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ABSTRACT 

This paper presents a novel approach to diagnosis of dc-dc 
converters with application to prognosis.  The methodology 
is based on Symbolic Dynamics and Diagnostics.  The data 
derived method builds a statistical baseline of the converter 
that is used to compare future statistical models of the 
converter as it degrades. Methods to determine the 
partitioning and number of partitions for the Symbolic 
Dynamics algorithm are discussed. In addition, a failure 
analysis is performed on a dc-dc forward converter to 
identify components with a high probability of failure.  
These components are then chosen to be monitored during 
accelerated testing of the dc-dc forward converter.  The 
methodology is experimentally validated with data recorded 
from two dc-dc converters under accelerated life testing.* 

1. INTRODUCTION 

Diagnostics methodologies attempt to determine the current 
state of health of a system and flag any type of anomalous 
behavior that could affect the operation of the system.  
Successful diagnostics can eventually lead to 
prognostication of a system where prognostication is the 
prediction of the remaining useful life of the system under 
monitor (Hess et al., 2005) 

The goal of diagnostics and health management in general 
is to maintain system operability, reduce maintenance costs, 
and maximize safety.  Diagnostics and health management 
of electronic systems can be obtained by numerous different 
                                                           
* Gregory M. Bower et al.  This is an open-access article 
distributed under the terms of the Creative Commons Attribution 
3.0 United States License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the 
original author and source are credited. 

methodologies.  Most of these can be sorted into either a 
data driven or model based category.  Model based 
methods, such as the name implies, rely on a physical model 
representation of the system and the underlying degradation 
process (Brown et al., 2006).  On the other hand, data 
driven models tend to model the degradation of a system by 
long term monitoring of the system.  This methodology 
tends to require large data sets in order to train the data 
driven models used to generate the health measures. 

In this paper, we aim to develop a methodology based on 
Symbolic Dynamics (SD) (Ray, 2004; Rohan, 2006) that 
can be used to generate diagnostic measures from a 
degrading dc-dc converter.  Symbolic Dynamics has been 
applied to many systems including inverter fed induction 
machines (Rohan et al., 2006), fatigue crack diagnosis 
(Singh et al., 2010), and in nuclear power plant operations 
(Jin et al., 2011).  

In this paper, we used a dc-dc forward converter for our test 
subject.  Data is recorded from an accelerated test of these 
converters on an hourly basis and is used in the algorithm.  
It is our intention to expand the results into a prognostic 
algorithm that can deduce the remaining life of the 
converter from the current anomaly generated by the SD 
algorithm. 

Symbolic dynamics lends itself well to the area of electronic 
diagnostics as it is a relatively simple algorithm to 
implement. In general, the algorithm analyzes the data 
captures and forms states based on the data.  These states 
are then tracked statistically through time.  These states can 
be designated in numerous ways; that is, the states could 
directly be related to the data points themselves or represent 
the duty cycle of the converter. 
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This paper is organized as follows.  Section 2 presents a 
background on the Symbolic Diagnostics and Analysis 
methodology.  Section 3 focuses on the dc-dc converter and 
the accelerated testing of the converter to generate the 
experimental data used in the algorithm. Section 4 presents 
the results of the algorithm compared to other electronic 
system diagnostic metrics.  Finally the paper concludes with 
a short conclusion and future work suggestions. 

2. SYMBOLIC DIAGNOSTICS AND ANALYSIS OF 
TIME SERIES DATA 

Diagnostics of the converter is accomplished through the 
use of symbolic diagnostics and analysis of time series data 
(Ray, 2004).  In this work, we propose a methodology to 
accomplish diagnostics of a dc-dc converter in real-time 
with the use of this tool.  The method depends on 
symbolizing the captured time series data, generating states 
that consists of permutations of generated symbols, and 
calculating the probability of these states.   

In general, the probability of the states change as the 
converter ages and degrades.  Tracking these changes 
allows for quantification of the degradation in the dc-dc 
converter over time.  These changes can be quantified by 
comparing the current analysis to a baseline case.  Two 
underlying assumptions must be satisfied in order to use 
symbolic dynamics.  They are: 

1) The system degradation mechanisms must be 
dynamically separate from the system dynamics; 
and 

2) The system generates monotonically positive 
anomaly measures. 

The first requirement is a two time scale separation 
argument.  If the system dynamics are much faster than the 
degradation mechanisms, then individual data captures will 
contain stationary degradation dynamics.  The second 
assumption states that the system does not exhibit self-
healing or is repaired.  This assumption is flexible in that a 
non-monotonically increasing anomaly can make diagnosis 
more difficult but not impossible.  A monotonically positive 
increasing anomaly also pushed the methodology towards a 
prognostics tool.  

The dc-dc converter satisfies assumption one as the system 
dynamics are monitored through time.  The dynamics of the 
dc-dc converter are based on the switching frequency of the 
converter, that is, 100 kHz.  A short data capture is taken at 
a faster rate than the switching frequency and is used to 
determine the current system state of health.  During this 
short interval, the degradation in the converter can be 
considered stationary.  For assumption two, the converter is 
allowed to age without repair.  The degradation in the 
converter continually increases and with the anomaly 
quantification metrics, generates an increasing anomaly 
measure. 

 

The methodology for Symbolic Dynamics begins by first 
determining the number of symbols to use in the definition 
of the symbolic sequence and also defining the partitions to 
assign symbols to time series data points which is closely 
related to defining the number of symbols.  Each data point 
is assigned to a unique symbol.  This step can be considered 
as a coarse quantization of the time series data. 

With the symbolic series now generated, the next step is in 
determination of states for the algorithm.  States are simply 
defined as groupings of D symbols.  Throughout this paper, 
the choice D, called depth in the algorithm, is chosen to be 
unity; that is, each symbol results in a state.  Once the states 
are defined, the probabilities of occurrence of the states are 
used to generate an anomaly in the behavior of the system 
that is related to degradation.  Currently, there are numerous 
metrics to quantify an anomaly based on these state 
probabilities. 

The algorithm will now be discussed in more detail 
including the partitioning of the time series data,  generation 
of the symbolic sequence, and the determination of 
parameters in the algorithm.  With the completion of 
symbolization, the discussion will continue with defining an 
anomaly based on the statistical model generated from the 
time series data. 

2.1 Choice of Number of Symbols 

In order to enable the partitioning of the time series data, the 
choice of the number of symbols in the algorithm must be 
determined.  Two methods are presented, one for each type 
of partitioning methodology.  The partitioning methods will 
be discussed in the next section.  Each method is based on 
the entropy of the resultant symbol distributions generated 
from the partitioning method. 

For uniform partitioning, the choice of number of symbols 
to use is defined by the use of Entropy Efficiency.  Entropy 
Efficiency is given as: 

௘ܧ  ൌ
∑ ௜ሻ݌ଶሺ݃݋௜݈݌
ே
௜ୀଵ

ଶሺܰሻ݃݋݈
 (1) 

where ݌௜ is the probability of the ith symbol.  The ݌௜′ݏ are 
calculated at each iteration of the search for N and represent 
the probability of each individual partition.  The logarithm 
is taken to the base 2 such that result of entropy is based in 
bits.  The aim is to determine the maximum of Eq. (1) over 
uniform partition size, N.   

Equation (1) can be interpreted in two ways.  First, the 
denominator term acts as a penalty term for larger 
distributions that is a large choice of N. This enforces 
computationally a more efficient algorithm.   
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Secondly, this metric measures the entropy deviation from 
the ideal entropy given by a uniform distribution 
(represented in the denominator term).  For source 
distributions that are not known a priori, a good estimate for 
the source distribution is that from a uniform probability if 
there are no constraints or assumptions on the underlying 
generating symbol distribution (Conrad, 2011). 

An issue associated with this method that must be kept in 
mind is if during the process of looking for an optimal 
number of states is if a state is generated that has a null 
symbol occurrence probability.  This would cause the 
entropy estimate to be undefined.  In this case, the search 
concludes with the generation of the first null symbol 
probability. 

For ME partitioning, we again turn the use of entropy under 
a method developed by (Rajagopalan & Ray 2006).  This 
method estimates the number of states through the use of 
histograms.  To estimate the number of states we use the 
differential entropy of the time series data given as: 

 ݄ሺݔሻ ൌ െන ሻ൯ݔሺ݌ଶ൫݃݋ሻ݈ݔሺ݌ ݔ݀
∞

ି∞
 (2) 

where x is the possible values the data can take and p(x) is 
the probability density of x.  Once the entropy for the time 
series data is estimated, the number of symbols for ME 
partitioning is given by: 

 ܰ ൌ ଶሺ݇ሻ݃݋௞ሼ݈݊݅݉݃ݎܽ െ ݄ሺݔሻ ൒ 0ሽ	 (3) 

that is, we obtain a distribution whose entropy is greater 
than or equal to that of the entropy estimate from the time 
series data.  The number of symbols N is chosen to be the 
minimum k that satisfies Eq. (3). 

A difficulty with differential entropy is the ability of this 
measure to take on a negative value.  If this is the case, the 
algorithm defaults to a selection of two for the number of 
symbols. 

2.2 Partitioning 

After the number of partitions has been determined, the next 
step of the algorithm requires symbolization of the time 
series data.  This step includes the determination of the 
partitioning structure of the time series data used in the 
generation of the symbol sequence.  This step requires the 
number of symbols used in the algorithm as well as the 
partitioning methodology of which includes uniform and 
Maximum Entropy (ME) partitioning to be determined.  
The choice of the number of symbols will fix the number of 
partitions in the algorithm as each partition is assigned a 
unique symbol as was discussed previously. 

The objective of the partitioning is to assign a symbol to 
each of the time series data points	ܺ ≡ ሺݔ଴, ⋯,ଵݔ ,   .௡ሻݔ

Given the set of N symbols, ∑ ൌሺݏ଴, ⋯,ଵݏ ,  ேିଵሻ, eachݏ
symbol si is assigned to one partition Pi, where P is the 
partitioning of the time series data ܲ ≡ ሺ ଴ܲ, ଵܲ,⋯ , ேܲିଵሻ.  
Therefore, if ݔ௜ ∈ ௜ܲ, ௜ݔ →  ௜, that is, we assign si to xi if xiݏ
falls within the bounds of Pi.  As mentioned earlier, there 
are two methods to develop the partitioning P and they are 
called uniform partitioning and ME partitioning. 

Uniform partitioning requires taking the range of the time 
series data and dividing it into the N mutually–exclusive 
equally spaced partitions.  Each time series data point that 
falls into one of these N regions is thus assigned a unique 
symbol. 

The other popular method for time series data partitioning is 
by Maximum Entropy.  This partitioning scheme, as hinted 
by its name, is completed by maximizing the entropy of the 
resultant symbol occurrence probability.  That is, the 
occurrence probability of the symbols should be uniform in 
nature. 

In order to complete this, the time series data is ordered in 
magnitude.  By grouping the ordered data into subgroups of 
length X/N, the partitioning structure for ME partitioning is 
defined.  The resultant occurrence probability for these 
partitions in the baseline case becomes equal.  This differs 
from the results of uniform partitioning as the resultant 
probabilities are generally not uniform. 

In theory, the total number of partitions can range from a 
simple binary partition to an upper limit defined by the total 
number of unique samples in X.  In the former case, each 
data point is simply relabeled with a unique symbol. 

2.3 Anomaly Generation 

With the completion of the partitioning and symbolization, 
it is left to determine how to quantify an anomaly from 
changes in the underlying statistical behavior of the system.  
The deviations in the system are captured through changes 
in the state occurrence probabilities.  In the case of unity 
depth, D is equal to one, the states that are tracked during 
life testing are simply the symbol occurrences.  In general, 
if D is not unity, the states of the system consist of 
permutations of groups of D symbols.  In the following, the 
states are thus the symbol occurrence probabilities as D is 
set to unity. 

In this work, two measures are used to quantify this change 
and define it as an anomaly A.  One is based on a Euclidean 
distance type measure and the second is based on the 
Kullback-Leibler divergence (Singh et al., 2010).  Both of 
these measures use the baseline distribution of state 
probabilities as well as the current distribution to generate 
an anomaly. 

The Euclidean measure is the 2-norm difference between 
the baseline and current system state probability 
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distributions.  Given the state probability vector p, the 
Euclidean metric is: 

ܣ  ൌ ‖ሺ݌௡௢௠௜௡௔௟ െ 	௜ሻ‖ଶ݌     (4)

where ݌௡௢௠௜௡௔௟ is the baseline state probability vector and 
 ௜ is the current state probability vector.  The baseline SPV݌
is based on the healthy condition of the system such as at 
the start of use.  The other measure implemented in 
generating an anomaly from the statistical models of the 
system is the Kullback-Liblier divergence:  

ܮܭ  ൌ෍݌௜
௞݈݃݋ ቆ

௜݌
௞

௜݌
௡௢௠௜௡௔௟ቇ

ே

௜ୀଵ

	     (5)

In (5), the sum is over the total N states in the algorithm 
while k represents the kth iteration of the algorithm.  An 
anomaly measure is generated from (5) by: 

ܣ  ൌ 0.5 ቀܮܭሺ݌௞, ௡௢௠௜௡௔௟ሻ݌ ൅ ,௡௢௠௜௡௔௟݌ሺܮܭ ௞ሻቁ݌
(6)

These anomalies are then used to diagnose the current state 
of the converter as the system degrades from use.  From 
these measures, it is possible to detect degradation or a fault 
that has occurred in the system.   

3. ACCELERATED TESTING OF A DC-DC 
FORWARD CONVERTER 

In order to verify the algorithm, a 50W forward converter 
was designed, constructed, and placed in an accelerated life 
test environment.  The forward converter used 15 V for 
input and output 10 V at 5 A nominally.  The general circuit 

diagram of a forward converter is shown in Figure 1 with 
the locations of the sensors implemented in the testing.  
This converter implements the current-mode feedback 
methodology in addition to output voltage feedback. 

It is known that specific components in the dc-dc forward 
converter are more susceptible to failure than other 
components.  From (Orsagh et al., 2006; Orsagh et al., 
2005), the most probable locations of failure for the 
converter are the MOSFET power switch, the rectifying 
diodes, and the input and output capacitors. 

The accelerated test consisted of placing the converter in an 
oven to generate a High Temperature Operating Life 
(HTOL) test.  This test is geared to ascertain the usable life 
of a system by continually running the system at high 
environmental temperatures.  In this case, the converters 
were continually run at 85°C.  This temperature point 
coincides with the maximum operating temperature of 
several components in the converter.  These components 
included the Pulse-Width-Modulator (PWM) controller, 
input/output electrolytic capacitors, and several other 
integrated circuits. 

The high temperature was used to accelerate failures in the 
dc-dc converter.  For example, the electrolytic capacitors 
contained in the circuit would be directly affected by 
operating temperature.  The higher temperature would cause 
acceleration in the loss of electrolyte in the capacitor 
causing wear out (Kulkarni et al., 2009).  This in turn would 
cause an increase in the capacitors equivalent series 
resistance (ESR). 

Additionally, the power MOSFET failure mechanism of 
Time Dependent Dielectric Breakdown (TDDB) can be 
accelerated by higher temperatures (Kalgren et al., 2007).  

Figure 1: Simplified Diagram of a dc-dc Forward Converter with Sensor Locations 
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Another failure phenomenon that can be accelerated with 
higher temperatures is electromigration affecting both 
MOSFETs and rectifying diodes.  These two components 
are also susceptible to degradation caused by interdiffusion. 

  

3.1 Sensor Placement 

Although each component will degrade individually and 
sensors have been placed at these components to observe 
degradation, the objective of this research is not to 
specifically identify the failure mode of a specific 
component. Instead, the objective is to capture data across 
locations in the converter that have high probability of 
degradation and/or failure to generate a diagnostic measure 
for the system as a whole. 

Sensors were placed in the circuit that would maximize the 
probability of observing degradation in the components 
mentioned above.  In addition, the input voltage was also 
monitored throughout the testing. 

Voltage sensors were placed across the power MOSFET, 
the freewheeling diode (DFW), and at the output voltage, VO.  
In addition, the current signal produced from the current 
sensor for current-mode feedback was also used in the 
degradation monitoring.  Since this signal was already being 
monitored for current mode control, it provided an easy 
means to access the instantaneous switch current waveform. 

Thermocouples were placed on the tabs of the TO-220 
package for the MOSFET and diode DFW for monitoring as 
well.  During each time series data capture, one sample each 
was taken of the MOSFET, DFW, ambient, and oven 
temperatures for monitoring during testing. 

Data for the SD algorithm was recorded from these sources 
at a rate of 800 KS/s.  The data acquisition hardware was 
triggered every hour to record a data snapshot of 0.25s in 
duration.  No anti-aliasing filters were implemented in the 
data acquisition hardware.  The data channels were buffered 
into NI 9221 analog input modules. 

Anti-aliasing filters were not implemented as the filtering 
function could remove degradation information from the 
signals.  Since the sampling rate is approximately eight 
times the switching frequency of the converter, the anti-
aliasing filters would have filtered too much of the 
frequency spectrum of the signals.  The anti-aliasing filters 
would remove significant energy from the spectral content 
of the time series data.  Given that our objective is to not 
recreate the time series date, it is acceptable to have a 
limited sample rate on large bandwidth signals.  More 
research is currently being performed on the affects of the 
low rate sampling on the performance of the symbolic 
dynamics algorithm. 

3.2 Life Testing 

The forward dc-dc converter was placed into the 
temperature chamber and allowed to function until failure of 
the converter.  Failure was defined as failure to maintain 
desired output voltage within 10% of the set point or as the 
result of complete failure. 

For testing, the converter was loaded with a bank of 0.5 Ω 
resistors used to create a 1 Ω load for the converter.  The 
voltage output of the converter was set at 9.5 V across the 1 
Ω load.  This resulted in a continuous output power of about 
90 W.  The converter would then be continually loaded at 
this power level while under the HTOL testing.  Further 
research will investigate the effects of changing load on the 
results of the methodology. 

The converter had a 24 hour burn in procedure to confirm 
functionality of the converter and data acquisition systems.  
This period also allowed the system to reach an operational 
steady state before the stress testing began.  The 
temperature of the oven during burn in was 65°C.  After this 
period of time, the accelerated testing was started.  The 
temperature of the oven was increased to 85°C at this time.  
This temperature was selected due to the operational 
temperature constraints of the onboard electrolytic 
capacitors and integrated circuits (ICs). 

The first converter was operated for 200 hours after the burn 
in period was completed.  At this time, the converter failed 
by not being able to maintain the desired output voltage.  
Post failure analysis pointed to the input capacitors as the 
failed components.  Table 1 shows the pre and post test 
conditions of all electrolytic capacitors in the converter 
which demonstrate the degradation experienced by the 
capacitors  

 Pre-Test Post-Test 

Capacitor C (µF) DF C (µF) DF 

C1 455 0.049 415 0.487 

C2 449 0.05 241 1.24 

C3 449 0.047 128 1.96 

C4 204 0.057 200 0.057 

C5 204 0.058 199 0.058 

Table 1:  Capacitor Characterization for Converter Test 1 

In the table, C1-C3 were the input capacitors (CIN in Figure 
1), C4 was the output voltage capacitor (CO), and C5 was 
used as a filter for a negative voltage bus in the converter 
(not shown in Figure 1).  DF in the table is the Dissipation 
Factor of the capacitors and is related to the loss tangent for 
dielectrics.  The higher the DF value results in a larger 
magnitude of the ESR component of the electrolytic 
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capacitor generating higher internal power losses in the 
capacitor.  The relationship between DF and ESR is: 

ܨܦ  ൌ
ܴܵܧ
|ܺ஼|

	     (7)

where XC is the reactance of the capacitor under the test at 
the known test frequency. 

As is visible in the table, capacitors C2 and C3 suffered 
severe damage from the testing.  This is representative in 
both the reduction of the capacitance (nominally 470 µF) 
and the increase in the DF measure of both capacitors.  
Confirmation of the failure was completed by restoring the 
converter to normal functionality by replacement of these 
capacitors (C1 though C3).  Replacement of these 
capacitors restored the output voltage capability of the 
converter. 

Similarly, a second test was carried out under the same test 
conditions for failure repeatability with a new converter.  
This test lasted approximately 1,800 hours at the 85°C test 
at which point the test temperature was increased by 10°C 
in order to accelerate the test.  At this temperature point, the 
converter functioned for another 152 hours.   

After failure, it was determined that the failure was again 
the input capacitors of the converter.  Table 2 shows the 
capacitor characterizations before and after the testing. 

 Pre-Test Post-Test 

Capacitor C (µF) DF C (µF) DF 

C1 434 0.043 377 0.617 

C2 434 0.043 371 0.694 

C3 427 0.045 363 0.800 

C4 203 0.051 194 0.087 

C5 203 0.052 143 0.53 

Table 2:  Capacitor Characterization for Converter Test 2 

Test 1 and test 2 capacitors showed some signs of the top of 
the canisters bulging.  This is most likely related to loss of 
electrolyte through evaporation due to internally generated 
heat in the capacitor.   

The difference in test lengths is most likely due to 
component differences in the converters such as those from 
different lots.  The capacitors used in the converters were 
from the same manufacturer but not from the same 
production lot.  The tables also demonstrate the amount of 
degradation the capacitors incurred during testing 
specifically in terms of the dissipation factor.  In terms of 
the data derived method, the difference in test lengths will 
not negatively affect the performance of the algorithm as 
will be seen in the upcoming sections.     

The other components observed during testing (MOSFET 
and rectifying diodes) did not show significant changes in 
parameters after testing.  Parameters tested for the 
MOSFET included VGS,th, the gate threshold voltage, 
approximate Rds,on, gate leakage current, and BVDSS, the 
maximum drain to source voltage.  The rectifying diode 
parameters included VFW, the forward voltage, and the 
maximum cathode-anode voltage.  All of the above 
parameters recorded minimal changes from pre to post-
testing. 

4. RESULTS 

Once the data collection was completed with the failure of 
the converters, the SD algorithm was implemented on the 
captured data sets.  The goal of the algorithm is to generate 
anomalies using the collected data that can be used to 
determine the state of health of the converter. 

The SD algorithm results are compared to features that are 
commonly used to monitor the health of electronics.  The 
estimated efficiency of an electronic system has been used 
to determine the current state of health of the system as a 
loss of efficiency is a sign of system degradation (Orsagh et 
al., 2005).  Efficiency can be monitored through 
implementation of sensors on the input and output ports of 
the system to monitor current and voltage.  As the 
components in the system begin to degrade, they tend to 
have more internal power loss that directly affects the 
converter’s overall efficiency.  This degradation can be 
tracked through the computation of the system’s efficiency. 

When the testing of the converters was first started, it was 
not anticipated that an efficiency measure would need to be 
calculated so input and output currents were not measured.  
However, input and output voltage was measured and 
switch current was also monitored.  From these three 
variables plus knowledge of the load enabled efficiency to 
be estimated from the captured converter signals. 

From the captured data, the input current had to be 
estimated from the captured switch current. This required 
the duty cycle to be estimated from the data captured from 
the converter.  Once the duty cycle was estimated, the 
current was scaled by the duty cycle and the mean taken 
from current data when the switch is ON.  This was 
calculated as: 

௜௡ܫ  ൌ ݉݁ܽ݊൫݅௦௪,ைே ∗ 	൯ܦ     (8)

where ݅௦௪,ைே, is the switch current during the ON interval 
and D is the duty cycle. 

Another feature to be compared to the SD algorithm is 
related to the output voltage ripple of the converter.  As the 
output capacitor degrades, the ESR of the capacitor tends to 
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increase causing more output voltage ripple.  To attempt to 
capture this effect, a form factor metric given as: 

ிܨ  ൌ
ைܸ,ோெௌ

ைܸ,ொ஺ே
	     (9)

was implemented to track the output ripple  characteristics. 

Symbolic dynamics was applied to the time series data 
recorded from the accelerated testing of the converters.  
Since there was uncertainty in which signals would produce 
the best results, the algorithm was implemented on all 
signals using the automatic selection methods discussed in 
Section 2.2. 

From the results of the algorithm implementation, it was 
discovered that the signals containing the best degradation 
trending was the diode voltage (DFW in Figure 1).  An 
example of the diode voltage is shown in Figure 2.  This 
data was taken from the first converter test. 

 

 

Figure 2:  Sample Diode Data with Partitioning (Red) - 
Healthy 

As seen in the figure, the data is sampled at 800 kHz 
resulting in eight data points per cycle in the waveforms.  
The binary partitioning implemented in this analysis 
generates an interesting result.  The upper partition 
probability of occurrence is the duty cycle of the converter.  
In this case, the algorithm automatically defaults into a duty 
cycle detector and tracker.    

The diode’s voltage works well as the wave shape of the 
voltage is a pulse waveform in nature.  The pulse wave 
shape enables a direct correlation of duty cycle of the 
converter to the converter’s current operating condition.  
The duty cycle of the converter is a good feature to use for 
converter health.  As the converter degrades, in order to 
maintain the current output power, the duty cycle must be 
perturbed slightly larger.  The duty cycle needs to increase 
because as the converter degrades the efficiency of the 
converter also decreases as internal components begin to 

become more lossy.    The efficiency of test 1 over the 
complete interval is seen in Figure 3. 

 

Figure 3:  Test 1 Efficiency over Accelerated Testing 

The efficiency of the converter decreases throughout the 
accelerated converter testing.  To overcome the additional 
losses in the converter, the closed loop control perturbs the 
duty cycle to maintain output power.  The duty cycle for test 
1 is shown in Figure 4. 

 

Figure 4:  Converter Test 1 Duty Cycle over Accelerated 
Testing 

As the testing progresses, the increasing degradation in the 
system causes the duty cycle to be increasingly perturbed.  
From the plot, the converter started at approximately 34% 
and failed when the duty cycle reached just over 35%.   

Figure 5 shows the captured diode data after 200 hours of 
degradation also from the first test.   
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Figure 5:  Sample Diode Data with Partitioning (Red) – 
Degraded 

In Figure 5, note that the same partition is used in the 
example.  The partitioning must remain invariant across the 
lifetime of the system for proper operation.  Also note that 
due to the degradation, there is an additional data point in 
the upper partition.  This in turn increases the upper 
partition’s occurrence probability which can be interpreted 
as an increase in the duty cycle of the converter. 

4.1 First Converter Test 

The results in Figure 6 are from the captured diode data 
using the binary partitions shown in Figure 2 and 5.  The 
anomaly was generated from the state probability vector 
where the states are the partitions themselves (depth was set 
to 1).  The anomaly metric used in the figure was from (4).  
The baselines used in all the cases were from the initial start 
of the burn in.  It is possible to use any point in the test for 
the baseline.  In this case it was convenient to use the first 
set of captured data.  

 

Figure 6:  Anomaly Measure Generated from Diode Data – 
Euclidean Distance Metric – Test 1 

 

In Figure 6, the jump in anomaly at 24 hours was a result 
from the end of the burn in period leading into the start of 
the accelerated testing.  In general, the anomaly increases 
steadily until approximately 180 hours into the test where 
the degradation accelerates rapidly.  The last data point was 
taken just over 200 hours when the converter failed.   

The following figure combines the SD anomaly of Figure 6 
with those obtained from an efficiency calculation and from 
the output voltage form factor. 

 

Figure 7:  Comparison of Symbolic Dynamics Anomaly, 
Estimate Converter Efficiency, and Form Factor 

As seen in Figure 7, the three measures compare well with 
one another.  All three measures show some effect from the 
break in period into the accelerated testing.  In this example, 
it is clear that Symbolic Dynamics reproduces the results of 
the other metrics with minimal effort.  Additionally, the SD 
generated anomaly has less noise as compared to the other 
two measures over the complete test period.  Forward 
thinking, this result should be positive for use in a 
prognostics sense with these converters 

4.2 Second Converter Test 

The testing was repeated with a second converter to 
reproduce the results seen above.  The converter was again 
tested with a 24 hour burn in period and then left to be 
operated at 85°C until failure. 

This test also resulted in failed input capacitors; however, 
the complete test lasted approximately 1,800 hours. 
Symbolic dynamics was again implemented on the diode 
data and the results are shown in Figure 8. 
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Figure 8:  Anomaly Measure Generated from Diode Data – 
Euclidean Distance Metric – Test 2 

In Figure 8, the test lasted significantly longer than the 
previous test.  However, the results are very similar with the 
anomaly trend increasing rapidly toward failure.  The jump 
in anomaly in the beginning is due to the break in interval 
while the jump towards the end (around 1,700 hours) was 
due to a change in the test parameters.  At that point, the 
temperature of the test was increased from 85°C to 95°C in 
order to further accelerate the testing. 

Again, we aim to compare our results to metrics more 
commonly used to diagnose the health of an electronic 
system.  Using the same data, the efficiency and form factor 
metrics were calculated and the results are shown in Figure 
9. 

 

Figure 9:  Comparison of Symbolic Dynamics Anomaly, 
Estimate Converter Efficiency, and Form Factor 

As is observable, each of the measures are susceptible to the 
jump in operating temperature both from the break in period 
and from the increase in test temperature near the end of the 
test.   

As compared to the results from the first test, the form 
factor metric does not produce as clear a trend as compared 
to the SD or the efficiency result.  It would be difficult to 
determine current state of health from this trend.   

Efficiency is a consistent metric between the two tests and 
is relatively easy to calculate.  However, it does require one 
to record the input and output characteristics of the 
converter during operation whereas the SD methodology 
only requires the monitoring of one channel.  The SD metric 
in both cases also produces a consistent degradation metric 
that could be used for diagnostics. 

5. CONCLUSION 

This paper proposes a data derived approach to monitoring 
dc-dc converters for degradation during operation.  The 
methodology is based on Symbolic Dynamics that converts 
the captured time series data into a symbolic series that is 
analyzed statistically.  The statistical results are then used to 
generate an anomaly based on the current operating 
conditions of the converter as compared to a known 
baseline. 

The algorithm was tested on data recorded from two dc-dc 
forward converter tests.  The aim was to capture 
degradation trends from the converters by monitoring the 
input voltage, switch current, MOSFET drain to source 
voltage, the output freewheel diode voltage, and the output 
voltage.  It was determined that the diode voltage was the 
most sensitive to the internal degradation of the converter.   

The generated anomaly from the SD algorithm was 
compared to the overall efficiency of the converter as well 
as the form factor of the output voltage.  The form factor 
metric aims to capture the change in the output voltage 
ripple related to degradation of the output electrolytic 
capacitor.   

The results show a consistent trend generated from both the 
SD anomaly and the efficiency of the converter.  The form 
factor was inconsistent in generating trends between the two 
tests. 

Future work will focus on effects to the algorithm from 
loading changes as well as further investigation into the 
effects of the different parameters in the Symbolic 
Dynamics algorithm.  It was also determined that 
temperature deviations affect the data derived method 
which requires further investigation.  Investigation of using 
the generated trends for prognostication will also be 
researched.  The trends produced from testing currently 
have generated trends that we believe are applicable for life 
prediction. 
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