest a novel combination of Model-Based 
Reasoning (MBR), a reasoning tool about fault modes, and 
Dynamic Case Based Reasoning (DCBR), a ‘smart’ 
knowledge-base. We describe each of these two tools and 
their contribution to expert troubleshooting in the following 
sections. 

 
Figure 1. Schematic showing troubleshooting methodology based on reasoners. 

3. DIAGNOSTIC REASONING 

Critical components that are prone to failure are usually 
constituent elements of a larger subsystem or system. For 
example, a gearbox, found on most land, sea and aerial 
vehicles, is an assembly of various components like shafts, 
bearings, gears, etc. Such subsystems are instrumented with 
accelerometers mounted on their frame, which respond to 
vibration signals that might originate from anyone of the 
gearbox components. It is crucial, therefore, to devise 
methodologies that are capable of determining which 
component is defective and, additionally, how specific 
components, faults/failures may propagate from faulty to 
healthy components (the domino effect!) Model-based 
reasoning (MBR) belongs to this methodological category. 
It utilizes all the system sensors to enhance and confirm 
fault isolation. It is an intuitive multi-level modeling 
approach with inherent cross checking for false alarm 
mitigation and multi-level correlation for accurate failure 
isolation (Davis, 1984; De Kleer & Williams, 1987).  

3.1 Model-based Reasoning-The Knowledge Database 

The starting point of this diagnostic reasoning methodology 
is the creation of the a priori knowledge database. In the 
decomposition of a system into its components, often 
satisfactory results can be achieved by looking only as deep 
as the macro level where we have commercially available 

replaceable components whose behaviors have been studied 
in detail.  Once the component units have been identified, 
their behavior is studied and stored in the database in the 
form of functional descriptions aided by a FMECA study. 
The functional description of the system is described in 
terms of these behaviors. Associated with these functions 
the components also exhibit specific fault modes. These 
anomalies, represented in the form of features extracted 
from signals gathered from the system, are called fault 
features or condition indicators (CI’s). The features are also 
stored in the database along with the functional description 
for each component. The basic unit of reasoning here is the 
fault mode j of component i, represented logically as: 

!!" = !!"#
!

                                                                          (1) 

where, f denotes feature threshold being exceeded, k is the 
symptom index and ∧ denotes logical AND. 

3.1.1 System Model Abstraction 

Given a system, we start out by analyzing its structural 
links. The different component parts are identified and their 
specific structural organization is stored in the form of a 
structural model. Information about the location of each 
component and its relative proximity to other neighboring 
components is crucial in predicting how a local failure in 
one component may propagate though the entire system. In 

Operational 
System

Sensing 
Layer

Model Based 
Reasoning
FOR DIAGNOSIS
(DETECTION, 

IDENTIFICATION AND
ISOLATION) 

Dynamic Case 
Based Reasoning
FOR TROUBLESHOOTING

Human-in-the-Loop 
(HITL)

Adaptive 
Knowledgebase

Fault/System Model 
Database

FAULT
CANDIDATES

REPAIR ACTIONS SUGGESTED
SOLUTIONS

FEEDBACK FOR
ADAPTATION



Annual Conference of the Prognostics and Health Management Society 2012 

 

 

 

logical terms, this information is represented as: 

Set of components, V = {v1, v2, …, vn} 

Interconnection, E = {<va,vb>, …, <vi,vj>, …} 

Structural Model, MS ≡ V∪E.         (2) 

where, ∪ denotes the union of two sets.  

The functional model of the system is constructed by 
traversing the partially connected graph represented by the 
structural model and substituting the corresponding function 
for each component from the database. Any anomaly in the 
system response is then reasoned about and expressed in 
terms of faulty operational mode(s) of one or more 
components. This idea is formalized as: 

!"#$%&'#()  !"#$%,!! ≡ ¬!!"
!!

                        (3) 

i.e., the nominal system behavior is described as the absence 
of all known fault modes. 

3.1.2 The Fault-Symptom Matrix 

The construction of the fault-symptom matrix is the main 
reasoning step regarding overall system behavior. Each unit 
in the functional model is associated with a number of fault 
modes, with each fault mode corresponding to one or more 
condition indicators. A system fault is defined as: 

! ≡ ¬!! = ¬ ¬!!" = !!"
!!!!

                          (4) 

i.e., at least one fault mode has been excited. Here¬ 
denotes logical NOT and ∨ denotes logical OR. 

A matrix tabulating the various fault modes and their 
symptoms is generated by traversing all units of the 
functional model and extracting their features from the 
database. If sufficient data from seeded fault testing is 
available from a FMECA study, then the fault-symptom 
matrix can be enhanced with criticality metrics like severity 
and frequency of occurrence. 

As an example, Table 1 gives the fault-symptom matrix of a 
generic case where we consider 3 symptoms spread over 3 
faults. The fault modes can be written as: 

F1 = S1∧S2 = (S1∧S2∧S3) ∨ (S1∧S2∧¬S3) 

F2 = S1 = (S1∧S2∧S3) ∨ (S1∧S2∧¬S3) ∨ 

 (S1∧¬S2∧¬S3) ∨ (S1∧¬S2∧S3) 

F3 = S3 = (S1∧S2∧S3) ∨ (S1∧¬S2∧S3) ∨ 

( ¬ S1∧ ¬ S2∧S3) ∨ ( ¬ S1∧S2∧S3)       
(5) 

 

Table 1: A generic fault-symptom matrix (X denotes a valid 
fault-symptom relation). 

Using baseline data for the system under study, we calibrate 
this matrix for acceptable levels of the fault mode 
symptoms. The choice of thresholds on these symptoms is 
arbitrary. In the real world, maintenance personnel pick 
these thresholds from operational experience. In the absence 
of such expert knowledge we assume that the data is 
normally distributed (equation 5), and we construct this 
distribution based on the mean µ and standard deviation σ of 
the given baseline data. We use the upper 3-sigma limit as 
our threshold. 

! ! = !
! !!

!!(!!!)! (!!!)                   (6) 

A multi-branched diagnostic tree is then constructed from 
the measurements of the overall system behavior. The nodes 
of the tree represent monitored system variables, whereas 
the leaves denote the components that are fault candidates. 
For the example above, the diagnostic decision tree is 
shown in Figure 2, where HIGH branches correspond to the 
X’s in Table 1.  

 
Figure 2. Diagnostic decision tree for the fault-symptom 
matrix in Table 1. 

The leaf nodes below <Fi, …,Fn> in Figure 2 denote that 
any possible combination of the included faults may occur. 
Thus, <F1,F2,F3> includes the fault modes F1, F2, F3, F1∧
F2, F1∧F3, F2∧F3, and F1∧F2∧F3. 

The overall MBR-derived diagnostic procedure can thus be 
represented by the schematic shown in Figure 3. More 
details of this architecture have been published by Saha & 
Vachtsevanos (2006). 

 Symptom 
1 (S1) 

Symptom 
2 (S2) 

Symptom 
3 (S3) 

Fault Mode 1 (F1) X X  

Fault Mode 2 (F2) X   

Fault Mode 3 (F3)   X 



Annual Conference of the Prognostics and Health Management Society 2012 

 

 

 

 
Figure 3. Schematic of MBR diagnostic reasoning 
architecture. 

3.2 MBR Enhancements – Confidence Metrics  

In this section we briefly outline an MBR enhancement that 
incorporates confidence metrics in the reasoning procedure. 
The architecture is elaborated by substituting the crisp 
Boolean logic implicitly inherent in the reasoning process, 
with probabilistic values that express the confidence of a 
given symptom. The confidence metric expresses the 
deviation of an observed symptom measurement from an 
expected baseline value.  

The reasoning method is suggested above is a crisp Boolean 
logic. The occurrence of a behavioral anomaly appears as 
the deviation of the feature (or CI) value from a fixed 
threshold. When this deviation becomes distinct, the feature 
f is set from 0 to 1. Unfortunately, such a crisp distinction 
does not reveal the intermediate levels of confidence that 
are associated with the observation of feature values. In 
many cases the certainty of a behavioral anomaly based on 
the observation of a feature value is best described by a 
value within the (0,1) interval. 

In order to insert the concept of confidence in the MBR 
architecture we propose that a Particle Filter (PF) module be 
used to generate the confidence that a feature exhibits 
anomalous behavior. Denote by φi the feature measurement 
that corresponds to the symptom si. The output of the PF 
algorithm is a sequence of pdf’s, denoted by !!!(!). At each 
instant k, the pdf P!!(k)   represents the probability 
distribution of the feature φi. This is a function of the time 
instant k. Historical data are used to determine the baseline 
pdf denoted by !!, which of course remains constant with 
time.  

The confidence that the symptom si exhibits anomalous 
behavior based on the measurements of the feature φi is 
defined by the overlap area of the two pdf’s, !!!(!) and PB. 
This overlap area !!!(!) ∩ !!  of the two pdf’s is the 
confidence that the symptom si indicates healthy behavior 
based on feature φi, given by !!!"#!! !!; ! = !!!(!) ∩ !!. 

Therefore, the confidence that the symptom exhibits 

anomalous behavior is !!"#$!!"#$ !! , ! = 1 − 

!!!"#$!! !! , ! = 1 − !!!(!) ∩ !! 

 
Figure 4. The confidence estimation using PF. 

Figure 4 illustrates how the PF module is used to determine 
the confidence that a feature exhibits anomalous behavior.  

For example, Figure 5 shows the time-series progression of 
Feature 1 denoting the energy in the gear natural frequency 
in dB, in a gearbox diagnostics scenario (explained in detail 
in section 4). The baseline pdf indicates the 3-sigma fault 
threshold at -30dB. From the graph it is clear from the PF 
tracking output (shown in red circles) that the anomalous 
behavior confidence Canomalous(φi ; k) increases with k for this 
feature.  

 
Figure 5: Feature 1 actual and estimated signal from the PF 
algorithm. 

3.3 Dynamic Case-based Reasoning (DCBR)  

Having determined the fault with sufficient confidence, 
DCBR constitutes the main system level reasoning for 
troubleshooting options and incorporates essential elements 
of a learning strategy. Case-Based Reasoning (CBR) was 
founded on the belief that human memory is episodic in 
nature, which comprises human knowledge accumulated 



Annual Conference of the Prognostics and Health Management Society 2012 

 

 

 

from past experience. Faced with a new problem, a human 
often relates the problem to one or more memory episodes 
and composes a solution from these episodes. CBR is a 
computer program to simulate this human recognition 
process and has been applied to a variety of process 
operation support systems. The CBR application domain 
usually involves problem solving, i.e. identify similar cases 
for better understanding, assessing and/or comparing with 
the current situation. The CBR architecture entails five basic 
steps:  
• indexing – given a new situation, generate appropriate 

semantic indices that will allow its classification and 
categorization;  

• retrieval – given a new, indexed problem, retrieve the 
best past cases from memory;  

• adaptation – modify the old solution to conform to the 
new situation, resulting in a proposed solution;  

• testing – determine whether the proposed solution is 
successful; and  

• learning – if the solution fails, explain the failure and 
learn how to avoid repeating it; if the solution succeeds, 
incorporate it into the case memory as a successful 
solution. 

The proposed software framework imposes requirements 
that classical (static) CBR methods are not capable of 
addressing due to the dynamic nature of the systems of 
interest and the temporal dependence of problem solutions 
typically found in troubleshooting. To circumvent such 
issues a new reasoning paradigm called Dynamic Case 
Based Reasoning (DCBR) was introduced in (Saxena, 2007; 
Saxena, Wu, & Vachtsevanos, 2005).  DCBR 
enhances the advantages of conventional CBR systems by 
interpreting from sensor data not only static features but 
also dynamic and composite ones. Instead of one indexing 
path, the DCBR applies two—the abnormal symptom (AS) 
path, i.e. problem situation detected, and the problem 
description (PD) one. Furthermore, it entails functions to 
support case similarity evaluation and situational prediction 
through temporal reasoning and time tagged indexes. The 
remembrance calculation module updates the remembrance 
factors of existing cases. Figure 6 shows the major modules 
of the DCBR architecture. 

 
Figure 6. DCBR system for integrated diagnosis of 

industrial systems (Saxena et al., 2005). 

Here, DCBR module depends on MBR to provide probable 
fault candidates. Once a set of fault candidates are available, 
DCBR carries out a targeted search within the 
knowledgebase to identify if any additional measurements 
are required to confirm the and isolate the fault modes. The 
next step is selection of the cases from the case base on 
which reasoning will be based. In this step the notion of 
similarity between the cases in memory and the new 
episodic evidence is applied and the performance relies on 
the quality of similarity calculation algorithms. Depending 
on the information type contained in the case base the 
similarity function can take various forms. Several 
similarity scoring functions have been suggested in 
literature. As an example we present one such function here. 
Let Ente be a new case presented to the system. A 
“similarity by proximity” notion may be calculated by the 
following scoring function (Bichindaritz, 1995): 

     ∑

∑ ∑

=

= =

×+×

××+×
= n

k
pertipredk

n

k

n

k
klkipertipredkklki

je

nnn

ElElsimnnElElsim
EntEntsim

i

i

1
,,

1 1
,,,,,, ),(),(

),(
α

α

   (7)

 

Where Entj are cases previously presented, Eli is a feature or 
an (attribute, value) pair, ni,pert is a pertinence weighted 
variable associated with the description element Eli, ni,pred is 
a prediction weighted variable associated with each case in 
memory. The similarity measure can be defined as:  

∑ −+

−−
=

i ii

ii

yx
yxYXsim
||1
||1

),(
α                          (8)

 

3.3.1 Learning 
Learning from the performance feedback is the key 
differentiator here with other knowledge based systems. 
Specific learning methods are applied according to the 
troubleshooting data environment and reasoner type. In our 
formulation there are two key learning mechanisms. 

3.3.2 Human in the Loop Learning (HITLL) 



Annual Conference of the Prognostics and Health Management Society 2012 

 

 

 

As originally proposed in (Saxena, 2007) we adopt a 
Human-in-the-Loop Learning (HITLL) framework where 
not only the experts are kept in the loop for continuous 
performance monitoring, but also the system learning 
activity is accelerated. The human operator who actually 
performs the maintenance and repair operations (MRO) has 
the best knowledge about the effectiveness and the 
adjustments that were needed. He closes the loop between 
sensing and decision support and provides an assessment of 
results as well as a confirmation of the success or failure of 
control actions. The operator’s expertise will assist to define 
and verify the completeness and correctness of the selected 
features for a particular problem set. It is then the task of 
system developers to devise appropriate mechanisms in the 
software to invite such feedback and incorporate the 
information by adjusting the weights in the knowledgebase. 

3.3.3 Incremental Learning in DCBR 

Incremental learning occurs whenever a new case is 
processed and its results are identified. Thus, the memory 
keeps track of each of its experiences, whether success or 
failure, in a declarative way; it is then ready to take 
advantage of future experiences. It must be pointed out that 
there is no guarantee that the matching process will lead to 
the most similar case (Kolodner, 1993). Incremental 
learning is pursued using Q-Learning, a popular 
reinforcement learning scheme for agents learning to behave 
in a game-like environment. Q-Learning is highly adaptive 
for on-line learning since it can easily incorporate new data 
as part of its stored database. An attractive feature in a 
game-like situation is that the player is learning to choose 
the best action for each particular game setting. In this 
framework, the expected reward or “cost-to-go” is stated as: 

(9) 

4. A CASE STUDY: THE IGB 

We now discuss how we apply the proposed troubleshooting 
approach to a helicopter intermediate gearbox (IGB).  A 
schematic view of the H-60 IGB is shown in Figure 7 
followed by the functional diagram in Figure 8. 

 

Figure 7. The IGB structure 

 
Figure 8. Functional diagram of the intermediate gearbox. 

The three basic types of fundamental mechanical units of 
the IGB are gears, shafts, and bearings. A collection of 
features that are characteristic of anomalies in the IGBT 
functions provides a reliable platform for diagnostic 
reasoning. 

The fault-symptom matrix (Table 2) shows that other than 
the gear natural frequency the remaining symptoms are 
different for the input and the output sides. To exploit this 
feature two diagnostic decision trees are constructed for 
each of the input and output accelerometer data. Taking 
advantage of the fact that most faults have only a single 
symptom we devise a simpler linear decision tree. This tree 
is traversed in a depth-first manner, visiting all the branches, 
starting from the root. This tree traversal is performed every 
iteration. Each iteration corresponds to a new dataset 
recorded from the sensors. When any one of these nodes 
returns a fault, then the same traversal process is applied to 
the right sub-tree of that node. It is to be noted that the 
search space is not narrowed down after initial diagnosis 
since a fault initiation in one component does not rule out 
the possibility of other components going bad. 

 



Annual Conference of the Prognostics and Health Management Society 2012 

 

 

 

Table 2. Fault-Symptom Matrix for the IGB (the symptoms 
are represented by associated frequency bands in Hz). 

The IGB has multiple fault modes depending upon which 
components have failed or are failing. For example, a 
bearing may develop a defect in the inner/outer race, a shaft 
or a gear pinion might develop a crack, or even a gear tooth 
may get worn out or chipped. All of these fault modes give 
rise to characteristic vibration signatures. By looking at the 
corresponding frequency bands in the accelerometer 
readings we can classify the fault modes present. Some 
common IGB fault classification heuristics are given below 
(Vance, 1988): 

• Rotor Imbalance – 1 x shaft speed 

• Shaft Misalignment – 2 x shaft speed, high axial 
vibration 

• Mechanical Looseness – higher harmonics of shaft 
speed 

• Excessive Bearing Clearance – sub-synchronous whirl 
instability 

• Bearing Race Defect – (n/2) x shaft speed, n is the 
number of balls 

• Gear Bevel Defect – gear natural freq., sidebands 
spaced at the running speed of the bad gear. 

The fault-symptom matrix can be readily constructed and is 
shown in Table 2. Figure 9 depicts the computer flowchart. 

The choice of thresholds for these symptoms is arbitrary. In 
this application, for all the symptoms, except for the side 
band spacing, the energy thresholds are set at the upper 3 
sigma limit as determined from the baseline data. For the 
sideband spacing feature the symptom can take the value of 
either the input shaft or the output shaft speed. The system 
parameters required, as input to the MBR program for full 
IGB diagnostics, are given as 68.6 Hz input shaft speed, 
25:31 gear ratio, and gear natural frequency around 822 Hz 
for both input and output gears. 

Since the fault symptoms described are primarily energy 
metrics, the energy content of each data sample received is 
used to determine whether the system is in nominal mode or 
not. Once a fault is diagnosed at the system level we 
evaluate the diagnostic decision tree to isolate and identify 
the fault. 

 
Figure 9. MBR Computer Flowchart for the Helicopter IGB 
Application. 

5. RESULTS 

For fatigue crack analysis an IGB pinion gear made of 9310 
steel was used in a cyclic crack 
growth test. It was seeded with 
faults to initiate cracks. These 
faults consisted of notches made by 
an electric discharge machine 
(EDM), and were located at, and 
parallel to, the root of one of the 
gear teeth as shown in Figure 10. The crack growth test 
consisted of rotation in a spin pit, at a constant high speed 
with a varying load cycle, to simulate flight conditions. Data 
collection was done using 2 stud mounted accelerometers at 
the input and the output of the IGB.  

The data consists of 36 sets of accelerometer readings from 
both the input and the output ends of the gearbox. A number 

Crack

1 cm

Figure 10. IGB crack. 



Annual Conference of the Prognostics and Health Management Society 2012 

 

 

 

of features were extracted by frequency domain 
demodulation (the Fourier Transform of the vibration 
signals). The observed behavior from the data was 
compared with the predicted behavior from the functional 
model of the system. Any discrepancy in the two patterns 
was used to detect a fault condition, while the heuristics 
presented above were used to classify the fault.  

A healthy gearbox exhibits certain characteristic 
frequencies. The primary component of the spectrum is the 
gear mesh frequency, which is 1714.5 Hz in our case. The 
harmonics of the mesh frequency are also present but their 
energy content varies with load conditions. When a crack 
initiates in the gear, the power spectrum starts to show a 
clear peak at the natural frequency of the gear. There are 
also characteristic sidebands spaced at the running speed of 
the bad gear. Thus, the major energy component of the 
signal shifts from the mesh frequency to the gear natural 
frequency and its sidebands. 

For the frequency domain analysis of the given data we 
primarily look at the power spectral density. First, we 
eliminate the mesh frequency and its prominent harmonics. 
Then we measure the normalized energy at the gear natural 
frequency (822 Hz). This is a prime indicator of a growing 
fault condition. The spacing between the sidebands is then 
analyzed to see if it matches either the input or the output 
shaft speed. This provides a means of classifying which 
pinion gear is faulty. The photograph of the input pinion 
crack, shown in Figure 10, provides validation for our 
approach. 

6. CONCLUSIONS 

Current troubleshooting tools rely on fault tree analysis, 
extensive electronic manuals or expert system methods to 
assist the maintainer in identifying faulty system 
components and take corrective action. There is a need to 
expand the technology base with tools and methods that will 
assure the accurate and expedient identification of fault 
modes while providing means to learn from similar cases. 
This paper introduced a framework for an intelligent 
approach to the troubleshooting problem. More work is 
needed to improve the mathematical rigor of the algorithm 
and ascertain through case studies that appropriate 
performance and effectiveness metrics are met.  

REFERENCES 

Bichindaritz, I. (1995). Incremental concept learning and 
case-based reasoning: For a co-operative approach. 
Paper presented at the Progress in Case-Based 
Reasoning. 

Davis, R. (1984). "Diagnostic Reasoning Based on Structure 
and Behavior", Artificial Intelligence, Vol. 24, 1984, pp 
347-410. 

De Kleer, J. & Williams, B.C. (1987). "Diagnosing Multiple 
Faults", Artificial Intelligence, Vol 32, 1987, pp 97-
130. 

Kolodner, J. L. (1993). Case-based Reasoning. San Mateo, 
CA: Morgan Kaufmann Publishers. 

Saha, B. & Vachtsevanos, G. (2006). “A Model-Based 
Reasoning Approach to System Fault Diagnosis, 
WSEAS Transactions on Systems, Issue 8, Vol. 5, pp. 
1997 – 2004, August 2006. 

Saxena, A. (2007). Knowledge-Based Architecture for 
Integrated Condition Based Maintenance of 
Engineering System. PhD Dissertation, Georgia 
Institute of Technology, Atlanta.    

Saxena, A., Wu, B., & Vachtsevanos, G. (2005). Integrated 
Diagnosis and Prognosis Architecture for Fleet 
Vehicles Using Dynamic Case Based Reasoning. Paper 
presented at the IEEE Autotestcon ’05 Conference, 
Orlando, FL.  

Vance, J.M. (1988). Rotordynamics of Turbomachinery, 
John Wiley & Sons, Inc., 1988. 

 

 

 


