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ABSTRACT 

Next generation fleet wide asset monitoring solutions are 

incorporating machine failure prediction and prognostics 

technologies.  These technologies build on signal processing 

of vibration time waveforms, process parameters, and 

operating conditions of the machine.  For prognostics 

algorithms to work well, the signal processing algorithms 

need to be applied correctly and the results need to be 

reliable.   This paper provides a survey of signal processing 

techniques as applied to specific machine component with a 

focus on the output and use with prognostics technologies.  

With properly organized outputs, prognostics algorithms 

transform the fleet condition and health management 

challenge into a deployable fleet health management 

solution.   To arrive at the deployable fleet management 

solution, a systematic approach in the design of the 

prognostics system is preferable.  This approach includes 

data and model driven failure patterns, sensory data 

connectivity from deployed assets, prognostics analytical 

applications, and advisory generation outputs which guide 

the asset owners and maintainers.   

1. INTRODUCTION 

As costs decline to collect sensory data from industrial 

assets, it is more practical than before to implement an asset 

health management system for critical and balance of plant 

assets.  Sensory data is available from supervisory control 

systems, and from low cost embedded data acquisition 

systems supporting specialized surveillance such as 

vibration or electrical power monitoring.  To transform this 

abundance of data into actionable scheduling and 

maintenance activities, a systematic approach in design and 

implementation of a prognostics solution is recommended 

(Lee, 2009). 

There are several steps to consider when implementing a 

Fleet-wide health management system, Figure 1.  The first is 

to identify the assets within the fleet for which a business 

case exists that justifies the expense of gathering, analyzing, 

and advising operations and maintenance.  There are many 

sources of business benefit including uptime impacts on 

revenue, safety of workers, productivity, or even 

improvements in asset design (Hollingshaus, 2011).  In the 

case of power generation plants, assets selected for 

advanced monitoring and prognostics include circulator 

water feed pumps, coal pulverizes, gas turbines, steam 

turbines, generators, and transformers.   

 

Figure 1.  Four steps in design of prognostics systems 

A second step in the design and implementation of a fleet-

wide health management system is selection of critical 

components within an asset class that impact the ability of 

the asset to perform its function to acceptable standards.  A 

typical methodology is the Failure Mode and Effects 

Analysis (FMEA) and Failure Modes, Effects, and 

Criticality Analysis (FMECA).  In several industries, the 

process is formalized and includes published standards 

(Reliability 2004). 

For a given asset, there may be several components whose 

failure will prevent the asset from performing its function.  
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Further, within these components, some may warrant 

automated surveillance, while others may warrant periodic 

replacement.  Relating failure modes to business benefit 

helps to refine the selection of the components for 

application of a monitoring and prognostic application.   

The third step in the implementation process is sensor 

selection.  Sensor selection builds on selected asset 

component, expected failure and degradation modes, and 

availability of proven sensory data interpretation algorithms.  

Selection of sensors and sensory data is impacted by 

availability of built-in sensor data from existing systems, 

cost of additional sensors and installation, and impact of 

data storage requirements.  Further, some experimentation 

may be necessary to fully determine whether specific 

sensory data and analytics lead to information that is useful 

in predicting machinery component failure (Lei, 2004).   

A fourth step in the implementation process is selection of 

the prognostic method for the asset class and business 

environment.  Data driven methods require historical 

operational data to use as comparison using statistics and 

probability functions to derive estimates and predictions of 

health and reliability for a given asset.  (CALCE, 2012), 

(NASA, 2012).  Even if failure data patterns are not 

available, data driven methods can be used to compare 

current machinery surveillance data with historical normal 

operation.  Any deviation from the normal, can be 

considered an anomaly and worthy of additional study by 

subject matter experts.  Given a degradation is detected, a 

new pattern can be added to the collection of fault 

signatures for future use.   

Physics driven prognostics often involve a model, or 

accepted standards for surveillance monitoring outputs.  The 

Physics-of-failure (PoF) approach relies on knowledge of 

the assets life cycle and the impact of loading, operational 

conditions, geometry, materials, and failure mechanisims.  

For example, there are a number of standards for 

interpretation of vibration signatures including acceptable 

vibration levels for specific machine components and 

classes of assets.  A bearing vibration analysis incorporates 

geometries of the bearing, speed of the machine (operational 

condition), loading, alignment of the shaft, and perhaps the 

L10 design life of the bearing.  And of course, both data 

drive and physics driven methods can be combined to form 

a hybrid approach to fleet-wide asset monitoring 

applications. 

Finally, most fleet-wide implementations begin with a 

selected few assets in the fleet.  With an initial deployment 

step, costs can be contained and the deployment strategy 

validated.  Many questions or challenges are investigated 

during this pilot phase of implementation.  These include 

the ability to make sensory measurements under consistent 

conditions, ability to reduce sensory data using embedded 

computations, and the ability of analytics on collected and 

historical data to predict patterns and rates of degradation.   

This paper expands on each of these steps, and introduces a 

specific case study in pilot phase implementation.   

2. SIX CLASSES OF MACHINES AND ASSETS 

There are many parameters to evaluate in determining 

whether a collection of assets deserve monitoring for 

degradation and automatic processing of degradation 

indicators.  It is up to the owning organization to determine 

whether financial, safety, or environmental merits exists to 

justify an expense of condition monitoring and prognostics. 

The FMECA methodology mentioned earlier serves as a 

model for making these evaluations.  Given merits for 

monitoring and prognostics, it is desirable classify the asset 

and identify critical components within the asset family.   

There are many types of machines and assets. Assets can 

often be grouped into a class of machinery with similar 

condition monitoring techniques, sensory uses, and 

recommended condition monitoring practices.  In beginning 

the implementation process, it is useful to categorize the 

assets into one of the following classes, Figure 2.   

Figure 2.   Six common classes of machines 

For each class of machine, there are specific commercial 

and experimental techniques for condition monitoring that 

offer methods for predicting mechanical and functional 

degradation.  For example, motor driven machines may 

incorporate electrical power sensors and signature analysis.  

Moving machines may require special load and speed 

sensors to organize sensory data into operational cycles.  

Each class of machine brings with it a traditional approach 

of condition based maintenance and specific and accepted 

sensors and signal processing techniques.    

Within each asset, there are multiple critical components 

common to mechanical function of the machine.  In rotating 

machinery for example, several component failure modes 

are common, Figure 3.   
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Figure 3.   Common mechanical failure sources 

With understanding of the asset type within the fleet, it is 

prudent to identify the key components whose failure 

directly or significantly impacts the function of the asset.  

The classes of assets and common mechanical failures are 

widely used categories for breaking down the asset 

monitoring and prognostics problem in rotating machinery.   

Since most industrial assets have rotating components, it is 

appropriate to consider common sensors and analytics used 

to derive parameters that can indicate machinery 

degradation and failure.   

3. SENSOR SELECTION AND ANALYTICS 

There are many sensors available for monitoring and control 

of machinery assets.  Many exist in the machine as a control 

related sensor, while others are added to the industrial asset 

for performance or mechanical health indicators.  Common 

sensor types are shown in Table 1.   

Sensor Graphic Use 

Temperature  Heat as friction indication 

Flow  Flow of fluids or gas 

Speed 
 

Rotational speed  

Acceleration  Vibration 

Displacement  Shaft movement 

Pressure  Pressure (cylinder) 

Electrical 

Power  
Motor Current  / Machine 

Load 

Table 1.  Common sensors use for asset monitoring 

Other sensory information reported from the control system 

may include error codes, torque, cycle step, and so on.  

These control system parameters are often useful in 

correlating the machine’s work and operating condition with 

measurements from the common sensors in Table 1.  It is 

important to sort measurements into operating modes or 

regimes to improve correlation of on-line measurements to 

historical data patterns.   

Analysis of sensory data allows the fleet asset monitoring 

system to transform data into information useful in 

determining amount and pace of degradation, and therefore 

in predicting a failure of the asset to perform its intended 

function.  The output of analysis algorithms reduces the raw 

sensory data into features which describe the original 

measurement.  These features or descriptors are the numeric 

inputs which prognostic algorithms use to perform 

association of an asset’s current state of health with 

historical machine health patterns, or models of machinery 

health.  Figure 4 offers several analytic techniques and the 

feature results these analysis techniques may produce.   

 

Figure 4.  Analysis with feature and numeric results 

In Figure 4, the top row lists a series of time series trend 

analysis that yield averages, rates of change, and current 

values.  The second row lists several statistical measures of 

a time series vector or trend which indicate shape and 

distribution of a series of sequential measurements from a 

single sensor.  In the case of a roller bearing, frequency 

analysis of a high sample rate vibration snapshot can reduce 

the sensory data to characteristic fault frequency amplitudes 

indicative of defects in the roller bearing.  An advanced 

analytical technique, wavelet analysis, reduces a high 

sample rate snapshot from a dynamic sensor to wavelet 

packet coefficients which indicate presence of transient 

phenomenon in the measured signals.  Transients may be 

indicative of impacts in the case of a roller bearing, 

pulsation anomalies in the case of flow or pressure, and so 

forth. 

Knowing that vibration sensors are common sensory 

measurements used in rotating machinery applications, we 

may consider taking a closer look at frequency analysis of 

vibration signatures recorded by accelerometer or 

displacement probe sensors.  Figure 5, depicts the Fast 

Fourier Transform (FFT) of a vibration sensor signature 

from the bearing on the input side of a gearbox.   
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Figure 5.   Fault frequencies of machine vibration 

In fact, many mechanical faults are detectable using 

vibration amplitude analysis or extensions to frequency 

analysis, Table 2 (Jayaswal, 2008).   

 

Table 2.  Typical faults detectable with vibration analysis 

Using the results of the FFT, analytically it is typical to 

measure the amplitude shown in Figure 5 as Velocity in 

inches per second (IPS) and compare the amplitude for 

specific fault modes to historical norms, or to vibration 

severity standards such as the ISO 10816.   When the 

amplitudes of specific vibration frequencies exceed 

historical norms, or a standard recommended warning level, 

the machine component where the vibration sensor is 

located is considered degraded to the extent its vibration 

level has exceeded the historical norm or standard warning 

level.   

However, depending on the indicative features of interest, 

there are a number of signal processing algorithms used to 

alternatively or subsequently analyze the time waveform or 

the results of the FFT.  Some of these are listed in Table 3.  

Advanced analytics build on the FFT creating additional 

numerical features and augment the degradation status of 

the machine.   

Table 3.  Signal processing options for dynamic sensors 

Specific use cases of advanced signal processing include 

time synchronous averaging (TSA) to isolate non-

synchronous signals from synchronous signals.  Additional 

advanced techniques include Cepstrum which is a frequency 

type analysis of the FFT (Zhang, 2008).  Wavelets and order 

analysis are additional examples.  Each of these advanced 

signal processing techniques works to clarify specific 

features found in the original FFT, by removing or isolating 

those specific dynamic signal amplitudes that best indicate 

the asset component’s degradation trend or pattern.   

4. PROGNOSTIC METHOD SELECTION 

There are two general methods of prognostics applications; 

data driven and model based (Sankavaram, 2009). Data 

driven methods work best with historical data sets indicating 

common failure and normal operation of the entire asset as 

well as its individual components.  Model driven methods 

use mathematical models to describe the relationship 

between measurements and expected asset behavior. 

With data driven methods, historical data is pre-processed to 

reduce the sensory data to a set of calculated features that 

describe the normal and various failure conditions.  Once 

this reduction is complete, the data-driven model then relies 

on one or more health assessment algorithms.  These health 

assessment algorithms work to evaluate the fit of current 

measurement data to the normal and failure condition 

feature sets.  Example health assessment algorithms include 

logistic regression, statistical pattern matching, Hidden 

Markov Models, and Gaussian mixture models.   
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With model driven methods, a system model is derived from 

first principle analysis and simulations.  Measured data and 

features, along with system state variables become inputs to 

the model equation where the outputs map to normal 

operation or a failure condition.  To adapt to specific 

machinery or operation conditions, often an adaptive 

learning or model update process is required.  The model is 

derived from system physics and expected behavior.  The 

model then serves as a reference to normal and various 

failure conditions.  Health assessment algorithms then work 

to fit current measurements to model outputs under similar 

operating conditions.   

As a comparison, data driven methods often require run-to 

failure data which may be expensive or impractical to 

obtain.  Model driven methods require accurate modeling 

and the ability to execute and tune the model in real-time 

leading.  Developing models can be expensive from an 

engineering perspective.  Executing models in real-time as 

measured data arrives may require extensive computational 

resources.   

Often, a combination of approaches is desirable.  Test cell 

data from design verification testing or factory acceptance 

testing can provide normal behavior data sets.  Many 

mechanical components have accepted limits on calculated 

features such as vibration severity levels for which a 

simplified model can be inferred.  By combining data 

driven, and macro model driven approaches, a basic 

automated degradation detection and trending system 

becomes possible. 

It is not the intent of the author to imply the prognostics 

process is easy.  Identification of critical assets and selection 

of sensory information to monitor are well established 

practices.  Yet, development of data driven failure 

signatures and physics of failure modes are much more 

difficult.  Many Small Business Innovation Research 

(SBIR) grants are made each year to small prognostic 

domain expert companies to fit a particular prognostic 

method to a specific class of industrial machines.  Much 

research at the university level and in industry continues in 

efforts to formalize algorithms and methodologies for 

prognostics.  One may conclude then, that prognostic is not 

an absolute science, yet one with much interest and activity 

in both research and industry.  Further experimentation and 

case studies promise to document successful approaches to 

make the prognostics system design easier for future 

implementations.   

5.  PILOT IMPLEMENTATION WITHIN A FLEET (CASE 

STUDY) 

Given a solid understanding of the assets in the fleet, 

availability of sensors and operational data, as well as 

historical data sets and any models of asset behavior, it is 

then possible to design a pilot implementation where 

baselines and preliminary prognostic results can be 

evaluated.   

The Electrical Power Research Institute (EPRI)  

(Hollingshaus, 2011) continues to sponsor a fleet wide asset 

monitoring project within a special working group, the 

Fleet-Wide Monitoring Interest Group (FWMIG).  This 

program aims to articulate a condition based maintenance 

and prognostics solution for its power generation members.  

The applications framework leverages data available within 

power generation plants, a fault signature database, and 

traditional monitoring and analysis techniques for rotating 

machinery, (Hussey 2006) Figure 6.    

 

Figure 6.   Overview of EPRI  FMWIG pilot 

Acronyms from Figure 6 are defined here:  

 EAM:  Enterpise Asset Management System 

 AFS:  Asset Fault Signature database 

 OLM:  On-Line Monitoring Systems 

 FWM:  Fleet Wide Monitoring 

 FMEA:  Failure Mode and Effects Analysis 

 TPM: Thermal Performance Monitoring 

 SME: Subject Matter Expert (ex: vibration analyst) 

 PM:   Preventative Maintenance records 

Figure 6, outlines EPRI’s vision for Smart Monitoring and 

Diagnostics.  Currently, existing EPRI pilot projects have 

included anomaly detection systems such as General 

Electric’s SmartSignal, and Instep Software’s Prism.  These 

anomaly detection systems operate from plant historian data 

such as an OSI Soft PI database.  These anomaly detection 

systems are able to develop normal trend patterns and 

provide notifications when expected operating parameters 

do not match measured operating parameters.  While these 

trend analyzers provide anomaly detection, it is the technical 

exam data (vibration, motor current signature, etc) which 

leads to specific maintenance actions and schedules.   

To build on the anomaly detection, EPRI and Progress 

Energy (now Duke Energy) have embarked on a project to 
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automate the technical exam, especially vibration.  By 

automating the vibration data collection, the current 

vibration SMEs will move towards 80% of their time 

reviewing vibration analysis, as compared to 80% of their 

time collecting data.  (Johnson, 2012), (Cook 2012).  To 

make this shift from data collection to data analysis, the cost 

of installing permanent vibration monitoring systems had to 

reduce significantly.   

By leveraging high volume commercial off the shelf 

vibration measurement equipment, and competitively priced 

vibration sensors, Progress Energy is able to afford 

installation of over 300 vibration monitoring systems using 

both wired and wireless Ethernet communications 

technologies.  These systems cover the majority of “balance 

of plant” equipment including circulating water pumps, 

pulverizes, fans, transformers, and so forth.    

To provide for remote vibration diagnostics, Progress 

Energy and EPRI are working with vibration analytics 

software providers to develop an on-line and off-line 

vibration analytics, which meet the de-facto industry 

standards for vibration analytics.  With hardware and 

software in place, data storage, aggregation, mining, and 

fault signature association will become future challenges for 

the EPRI/Progress team.    

Both EPRI and Progress Energy have seen millions of lost 

dollars in loss of power generation capabilities.  The belief 

is that broader coverage of on-line monitoring along with 

automated analytics for diagnostics and prognostics will 

predict and prevent future losses.   

As the project moves forward, both data-driven and physics 

of failure prognostics will be employed as part of the EPRI 

diagnostic advisor to extend its capabilities to include 

predictive features.  However, data mining,  fault signature 

association, and related prognostics algorithms must be 

validated to become a universal solution for power 

generation applications.   

The EPRI diagnostic advisor will use the asset fault 

signature database (AFS) along with on-line monitoring 

(OLM), trend analysis, any technical exam results, and 

subject matter experts (SME) to advise plant maintainers 

and operations of any specific next steps.   

As the EPRI project moves forward, with additional pilots, 

the asset fault database (AFS) will grow and the prognostic 

methods will improve.  The on-line monitoring options 

including sensors and embedded data acquisition devices 

will also evolve.  There is much to learn from this pilot, yet 

the opportunity in power generation applications is 

promising.   

In EPRI’s summary, condition based maintenance, 

diagnostic advisories, and prognostics using asset fault 

databases will lead to actionable information in time to 

economically benefit plant operations (Hollingshaus, 2011).  

The current pilots are working to validate the prognostics 

implementation and financial benefits.   

6. CONCLUSION 

The implementation of a fleet wide asset monitoring and 

advisory system combines several disciplines.  These range 

from traditional condition based maintenance practices, to 

development of fault models, to implementation of hybrid 

prognostic systems.  There are potentially many benefits 

derived from a systematically developed prognostic system.  

These benefits may pay well to electrical power generation 

and other industries that employ many mechanical assets of 

similar types and function.   

Similar pilots are occurring in the Oil and Gas industry for 

land based drilling and extraction equipment.  Other pilots 

are just beginning in mining industries, centered on haul 

trucks, swing shovels, and drag lines.  These pilots are 

similarly challenged by the cost of sensors and data 

acquisition hardware, cost effective analysis, cost effective 

data storage, and the development of data driven and 

physics of failure fault signatures.   
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