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ABSTRACT

Bearing faults represent the most frequent mechanical faults
in rotational machines. They are characterized by repetitive
impacts between the rolling elements and the damaged sur-
face. The time intervals between two impacts are directly re-
lated with the type and location of the surface fault. These
time intervals can be elegantly analyzed within the frame-
work of renewal point processes. With such an approach the
fault detection and identification can be performed irrespec-
tive of the variability of rotational speed. Furthermore, we
show that by analyzing the entropy of the underlying count-
ing process by means of wavelet transform, one can per-
form fault detection and identification without any informa-
tion about the operating conditions. The effectiveness of the
approach is shown on a data-set acquired from a two–stage
gearbox with various bearing faults operating under different
rotational speeds and loads.

1. INTRODUCTION

According to several surveys (MRWG, 1985a, 1985b, 1985c;
Albrecht, Appiarius, & Shrama, 1986) one of the most com-
mon mechanical failure are bearing faults. Consequently, a
variety of techniques for detection of bearing faults have been
developed in the past decades. They rely mainly on analysis
of vibrational signals acquired from machines operating un-
der constant and known operating conditions. However, such
conditions are rarely met in practice. Therefore, in this paper
we address the issue of bearing fault detection under vari-
able and presumably unknown operating conditions within
the framework of renewal point processes.
In the currently available approaches, fault detection under
variable speed is resolved by acquiring precise information

Boškoski et.al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

about the current speed and load. Most common approach in
such a case is time–synchronous averaging (TSA), a method
which compensates for the speed fluctuations (Zhan, Makis,
& Jardine, 2006; Stander & Heyns, 2005). In the same man-
ner Parker et al. (2000) applied higher order spectra analy-
sis for the detection of various bearing faults under different
load conditions. Bartelmus and Zimroz (2009) successfully
performed fault detection in multi–stage gearboxes by taking
into account the information about both variations in speed
and load. Although the proposed approaches give satisfac-
tory results they heavily depend on accurate measurements of
the current speed and load of the monitored gearbox.
Can bearing faults be reliably detected in spite of unknown
variable load and speed conditions? Poulimenos and Fassois
(2006) provided a thorough analysis on modeling and analysis
of nonstationary vibration signals in time domain. Padovese
(2004) gave a hybrid time–frequency approach for analyzing
transient signals. Baydar and Ball (2000) performed detec-
tion of gear deterioration under different loads using instanta-
neous power spectrum by employing Wigner–Ville distribu-
tion (WVD). They have successfully realized fault detection
of gear faults irrespective of the operating conditions.
Another way of overcoming the difficulties induced by vari-
able operating conditions is to analyze the statistical charac-
teristics of the produced vibrational signals. In case of bear-
ing faults, the most informative source can be found in the
distribution of the time intervals between two adjacent im-
pacts occurring between the rolling elements and the damaged
bearing surface. By doing so we can employ the framework
of point processes in modeling the distribution of these times.
The framework of point processes was successfully applied in
the areas like modeling the neural spikes, earthquake predic-
tion, describing environmental processes etc. However in the
field of fault detection, to the best of the authors knowledge,
Antoni and Randall (2003) are the only authors that tried to
analyze the distribution of these interevent times by treating
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them as an ordinary renewal process. However, their analysis
was focused only on cases when bearings are operating under
presumably constant and known operating conditions.
In our approach we go one step further by removing the
limitation of constant and known operating conditions. Fur-
thermore, we will show that the produced bearing vibrations
may be modeled as renewal process with Inverse Gaussian
interevent distribution. We will show that with such an ap-
proach one can construct an unified model for bearing fault
vibrations, capable of modeling both single and multiple bear-
ing faults. The statistical properties of the model additionally
allow proper modeling under both constant and variable op-
erating conditions. Finally, we will propose one way of per-
forming fault detection based on the statistical characteristics
of the renewal process analyzed through wavelet transform.

2. BASICS OF POINT PROCESSES

The point processes represent a segment of the theory of ran-
dom processes that are most commonly used for characteriz-
ing random collections of point occurrences (Cox & Isham,
1980). In the simplest form, these points usually represent
the time moments of their occurrences. This class of point
processes is also known as temporal point processes.
Generally it is considered that the observed random points
occur at time moments · · · , t1, t2, t3, · · · . A point process is
simple if all the observed points are distinct i.e. ti 6= tj for
i 6= j. Additionally the point process is called orderly if the
number of points N at any moment t and interval length ∆t
is:

lim
∆t→0

Pr{N [t, t+ ∆t] > 1} = 0. (1)

Besides the occurrence times t and the number of points N
another way of defining a point process is by the interevent
times, i.e. the time between two adjacent points. Thus, the
nth interevent time is defined as Tn = tn − tn−1.
One general goal is to derive the statistical properties of the
mechanism that generates the observed random occurrences.
The properties of a point process may be specified in several
equivalent ways. The most common approach is to specify
the non-negative number N ∈ Z+ that specifies the number
of observed occurrences between time 0 and time T . An-
other way to specify the statistical characteristics is through
the distribution of the interevent times {T1, · · · , Tn} where
Ti = ti − ti−1. Finally, the approach for describing the sta-
tistical characteristics that will be used throughout this paper
is based on the frequency with which the events occur around
the time moment t with respect to the history of the process
up to that particular moment Ht. This statistical property is
usually called conditional intensity function λ(t,Ht). Each
of these specifications is equivalent and the most appropriate
one may be used (Daley & Vere-Jones, 2003a).
For the corresponding conditional density function f(t|Ht)
one can also define its corresponding cumulative function

F (t|Ht). Consequently the conditional intensity function can
be defined as:

λ∗(t) =
f(t|Ht)

1− F (t|Ht)
. (2)

The denominator of (2) is also known as survivor function
s(t) (Vreeswijk, 2010):

s(t) = Pr{event not before t|Ht}. (3)

The form of the conditional intensity function completely de-
scribes the underlying point process. In general, as shown in
Eq. (2), this function depends on both the current time t as
well as the complete point process history up to that moment
Ht. However, by allowing specific limitations one can de-
fine several specific types of point processes. If we let λ∗(t)
to become independent of Ht, it will define a non-stationary
Poisson process. A stationary version is defined by fixing the
value of λ∗(t) = const. to a specific constant that defines the
rate of the underlying Poisson process. With such limitations
one can readily show that the interevent times of the Poisson
process are independent and distributed with exponential dis-
tribution.
A further generalization of this concept is the class of renewal
point processes (Lowen & Teich, 2005). Similarly like in the
Poisson process, the interevent times of such processes are in-
dependent and identically distributed (i.i.d.) but with arbitrary
distribution f(t) supported on semi-infinite interval [0,+∞),
i.e. f(t) = 0 for t < 0. Consequently, the occurrence of
a new event becomes dependent only on the time since the
previous one.
One can proceed even further by removing the condition of
independence of the interevent intervals. If the interevent in-
tervals {Xn} form a Markov chain where the length of the
Xn+1 depends only on the length of the previous interval
Xn one obtains a so-called Wold process (Daley & Vere-
Jones, 2003a). By modeling different transition kernels of
the Markov chains one can model various types of point pro-
cesses (Daley & Vere-Jones, 2003b). The form of the transi-
tion directly determines the form of the conditional intensity
function (Asmussen, 2003). Therefore, one can define the
most suitable transition form of the governing Markov chain
that will fit the observed random process. At the same time
there is an equivalent opportunity of fitting a specific form
of governing chain with respect to an observed history of an
arbitrary point process. Such an identification procedure can
be implemented by employing well established methods from
the area of hidden Markov models.

3. MODELING BEARING FAULTS USING THE POINT
PROCESS FRAMEWORK

Generally, the vibrations produced by bearings with localized
surface faults have been analyzed in cases of constant and
known rotational speed. In such a case the generated vibra-
tional patterns x(t) can be modeled as (Antoni & Randall,
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2002; Randall & Antoni, 2011):

x(t) =

+∞∑
i=−∞

Ais(t+ ∆Ti) + n(t), (4)

whereAi represent the amplitude of the ith impact, s(t) is the
excited impulse response, n(t) is additive background zero-
mean noise and ∆Ti = Ti+1−Ti represents the time between
two consecutive impacts. The time period ∆Ti contains all
the needed diagnostic information.
The intervals ∆Ti can be treated as interevent times of a point
process. By imposing a specific distribution of these intervals
we can specify a model of the generating point process. Con-
sequently by analyzing the statistical characteristics of such a
point process we can infer about the underlying bearing fault.

3.1 Point process model for localized bearing faults

Tandon and Choudhury (1999) specified the characteristic im-
pact frequencies for different bearing surface fault as func-
tions of bearing dimensions and rotational frequency of the
rotating ring. Therefore, the interevent times Ti in the model
(4) are directly related to the bearing’s rotational speed. Thus,
in order to model the interevent time distribution we have
to specify a suitable condition intensity function. A way to
model the rotational speed is by modeling the change in the
rotational angle θ(t) of the rotating ring:

θ(t) = νt+ σW (t), (5)

where W (t) is standard Brownian motion with normally dis-
tributed increments with zero mean and some constant vari-
ance (Matthews, Ellsworth, & Reasenberg, 2002), ν is di-
rectly related to rotational speed and σ accommodate the
speed fluctuations. Thus a single evolution occurs when the
angle θ(t) reaches the threshold 2π. A simple realization of
such a process is shown in Figure 1. Schrödinger has shown
that the distribution of the time needed for a Wiener process
(5) to reach a fixed threshold a follows the Inverse Gaussian
distribution (Folks & Chhikara, 1978):

f(t) =
a

σ
√

2πt3
exp

{
− (νt− a)2

2σ2t

}
, (6)

usually denoted as t ∼ IG(a/ν, a2/σ2). Since the parame-
ters ν and σ are constant in time, the resulting point process
is stationary with firing rate ν.

3.2 Statistical characteristics of Inverse Gaussian
renewal process

Since the Inverse Gaussian renewal process will be the basis
of our model we will derive the necessary statistical proper-
ties. Besides the conditional intensity function and the in-
terevent times distribution, a point process can be analyzed
through its counting process N i.e. the probability distribu-
tion pN (t) of observing N consecutive events within a time
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Figure 1. Realization of renewal process with Inverse Gaus-
sian interevent distribution

interval [t0, t), where usually t0 = 0. In order to derive the
distribution pN (t) one has to calculate the joint probability
distribution p(t0, t1, · · · , tN ).
Firstly, the probability of a single event occurring up to time
t1 is p1(t1) = p(t1), where p(t) is the probability distribution
of a single event. The probability of observing N events up
to time tN is:

pN (tN ) =

∫ tN

0

pN−1(tN−1)p(tN − tN−1)dtN−1, (7)

where p(tN − tN−1) is the interevent probability distribution.
The Eq. (7) is a convolution of two p.d.f. defined on the non-
negative real line, since both tn > 0 and tn > tn−1, and it
can be easily calculated using the Laplace transforms of both
pN−1(t) and the distribution of interevent times f(t):

pL,N (s) = pL,N−1(s)fL(s) = fNL (s), (8)

where pL,N−1(s) = L{pN−1(t)}, fL(s) = L{f(t)} and
L{·} stands for the Laplace transform.
In case of Inverse Gaussian interevent times the Laplace trans-
form fL(s) of (6) is:

fL(s) = exp

{
νa

σ2

[
1−

√
1 + 2

σ2

ν2
s

]}
(9)

Calculating then the L−1{fNL (s)} we obtain (Tweedie,
1957):

fN (t) =
Na

σ
√

2πt3
exp

{
− (νt−Na)2

2σ2t

}
. (10)

The obtained result has quite intuitive explanation. Namely,
in (6) the threshold for the Wiener process was set at a. There-
fore the time t needed to observeN consecutive crossings has
the same distribution as if one elevated the threshold up to
Na.

4. BEARING FAULT DETECTION USING INVERSE
GAUSSIAN INTEREVENT DISTRIBUTION

Having in hand the statistical properties of the governing re-
newal process we can now analyze how the model performs
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under different specific operating conditions. The goal of
these analysis is to show that the model is valid for both con-
stant and variable operating speed as well as in cases of single
and multiple bearing faults.

4.1 Constant rotating speed

In cases when the rotating speed is strictly constant, the value
of σ in (5) and (6) will become zero, hence the distribution be-
comes Dirac impulse i.e. f(t; ν, σ = 0) = δ(νt− a). Conse-
quently, the corresponding point process will be transformed
into a truly periodic sequence of impacts.

(Pseudo) Cyclostationarity Small variations in the rotating
speed can be accommodated by allowing small values of σ in
(6). The autocorrelation function of the stationary renewal
process (4) with ∆T ∼ IG(ν, σ) can be derived through
its interevent probability distribution. Using (6) as interevent
probability distribution it can be readily shown that the auto-
correlation function converges to the constant value

lim
τ→∞

Rxx(τ) =
2σ2

aν
<∞. (11)

As already analyzed by Antoni and Randall (2002), such
a process can be treated as pseudo cyclostationary in cases
when σ is sufficiently small, i.e. when the speed fluctuations
are just a few percent.

4.2 Variable rotating speed

The modeling of completely arbitrary speed variations can be
done by allowing both νshaft = ν(t) and σshaft = σ(t) in
(6) to become time dependent. The resulting process is called
doubly stochastic process which in essence is nonstationary
process.
Despite the nonstationary characteristics, for cases where ν(t)
varies slowly, one can employ the so–called modified variabil-
ity measure CV 2. This measure is fairly insensitive to varia-
tions in the firing rate of the point process and is defined as
(Ponce-Alvarez, Kilavik, & Riehle, 2010):

CV 2 =
2|τi+i − τi|
τi+1 − τi

, (12)

where τi represents the interevent time between the events
i− 1 and i.

4.3 Single bearing fault

A crucial information when analyzing the bearing faults is the
underlying shaft speed. The instantaneous shaft speed can be
obtained by differentiation of the random process (5) govern-
ing the current angle θ(t)

dθ(t)

dt
= ωshaft = νshaft + σshaftη(t), (13)

where η(t) is the governing Gaussian process. The rota-
tional speed of each bearing component is directly related

to the speed of the rotating shaft (13) (Tandon & Choud-
hury, 1999). Consequently, each bearing fault is governed
by a random process of form (13) multiplied by a constant
Ck. This constant is determined by the geometrical charac-
teristics of the bearing which determine the ratio between the
angular speed of the rotating ring and a specific bearing ele-
ment, i.e. k ∈ {Inner ring, Outer Ring, Bearing Cage, Ball
spin}. Consequently, each bearing fault can be represented
by a renewal process governed by Inverse Gaussian distribu-
tion with ν = Ckνshaft and σ = Ckσshaft. Consequently,
the distribution of the interevent times for the kth component
becomes:

tk ∼ IG
(

a

Ckνshaft
,

a2

C2
kσ

2
shaft

)
(14)

4.4 Multiple faults on different bearing components

As already stated single bearing faults differ in the statisti-
cal properties of the governing IG distributions. In cases of
multiple bearing faults we can observe the overall produced
vibrations as a sum of several random processes each gov-
erned by its own IG probability distribution with respect to
the underlying fault.
In general case the sum of IG r.v. does not necessarily leads
to a result governed by IG distribution. However, the distri-
butions (14) governing the possible bearing faults fulfill the
necessary condition that the ratio

V ar[tk]

E[tk]
=

aσ2
shaft

Ckν3
shaft

Ckνshaft
a

=
σ2
shaft

ν2
shaft

(15)

remains constant, i.e. independent of Ck. Thus the sum of
such renewal processes results into new renewal process with
IG interevent distribution:

S =
∑
k

tk

∼ IG

 a

νshaft

∑
k

Ck,
a2

σ2
shaft

(∑
k

Ck

)2
 (16)

The Eq. (16) comes in hand for the cases of multiple faults.
As shown by Eq. (14), distinctive distribution of interevent
times governs each type of bearing fault. In such a case the
observed vibrations can be regarded as a sum of several repet-
itive excitations of possibly different impulse responses, un-
like the case of single fault as described by (4). Since such a
sum fulfills the conditions (15) the resulting point process can
be treated in the same manner as the cases with single fault.

5. DETECTION OF IMPACT TIMES USING WAVELET
TRANSFORM

In order to apply the presented framework for bearing fault
detection we should be capable of determining the times ∆Ti
from (4) as precise as possible. By analyzing the bearing fault

4



Annual Conference of the Prognostics and Health Management Society, 2011

model (4), one can observe that this signal is dominated by
sudden excitations of impulse responses positioned at the im-
pact times. The time location of these impacts can be de-
termined sufficiently accurately by analyzing the signal with
wavelet transform using a mother wavelet number of vanish-
ing moments vm higher then the order of the impulse response
s(t) in (4) (Unser & Tafti, 2010).
In such a case the selected wavelet will act as a vmth order
differential operator. Consequently, the time moments where
the vibration signal x(t) has discontinuities will be marked
with wavelet coefficients with higher values. This time mo-
ments will coincide with the time moments when the impacts
occur.
Therefore by applying Mallat (2008) thresholding process of
the calculated wavelet coefficients, one can obtain accurate
information about the impact times, i.e. information about the
underlying bearing fault. This process is shown in Figure 2.

System

Wf(u.s)

Input impulses Impulse responses

Wavelet transform

Wavelet coefficients

Figure 2. Wavelet as differential operator

Thorough analysis on the influence of the selection of mother
wavelet on the accuracy of the decomposition for such signals
has been performed by Unser and Tafti (Unser & Tafti, 2010)
and Van De Ville, Blu, and Unser (Van De Ville et al., 2005).
They have concluded that the crucial parameter is the num-
ber of vanishing moments of the mother wavelet rather then
the selection of the “optimal” mother wavelet that will closely
match the underlying process. By selecting wavelet with suf-
ficiently high number of vanishing moments we can analyze
the impulse responses s(t) from (4) regardless of their vari-
able form due to the changes of the transmission path.

5.1 Fault detection procedure

Detecting the impact moments using wavelet transform al-
lows significant simplification in the fault detection process.
The calculated wavelet coefficients preserve the statistical
characteristics of the probability distribution that is generat-
ing the random impulses. Consequently, within a fixed ob-
served window of length T one can use the distribution of the
number of impacts N as information that is closely related
with the underlying fault.

Due to the orthogonality of the wavelet transform the energy
of the observed signal is preserved within the amplitude of
the wavelet coefficients. In case when no impacts occur one
will observe the wavelet transform just from the noise compo-
nent n(t) from (4). Therefore, under assumption of Gaussian
noise, the energy will be evenly spread throughout the wavelet
coefficients. Thus, the entropy of this distribution will be
highest. In cases when the impacts are present the bulk of the
energy of the signal will be concentrated in a small number
of wavelet coefficients coinciding with the impact times, thus
the entropy of the wavelet coefficient will decrease. The level
of change is directly connected to the number of impulses oc-
curring within the observed time window T . Therefore, by
characterizing the distribution p(N,T ) of number of impacts
N within a time window with length T , one can correlate the
changes in the entropy of the wavelet coefficients with a par-
ticular bearing fault.
The distribution p(N,T ) can be determined by the survivor
probability sN (t) (3). The survivor probability sN (t) gives a
probability of observing the N impact time after a time mo-
ment t:

sN (t) =

∫ +∞

t

fn(t′)dt′. (17)

Therefore the probability of observing N impulses within a
time window of length T becomes

p(N,T ) = sN+1(T )− sN (T ). (18)

By calculating the Laplace transform of (17) and inserting it
in (18) the distribution becomes

p(N, s) =
1− fL(s)

s
fnL(s), (19)

where fL(s) is the Laplace transform of the IG distribution
as defined by Eq. (9). In order to simplify the analysis we will
concentrate only on the expected number and the variance of
the distribution p(N,T ). These values can be approximated
by taking into account only a limited number of Taylor ex-
pansion terms. Hence for the expected value E[N,T ] and the
variance V ar[N,T ] when f(t) ∼ IG(a/ν, a2/σ2) we obtain

E[N,T ] = νT +
σ2ν − 1

2

V ar[N,T ] = σ2ν2T

(20)

As intuitively expected, these two expressions prove that the
number of events within a time window depend on the firing
rate ν and the variation σ.
However in case of bearing vibrations, as already shown by
(16), each bearing fault differ by the factor Ck multiplying
the shaft rotational speed and its fluctuation. As a result of
this dependence each bearing fault is governed by different
interevent distribution f(t), thus the number of expected im-
pulses within a fixed time window of size T will differ among
different fault combinations. Consequently, the wavelet en-
ergy distribution will be different and the faults will be distin-
guishable.
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Besides the changes caused by different faults, the distribu-
tion p(N,T ) will change with changes in the rotational speed.
As a result of this change the wavelet energy entropy will
vary. However, according to (16) the variations in the rota-
tional speed will influence every bearing fault in the same
manner, i.e. by adding and additional constant to each co-
efficient Ck in (16). Consequently, notwithstanding the vari-
ations in the speed the entropy values the entropy values for
particular bearing fault will be always distinguishable, since
the underlying IG distributions will remain different among
various bearing faults.

6. EXPERIMENTAL RESULTS

The experimental data was acquired on a laboratory two–
stage gearbox (PHM, 2009) (cf. Figure 3). The test runs in-
clude 7 different fault combinations and one fault–free ref-
erence run. From this set we have used the fault runs that
contained bearing faults. Each set–up was tested under 5 dif-
ferent rotational speeds of the input shaft: 30, 35, 40, 45 and
50 Hz. Furthermore, two test runs were performed per each
combination of different fault and speed.
The detailed list of the introduced faults is listed in Table 1.
It should be noted that bearing faults were introduced only
on the bearings 1–3, and all the remaining bearings were
kept fault–free during the whole experimental runs. Addition-
ally, the shaft imbalance was introduced on the Input shaft,
whereas the sheared keyway fault was located on the Output
shaft.

Idler Shaft

Output Shaft

1
G
e
a
r

2
G
e
a
r

3
G
e
a
r

4
G
e
a
r

Bearing 1

Bearing 2

Bearing 3

Bearing 4

Bearing 5

Bearing 6

Input Shaft

Figure 3. Schematic description of the used two–stage gear-
box

6.1 Analysis

Each of the four experimental runs was analyzed using
Daubechies8 mother wavelet (Daubechies, 1992). The en-
ergy entropies calculated from the corresponding wavelet co-
efficients are shown in Figure 4. From these results we should
note the three key features.

First, the wavelet energy entropy of the fault free run is con-
stant regardless the rotational speed. In absence of fault the
observed signal reduces only to background noise n(t) from
Eq. (4). Since no information about the machine state is con-
tained in this signal the entropy is constant.
Secondly, the fault 7 shows highest entropy from the other
two bearing faults, followed by fault 8 and fault 6 having the
lowest entropy. By examining the fault details from Table 1,
one can notice that fault 7 contains only a single damaged el-
ement, fault 8 two damaged elements and fault 6 with three
damaged elements. As already stated in Section 4.4, the oc-
currence of multiple faults can be treated as sum of several
r.v. governed by IG distribution. Thus, according to (16)
the resulting random process will have higher firing rate. A
higher firing rate in essence contributes to increased number
of expected impact occurrences N within a time window T ,
according to (20). Finally, this effect influences the shape of
the wavelet energy distribution in such a manner that the over-
all entropy decreases.
According to (14), the increase of the rotational speed causes
an increase in the firing rate of the IG process, hence de-
creasing the wavelet energy entropy. This effect has identical
influence on all bearing faults. Consequently, as the speed
increases the difference among wavelet energy entropies for
different bearing faults increases too. Hence, the faults be-
come more distinguishable as the rotational speed increases,
as shown in Figure 4.

Bins with two measurements per rotational speed
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Figure 4. Wavelet coefficients energy entropy for selected
bearing faults

6.2 Comments on results and possible improvements

The results support the hypothesis that bearing faults can be
detected by employing a statistical model of Inverse Gaussian
renewal process and wavelet energy entropy. One of the main
assets of the approach is that it is requires no information
about the operating conditions. This becomes more evident
by comparing the fault detection capabilities of this approach
with approaches that incorporate information about the oper-
ating conditions. A fine example is the study that we have
performed on the same experimental data by applying spec-
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Run Number Gear Bearing1
Shaft fault1 2 3 4 1 2 3

#1 Fault Free (FF)
#6 FF FF FF Broken Inner Ball Outer Imbalance
#7 FF FF FF FF Inner FF FF Keyway Sheared
#8 FF FF FF FF FF Ball Outer Imbalance

1 Faults were introduced only on Bearings 1–3 (cf. Figure 3). The other three bearings
were kept fault–free during all experimental runs.
(Boškoski, Juričić, & Stankovski, 2010)

Table 1. Fault details for each experimental run

tral kurtosis (SK) and envelope analysis (Boškoski & Urevc,
2011). Although the bearing fault isolation capabilities of SK
are superior, the fault detection results are comparable, i.e.
the set of experimental runs containing bearing faults were
accurately detected by both approaches.
Additionally this study provides a possible explanation of the
results that we have obtained by the analysis of the same ex-
perimental set using a set of entropy functions calculated from
the wavelet packet coefficients (Boškoski et al., 2010). Those
results showed that based solely on the entropy of wavelet
packet coefficients one can perform accurate fault detection
of gears and bearings regardless of the operating conditions.
The relations (16) and (20) provide an explanation how dif-
ferent bearing faults alter the probability distribution of the
wavelet coefficients hence modifying its entropy.
An immediate future improvement to this study would be the
application of goodness–of–fit tests that will test the hypoth-
esis that the observed point process is governed by IG distri-
bution. The result of such tests can serve as a starting point
for deciding whether bearing faults are causing the changes in
the observed probability distribution of wavelet coefficients.
Furthermore, with such tests we will be able to quantify the
effectiveness of the approach by considering the probability
of inaccurate detection.

7. CONCLUSION

The bearing fault model based on a renewal process governed
by Inverse Gaussian (IG) interevent has shown to be capable
of modeling the fault vibrational patterns under various oper-
ating conditions. This approach provides an unified view on
the statistical properties of the produced vibrational signals
regardless of the operating conditions. Such a unified concept
offers several advantages.
Firstly the rate ν and the variance σ of the IG renewal pro-
cess contain all the necessary information about the present
bearing fault. Furthermore, such an approach allows fairly
simple modeling of multiple bearing faults, since the resulting
process can be treated as a sum of inverse Gaussian random
variables. As bearing faults are related to the shaft rotational
speed, the necessary condition is fulfilled so the resulting sum

is again governed by Inverse Gaussian distribution.
Secondly, having defined the distribution of the renewal point
process we were able to derive the probability of observing
N impacts within a time window T . Thus, we have shown
that by employing this distribution it is guaranteed that var-
ious bearing faults can be distinguished without any knowl-
edge about the geometrical characteristics of the monitored
bearings.
Using the distribution of the counting processN we have pre-
sented one possible way of using wavelet transform in obtain-
ing an estimate of the number of impacts within a time T by
analyzing the wavelet coefficient energy entropy. The results
show that various bearing faults can be successfully detected
without any knowledge about their geometrical characteris-
tics. Additionally, the behavior of the calculated feature sup-
ports the hypothesis that the produced bearing vibrations can
be treated as renewal point process with IG interevent distri-
bution.
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